文档库 最新最全的文档下载
当前位置:文档库 › 离子交换树脂浅谈

离子交换树脂浅谈

离子交换树脂浅谈
离子交换树脂浅谈

离子交换树脂

摘要:我国自20世纪50年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展,国内常规的离子交换树脂制造和应用技术已经较为成熟,水平与国外相当。

关键字:水处理、离子交换树脂、湿法冶金

前言:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。

离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。

特点

1.树脂颗粒尺寸

离子交换树脂通常制成珠状颗粒,树脂颗粒较细者,反应速度较大,但细颗粒对液体阻力较大,需要较高的工作压力。将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50…目筛网上的留存量,以9000粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。大粒径树脂为0.6~1. 2mm(20^40目)之间,粉末树脂的粒径树脂0. 01~0. 1mm。一般离子交换树脂的粒径。

2.树脂的密度

树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。

干真密度=干树脂重/干树脂颗粒的体积g/cm3

湿密度又分湿真密度和湿视密度。

(1)湿真密度一是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒的空隙)比

值(g/ cm3,不同类型树脂,湿真密度不同。

湿真密度=湿树脂重/湿树脂颗粒的体积g/cm3

即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同,此值一般在1.04~1.3之间,阳树脂常比阴树脂湿真密度大。

湿真密度在双层床工艺过程中与树脂的分层效果有关,

(2)湿视密度。

树脂的密度与它的交联度和交换基团的性质有关。交联度高的树脂密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性,大孔型树脂的密度则较低。例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1. 26g/mL,视密度为0. 85g/mL;丙烯酸系凝胶型弱酸阳离子树脂的真密度为1. 19g/mL,视密度为0. 75g/mL。.

此值一般在0.60~0.85之间,实际采用湿视密度(堆积密度)来计算离子交换器内填充树脂的质量。

离子交换树脂应为不溶性物质,但树脂在合成过程中夹杂的聚合度较低的物质及树脂使用过程中受高温影响或被氧化会化学降解而生成的物质,会在运行时溶解出来,称为胶溶。交联度较低和含活性基团多的树脂,溶解倾向较大。离子交换器刚投入运行时发生出水带色现象就是树脂胶溶现象。

膨胀度

离子交换树脂含有大量亲水基团,与水接触即吸水膨胀。溶液中电解质浓度越大,树脂内外溶液的渗透压差反而减小,树脂的溶胀就小,所以对于“失水”的树脂,应将其先浸泡在饱和食盐水中,使树脂缓慢膨胀,不致破碎。当树脂中的离子变换时,如阳离子树脂由H+转为Na十,阴树脂由C1-OH-转为OH-,都因离子直径增大而发生膨胀,增大树脂的体积。通常,交联度低的树脂的膨胀度较大。在设计离子交换器本体高度与再生装置及配水装置时,必须考虑树脂的转型膨胀率体积改变率(见表3-3、表3-4),以适应生产运行时树脂层中的离子转型发生的树脂体积变化。树脂转型体积改变率越小越好,在浮动床中这样容易控制树脂层装填高树脂层度及填床率,使落床、成床时树脂层基本不乱。此外,对固定床的中排再生装置设计有利。

树脂颗粒使用时有转移、摩擦、膨胀和收缩等变化,长期使用后会有少量损耗和破碎,当树脂破碎严重时,将会造成水流阻力的急剧增加,从而使设备出力达不到要求,影响正常运行,故树脂要有较高的机械强度和耐磨性。交联度低的树脂较易碎裂,但树脂的耐用性更主要地决定于交联结构的均匀程度及其强度。如大孔树脂,具有较高的交联度者,结构稳定,能耐反复再生,一般交换器内树脂使用后其机械强度应保证每年的耗损率不超过3%~7%。树脂的损耗超过正常值时,除了检查树脂的流失情况,还应考虑树脂是否存在破损问题。

树脂的骨架是靠交联剂连接在一起的。交联度是指交联剂所占有的份数,一般用交联剂占单体质量百分数来表示。例如,聚苯乙烯树脂用二乙烯苯做交联剂,其用量占单体总料量的8%时,这种树脂的交联度为8%。低交联度为2%~4%,中交联度为7%~8%,高交联度为12%~20%;交联度直接影响树脂的性能。交联度越高,树脂的机械强度就越大,对离子的选择性越强,但离子的交换速度就越慢。这是因为交联度高,表明树脂的结构紧密,孔隙率低,同时树脂在水中溶胀率也低,因而水中的离子在树脂内扩散速度小,影响了离子间的交换能力。

树脂的热稳定性与构成树脂结构中的各部分成分密切相关。钠型树脂比氢型、氢氧型都稳定。如钠型聚苯乙烯树旨,能在120℃下使用,而其氢型只能在,100℃以下使用。强碱性聚苯乙烯树脂可在60℃下使用。带有经基的酚醛阴树脂只允许在30℃下长期使用。提高水温能同时加快内扩散和膜扩散,离子交换设备运行时,一般水温保持在20~40℃。

(2)化学稳定性。

一般无机离子交换剂是不耐酸碱的,只能在pH≤8.5条件下使用。有机合成强酸、强碱性树脂可在pH=1~14中使用。弱酸阳树脂可在pH >4时使用,弱碱阴树脂应在pH<9时使用。一般树脂的抗酸性优于抗碱性。

2)抗氧化性能。各种氧化剂如氯、次氯酸、双氧水、氧、臭氧等会对树脂有不同程度的破坏作用,在使用前需要除去。不同类型的树脂,受到损坏的程度不同。就其抗氧化的能力来讲,交联度高的树脂优于交联度低的树脂;聚苯乙烯类树脂优于丽醛阴树脂只允许在30℃下长期使用。提高水温能同时加快内扩散和膜扩散,离子交换设备运行时,一般水温保持在20-40℃。

氢型阳离子交换树脂是什么?氢型阳离子交换树脂(有时简称「氢型树脂」)是一种人造有机聚合物产品。最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上「氢型」两字,以与同

一系统的「钠型」种类有所区别。不过「钠型」可以利用强酸处理成为「氢型」,「氢型」也可以用「氢氧化钠」溶液处理成为「钠型」,即两型树脂实际上可以互相转换。氢型阳离子交换树脂不溶于水和一般溶剂。和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3 ~ 1.2 mm之间,但大部分在0.4 ~ 0.6 mm范围内。化学性质相当安定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的「硬度离子」,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。

种类

树脂主要性质和类别之差异,在于它们的化学活性基种类之不同,因此氢型阳离子交换树脂可依活性基(一种官能基)种类不同,分成两种:强酸性阳离子交换树脂(strong- acid anion exchange resin)和弱酸性阳离子交换树脂(weak - acid anion exchange resin)。强酸性阳离子交换树脂系因它的活性氢离子在水中很容易解离而得名,其骨架均为聚苯乙烯系统,主要产品是「磺酸型」强酸性阳离易解离而得名,骨架均为聚丙烯酸系统,主要产品是「羧酸型」弱酸性阳离子交换树脂,通常颜色较?白色或淡黄色球状子交换树脂,通常颜色较深,棕黄色至综色球状颗粒,以综色最常见;反之,弱酸性阳离子交换树脂则是因它的活性氢离子在水中比较不容颗粒,以淡黄色最常见。如果用化学反应来表示这两种树脂的差异性,我们可以描述如下(R代表树脂母体):强酸性: R-SO3H → R-SO3- + H+ (H+容易解离,在水中呈强酸性)弱酸性: R-COOH → R-COO- + H+ (H+不易解离,在水中呈弱酸性) 由于强酸性阳离子交换树脂的解离能力很强,所以在任何酸性或碱性溶液中均能解离和产生离子交换作用,其作用pH范围介于1~14。反之,弱酸性阳离子交换树脂的解离能力很弱,只能在弱酸性至碱性溶液中解离和产生离子交换作用,其作用pH范围仅介于5~14。

应用:

1)水处理

水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

2)食品工业

离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。

3)制药行业

制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。

4)合成化学和石油化学工业

在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。

甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应

而成,代替了原有的可对环境造成严重污染的四乙基铅。

5)环境保护

离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。

6)湿法冶金及其他

离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。

总结

我国自20世纪50年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展,国内常规的离子交换树脂制造和应用技术已经较为成熟,水平与国外相当。离子交换树脂膜主要应用于电力食品。医药、电子和冶金等行业,随着锅炉给水,饮用水和电子用水等对离子交换出水的要求纯度要求日益提高,促使常规的离子交换树脂生产和应用技术的不断完善,同时催生了许多新型的生产工艺不断涌现,使得离子交换树脂产品升级和技术进步的步伐也日益加快。

参考文献:

【1】黄艳,韩倩倩,曹顺安:《国内离子交换器生产及应用现状与前景》

【2】杨崇涛:《离子交换树脂在汽机和工艺凝结水精处理中的应用》

【3】潘若平.邓慧萍:《离子交换树脂膜法在铵钾交互作用研究上的

【4】陈小琴,周健民,王火焰:《应用及其与养分生物有效性的关系磁性离子交换树脂在饮用水预处理中的应用》

阴阳离子交换树脂

【新树脂的预处理】 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 1、阳离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;最后用5%HCL溶液,其量亦与上同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。 2、阴离子树脂的预处理:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐水中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;而后用5%HCL浸泡4-8小时,然后放尽酸液,用水清洗至中性;而后用2%-4% NaOH溶液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。 分类产品名 称 功能基团 体积交换 容量 mmol/ml≥ 出场形 式 国外树脂对应 牌号主要用途 强酸性苯乙烯系阳离子树脂001*4 -SO3H 4.50 Na+ Amberlite IR-118 高纯水制备及抗菌素提炼等002-sc Amberlite IR-122 抗菌素提取与D113SC配套双层床 大孔弱酸性丙烯酸系阳离子树脂D111 -COOH 9.5 H+ Amberlite IRC-84 循环水处理、废水处理、脱色110 11.5 Amberlite IRC-84 用于提取链霉素及分离碱性抗菌素、 硬水软化、纯水制备 122 4.00 用于提纯维生素B12、钼酸铵精制、 链霉素、土霉素、四环素等抗菌素的 脱色味精脱色 强碱性苯乙烯系阴离子树脂201*4 -N+/(CH3)3 3.80 CL- Amberlite IRA-401 纯水、高纯水置备、糖液脱色、生化 制品的制备等 202 -N+/(CH3)2 \C2H4OH 3.10 Amberlite IRA-900 纯水制备、配套双层床 大孔强碱性苯乙烯系阴离子树脂D296 3.60 CL- 用于有机物脱色和纯水制备 D202 -N+/(CH3)2 \C2H4OH 3.50 Amberlite IRA-910 纯水制备、放射性元素提取、稀有元 素分离 大孔弱碱性苯乙烯系阴离子树脂330 -N+/(CH3) 2.H2O 9.00 Wofatit L-165 用在链霉素提炼中起中和作用、也可 用于中和有机酸及用于制备纯水 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。 阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为 2R—SO3H+Ca2+—(R—SO3)2Ca+2H+(这也是硬水软化的原理)

离子交换法处理镍废水

离子交换法处理镍废水

————————————————————————————————作者:————————————————————————————————日期: ?

三废治理技术课程 离子交换法处理含镍废水工艺方案

离子交换法处理含镍废水工艺方案 一、概述 镀镍作为一种常用的表面处理技术,被广泛的应用于电子、汽车、机械等多种行业。含Ni2+的废水对人体健康和生态环境有着严重危害。含镍废水的常见处理方法有化学沉淀法、真空蒸发回收、电渗析、反渗透及离子交换树脂吸附等。化学沉淀法成本低,但产生的固废需要二次处理;真空蒸发法能耗大;电渗析、反渗透法需要较大的设备投资和能耗,而且存在膜易受污染的问题[1]。 离子交换技术因出水水质好,可回收有用物质,适用于处理浓度低而废水量大的镀镍废水等优点,曾得到广泛的应用。离子交换法应用于镀镍废水处理的主要功能有:(1)去除重金属镍离子,以应对日趋严格的排放标准;(2)回收废水中有价值的金属镍;(3)提高水的循环利用率,节约日益匮乏的水资源;(4)减少环境污染。 随着人们对镀镍废水资源化的兴趣越来越浓厚,离子交换技术作为电镀废水深度处理的有效方法再度引起重视。 二、原理 离子交换树脂是具有三维空间结构的不溶性高分子化合物,其功能基可与水中的离子起交换反应。镀镍废水中的Ni2+离子采用阳离子交换树脂吸附。所用树脂可以是强酸性阳树脂也可以是弱酸性阳树脂,本文以弱酸性阳树脂为例。采用弱酸性阳树脂交换时,通常将树脂转为Na型,因为H型交换速率极慢。含Ni2+ 废水流经Na型弱酸性阳树脂层时,发生如下交换反应: 2R-COONa+Ni2+→(R-COO) 2 Ni+2Na+ 水中的Ni2+被吸附在树脂上,而树脂上的Na+便进入水中。 当全部树脂层与Ni2+交换达到平衡时,用一定浓度的HCl或H 2SO 4 再生。 (R-COO)2Ni+H 2SO 4 →2R-COOH+NiSO 4 此时树脂为H型,需用NaOH转为Na型。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

717阴离子交换树脂的正确使用方法及注意事项

717阴离子交换树脂的正确使用方法及其他注意事项 一、三大工作步骤 1、吸附俗称吃水。含钒母液通过离子交换树脂进行交换,钒酸根离子被树脂吸附,水从底部排出,一般而言,进柱母液水含钒克/升浓度不宜过高,氯化钠含量绝对不能超标,进柱前母液水应测定克/升浓度。定时检查排放尾水,以防尾水跑钒。当树脂达到一定量后(一吨树脂吸附容量约为60~80公斤),停止吸附。 2、反冲也叫反洗。是指在停止吸附后,用清水从交换柱(俗名树脂桶)底部进入进行冲洗。解脱前后均须反冲,解脱前把交换柱的泥浆、悬浮物冲洗干净,保证解脱产品的无杂纯度;解脱后把交换柱中的盐冲洗至和清水一致。 3、解脱俗称洗脱、脱钒。把树脂彻底清洗干净后,应及时把饱和树脂中的钒洗脱出来,使其再生。才能进行下轮的正常吸附,同时也能起到活化树脂和提高树脂工作效益的效果。 二、正确使用方法 1、吸附 1-1、含钒母液进入交换柱最好经过滤,除去杂质和机械物。母液水克/升浓度不宜过高,氯化钠含量绝对不能超标,否则会引起树脂的吸附不正常。 1-2、母液水不能集成一束进入交换柱中,这样会使树脂往两旁分散,缩短吸附行程,影响交换效果。 1-3、溶液禁止由交换柱口溢出。吸附过程中,应控制好交换柱上方的进水阀门和交换柱底部的出水阀门。 1-4、在吸附过程中不能进行吊空吸附(即液水低于树脂面,现出树脂,)这样会进入空气,也会影响交换效果。 1-5、在吸附一段时间或吸附达到一定量后,排放尾水克/升浓度会逐渐由低转告,属正常现象。一般而言,解脱后吸附6-8小时不会出现此现象(特殊情况除外),要定时检查尾水,掌握母液水中钒的吸附和排放的金属平衡。 2、反冲 2-1解脱前反冲主要是洗尽交换柱中的泥浆和悬浮物,保证产品的纯度。应用清澈透明的自来水或地下水。 2-2、反冲水量应控制在一定量的流速,不可时大时小;也忌水开的大时无人看管(反冲

离子交换树脂的处理

离子交换树脂的处理 前言:001×7阳离了交换树指(以下简称树脂)用于水处理过程中由于受不同因素的影响出现变红、变棕、变褐、粉碎是常见的事情。各种变化对树脂工作交换容量的影响大不相同。有的变化使工作交换容量降低很少,有的变化使工作交换容量降低很多,甚至报废。近十年的锅炉水处理工作实践对数百个新、旧树脂样品的处理和工作交换容量的测定证明了这一点。 1. 正常使用过程中颜色变红、变棕对工作交换容量的影响。 在我所处理、测定过的近百个在使用过程中变红、变褐、粉碎的旧树脂样品中,有95%以上处理后颜色恢复到黄色或浅黄色,工作交换容量比处理前提高1——5%。少数几个样品用酸、碱、酒精处理后仍然呈褐色,处理前后工作交换容量都比较低,基本上没有变化。前者颜色的加深是由于水中微量铁和其它因素(如温度)等影响所致,后者属于原新树脂本身就呈褐色、工作交换容量就低,也可能是严重铁中毒和有机质污染而致。而一般软化罐内壁防腐层破损导致的树脂铁中毒,只是颜色变红、变棕,其工作交换容量变化甚微。这与个别书上所列表表示的树脂铁中毒经盐酸处理后工作交换容量可提高50%以上是有很大差距的。如陶瓷公司卫生瓷厂的旧树脂样品为褐色,粒度为0.6——1.0mm,破粹粒占30%,用酸碱处理前后工作交换容量均为0.86mmol/ml湿态,颜色均为棕色;又如七一八究所的旧树脂样品为红色,处理后为黄色,处理前后的工作交换容量分别为1.02mmol/ml湿态和1.03mmol/ml湿态。所以我认为,在使用井水,自来水为水源时,对树脂变红、变棕,无需用酸碱处理。如果设备周期制水量突然降低或出水水质突然不合格,应该先检查与出软水管路相通的源水阀门是否严密,或者奖树脂进行较好的水冲洗,以除去树脂中的悬浮物和泥沙,这样即可恢复到原周期制水量和出水水质。酸、碱的处理只能除去加深的颜色,工作交换容量增加甚少,但却降低树脂强度,提高破碎率。 2.树脂在使用过程中粒度破碎对其工作交换容量的影响。 树脂粒度破碎对其工作交换容量的影响根据导致破碎的因素不同分两种情况:一是正常使用磨损破碎,一是受冻破碎。磨损破碎不管破碎率多高,对其工作交换容量影响甚小(在操作软化罐误差之内);而受冻破碎对其工作交换容量影响很大,以至报废。

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

阴离子交换树脂

阴离子交换树脂 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的 一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 .对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3->Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:

阳离子交换树脂

强酸性阳离子交换树脂及沉淀剂用于纯化富集川贝母总生物碱1强酸性强离子交换树脂 2.1强酸性阳离子树脂的预处理 树脂以去离子水浸泡过夜,并洗至去离子水近无色; 先加入5BV 7%HCl溶液浸泡1h,注意随时搅拌,用去离子水洗至洗出水近中性;后加入8BV 8%NaOH溶液浸泡1h,随时搅拌,用去离子水洗至洗出水近中性;最后加入5BV 7%HCl溶液浸泡2h,使阳离子树脂转化成H型,并用去离子水洗至洗出水近中性,即可装柱。 1.2药材的预处理 取20g伊贝母,打粉过80目筛,用25ml氨水浸润2h后,用80%乙醇常压回流提取4h,减压蒸干。将得到的伊贝母浸膏用50ml去离子水溶解,滴加HCl至pH3.0,用50ml石油醚脱脂3次,加入氨水至pH10.0,最后用50ml氯仿萃取,直至氯仿萃取液检测不到生物碱为止,合并氯仿萃取液,依据2010版《药典》川贝母项下生物碱含量测定方法测定20g伊贝母中生物碱含量。最后将氯仿萃取液减压蒸干。 1.3强酸性阳离子树脂的选择 贝母中生物碱主要为叔胺类生物碱,碱性较弱,故选用强酸性阳离子交换树脂用于纯化富集生物碱。由于贝母中生物碱分子量集中在400-450,且空间结构较大,那么阳离子交换树脂的交联度对纯化富集效果具有显著影响:交联度大,交换容量大,但交联网孔小,不利于大离子的进入;交联度小,交换容量小,但交联网孔大,在树脂中离子易于扩散和交换。因而选用下列强酸性阳离子交换树脂(表1) 表1 不同离子交换树脂的主要特征 型号交联度 (%)粒度含水量 (%) 离子形式交换容量pH使用范 围 DOWEX 50WX2 2 50-100目78 H 0.6meq/ml 0-14 DOWEX 50WX4 4 50-100目78 H 1.1meq/ml 0-14 D152 0.315-1.25 mm 60-80 Na 8.0mmol/g 4-14 732型(0017 0.3-1.2mm 46-52 H 4.5mmol/g 0-14

离子交换树脂综合知识

离子交换树脂综合知识 【电厂化学】2007-07-31 09:07:41 阅读1184 评论0 字号:大中小订阅 1 树脂的储存和运输 1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,

阴阳离子交换树脂的保存和预处理

阳离子交换树脂 树脂的贮存: 离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不直接放于水中,以免树脂急剧膨胀而破碎。 在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。 新树脂的预处理: 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸铁、铝、铜等重金属离子。当树脂与水、酸、碱或其他溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 阳树脂预处理步骤如下: 首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2%-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或作小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止。最后用5%HCL溶液,其量亦与上述相同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。 阴离子交换树脂 树脂的贮存: 离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。 在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。 新树脂的预处理: 新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。当树脂与水、酸、碱或其他溶液 相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。所以,新树脂在投运前要进行预处理。 阴树脂的预处理 其预处理方法中的第一步与阳树脂预处理方法中的第一步相同;而后用5%HCL浸泡4-8 小时,然后放尽酸液,用水清洗至中性;而后用2%-4%NaOH溶液浸泡4-8小时后,放尽碱液,用清水洗至中性待用。 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。常用的离子交换设备装填的树脂大都是201x7强碱性苯乙烯系阴离子交换树脂及001x7强酸性苯乙烯系阳离子交换树脂。如果在水质要求特别高的场合则使用抛光树脂。 树脂保存方法

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

阴阳离子交换树脂分离技术

阴阳离子交换树脂分离技术 在化学除盐系统中由于设备缺陷或树脂存放时误装等原因,容易造成床内阴、阳树脂混合,使除盐系统再生不合格或制水水质变差。本文利用阴、阳树脂的比重差,采用浮选法将混合过后的阴、阳树脂进行分离,从而恢复除盐系统出水品质,同时避免了更换树脂造成的浪费。 标签:阴树脂;阳树脂;氯化钠;搅拌;分离 1 現状 汽水二车间化水专业一级除盐设备F系列发现阴床出水电导率、pH、碱度均高,阴床再生后正洗、循环时间较长,且设备周期制水量明显下降,由原来的24小时降为19小时。 2 原因排查 通过对F系列制水系统出水水质、系统流程的梳理,并且对阴床树脂进行取样分析鉴别,发现阴床内部树脂里确实含有部分阳树脂。 分析阴床内阳树脂的混入途径,结合反洗过程的工艺流程,进行查找。因反洗罐只有一台,当阴阳床树脂交替输入反洗罐时,存在树脂存留现象,这样就会造成阳树脂混入阴床。确认是在阴阳床大反洗过程中交替输入反洗罐时发生了树脂混杂。 3 解决措施 ①将F系列阳床反洗系统进行改造。将F系列阳床反洗系统与老系统阳反洗系统进行改造,解决共用一台反洗罐的问题,杜绝了阳树脂再次混入阴床内的途径; ②将阴床内混入的阳树脂进行分离。对阴、阳树脂的性质加以研究,确定实施方案。 4 一级除盐系统阴阳树脂的分离方案 4.1 阴阳树脂的物理特性 阴阳树脂均呈球状颗粒,阴树脂粒度在0.45~0.9mm,阳树脂粒度在0.63~1.25mm,阴树脂密度在湿态状态下的颗粒密度为1.05~1.11g/mL,阳树脂密度在湿态状态下的颗粒密度为1.24~1.28g/mL(如表1)。 从表1可以看出阴阳树脂的颗粒粒径范围有交叉不能采用筛分法。

离子交换树脂的使用说明

离子交换树脂的使用说明 一、贮存与运输 离子交换树脂一般是在充分膨胀、湿润的球粒状态下供应,在贮存、运输过程中要保持包装完好无损,避免树脂脱水、冻裂及污染。不能露天存放,存放处的温度为0—40℃,当存放处温度稍低于0℃时,应向包装内加入澄清的饱和食盐水,浸泡树脂。此外,当存放处温度过高时,不但使树脂易于脱水,还会加速阴树脂的降解。一旦树脂失水,使用时不能直接加水,可用澄清的饱和食盐水浸泡,然后再逐步加水稀释,洗去盐分,贮存期间应使其保持湿润。 二、脱水树脂复苏 树脂干燥失水是最大危险之一,失水树脂用10%食盐水浸泡1—2小时,然后稀释,再投入使用,以防止树脂水合急剧膨胀而破损。 三、树脂鉴别 使用单位存放树脂和填装时发生混淆,必须鉴别,确认后,投入装置,以充分发挥树脂的工作性能。 1、鉴别001×7和201×7两种树脂,可以利用湿真密度不同而区别,取一点树脂放入饱和食盐盐水中,浮在上面的是201×7阴树脂,下沉的则是001×7阳树脂。 2、鉴别强弱型阳树脂,一是外观,强酸性阳树脂为棕黄色,弱酸性阳树脂为乳白色或淡黄色,二是用转型膨胀率判断,阳树脂用盐酸转为H型,再用烧碱转为Na型,是其体积膨胀,弱酸性树脂明显大于强酸性树脂。 3、鉴别强弱型阴树脂,可以利用加酚酞的氢氧化钠浸泡10min,用无离子水洗净后,强型阴树脂呈紫色,大孔强型阴树脂呈粉红色,弱型阴树脂不变色。 四、树脂预处理 将准备装柱使用的新树脂,先用热水(清洁的自来水也可)反复清洗,阳离子交换树脂可用70—80℃的热水,阴离子交换树脂的而热性能较差一些,可用50—60℃热水。开始浸洗时,每隔15分钟换水一次,浸洗时要不时搅动,换水4—5次后,可隔约30分钟换水一次,总共换水7—8次,浸洗至浸洗水不带褐色,泡沫很少时为止。 水洗后,再经酸碱处理,阳离子交换树脂可按下述步骤处理: 1、用1N盐酸缓慢流过树脂,用量约为强酸阳树脂体积的2—3倍,弱酸阳树脂体积的3—5倍,每小时1.5倍床层体积流过。 2、用水冲洗,出水PH为5左右,用3倍树脂体积5%的NaCl溶液流过树脂,流速与1相同。 3、用1NNaOH流过树脂,用量及流速与1相同。 4、用水冲洗至出水PH为9左右。 5、用1N盐酸或硫酸,将树脂转成H-型,用量为树脂体积的3—5倍,流速与1相同。 6、酸流完后,用去离子水冲洗至出水PH值为6以上时,即可投入使用。 对于阴离子交换树脂水洗后的酸、碱处理次序,可采用碱→酸→碱次序,酸、碱用量及流速,与阳树脂相对应,弱碱阴树脂与弱酸阳树脂相对应。 五、离子交换树脂的复活处理 1、铁污染:树脂被铁污染后,颜色变深甚至发黑,可以用二倍树脂体积10%的盐酸,以约0.6m/h流速通过树脂层,然后用同样流速40℃的清水清洗,最后用过量的NaOH再生(阳树脂)。 2、硅污染:被树脂吸附的硅酸,在低PH的条件下,容易聚合为高聚物沉淀于树脂中,可用40—50℃,6%—8%NaOH溶液浸泡,再用清水洗,为避免硅污染,应适当提高再生剂的浓度和温度。

离子交换树脂项目投资建设规划方案(模板)

离子交换树脂项目 投资建设规划方案 规划设计 / 投资分析

离子交换树脂项目投资建设规划方案说明 该离子交换树脂项目计划总投资3498.66万元,其中:固定资产投资2797.41万元,占项目总投资的79.96%;流动资金701.25万元,占项目总 投资的20.04%。 达产年营业收入5860.00万元,总成本费用4499.84万元,税金及附 加59.92万元,利润总额1360.16万元,利税总额1607.69万元,税后净 利润1020.12万元,达产年纳税总额587.57万元;达产年投资利润率 38.88%,投资利税率45.95%,投资回报率29.16%,全部投资回收期4.93年,提供就业职位101个。 本报告是基于可信的公开资料或报告编制人员实地调查获取的素材撰写,根据《产业结构调整指导目录(2011年本)》(2013年修正)的要求,依照“科学、客观”的原则,以国内外项目产品的市场需求为前提,大量 收集相关行业准入条件和前沿技术等重要信息,全面预测其发展趋势;按 照《建设项目经济评价方法与参数(第三版)》的具体要求,主要从技术、经济、工程方案、环境保护、安全卫生和节能及清洁生产等方面进行充分 的论证和可行性分析,对项目建成后可能取得的经济效益、社会效益进行 科学预测,从而提出投资项目是否值得投资和如何进行建设的咨询意见,

因此,该报告是一份较为完整的为项目决策及审批提供科学依据的综合性分析报告。 ...... 主要内容:项目基本情况、项目背景、必要性、市场分析、调研、产品及建设方案、选址可行性研究、土建方案说明、工艺方案说明、环境保护说明、企业安全保护、风险防范措施、项目节能可行性分析、项目实施进度计划、项目投资规划、项目盈利能力分析、项目综合结论等。

第五章 离子交换分离法

第五章离子交换分离法 本章的教学目的与要求:了解离子交换分离法的原理及应用 授课主要内容:1)离子交换树脂的作用、性能和分类;2)离子交换的基本理论;3)离子交换分离操作方法;4)柱上离子交换分离法;5)离子交换分离实例;6)离子交换层析法 重点、难点及对学生的要求: 掌握离子交换分离法的原理及分离条件的选择 主要外语词汇:ion change resin; cation resin; anion resin 辅助教学情况:多媒体课件 复习思考题习题:1)离子交换树脂的作用、性能和分类;2)子交换树脂的分类;3)离子交换树脂选择;4)如何利用离子交换树脂进行去离子水的制备、试样中总盐量的测定、干扰组分的分离、痕量组分的富集。5)什么是树脂的交联度?如何表示?参考教材:《工业分析》机械工业出版社、重庆大学出版社,1997年,第一版 《分离及复杂物质分析》邵令娴编,化学工业出版社,1984年,第一版 课时安排:4学时 离子交换分离是目前最重要和应用最广泛的分离方法之一,不但能用于分离性质相近的无机离子,而且可以用来分离多种有机化合物,可用于分析分离,也可用于制备。 离子交换分离是应用极广的,如净化水,分离和提取物质,离子交换色谱等。 1850年,Thompson及Way最早发现和研究了离子交换现象,研究了土壤中Ca、Mg与水中K+、NH4+的交换现象。 1903年Harms合成了硼铝酸盐作为离子交换剂,Gans把天然及合成硅酸盐用于软化水及糖的净化,以后出现了磺化煤阳离子交换剂。 1933年Adams首先用人工合成酚醛类的阴阳离子交换树脂 1945年合成了聚乙烯树脂。 离子交换的理论研究在这时打下了基础。 离子交换分离的特点: 1、分离效率高(能用于带相反电荷离子分离,又能用于带相同电荷及性质相近离子的分离) 2、应用范围广(既可用于分离,又可用于富集,还可用高纯物制备及蛋白质、核酸、酶等生物活性物的纯化。无机、有机及高纯物的制备) 3、树脂可反复使用(具有再生能力) 4、操作烦,周期长,耗费洗脱液的量多(所以仅用于解决分析中较困难的分离问题) 第一节概论 离子交换剂: 1. 离子交换剂的类型 有有机、无机两种: 1).无机离子交换剂 有磺化煤、活性炭,水合氧化物,氧化锆,Al2O3,氧化锡,氧化锑,高价金属盐、磷酸锆、钨酸锆、磷酸钛等 杂多酸盐、磷钼酸盐对Cs 选择性 亚铁氰化物:主要用于碱金属 铝硅酸盐。 这些都是现在正在发展的无机离子交换剂,以后还要介绍。最主要还是高分子聚合物的离子交换树脂。 无机离子交换剂的缺点:1、交换能力低;2、化学稳定性差;3、机械稳定性差 有机离子交换剂的特点:1、网状结构;2、难溶(水、酸、碱、有机溶剂);3、稳(热、机械、化学);

离子交换树脂

离子交换树脂 为了除去水中离子态杂质,现在采用得最普遍的方法是离子交换。这种方法可以将水中离子态杂质清除得以较彻底,因而能制得很纯的水。所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤。 离子交换处理,必须用一种称做离子交换剂的物质(简称交换剂)来进行。这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,大概情况如表所示。此外,按结构特征来分,还有大孔型和凝胶型等。 离子交换剂的分类 天然海绿砂 无机质 人造合成沸石 离子交换剂 碳质磺化煤强酸性磺酸基(-SO3H) 阳离子型 有机质弱酸性羧酸基(-COOH) 强碱性Ⅰ型{-N(-CH3)3}OH 离子交换树脂阴离子型Ⅱ型{-N(CH3)2}OH 弱碱性(-(NH3)OH、(=NH2) OH 或 (≡NH)OH 其他-氧化还原型、有机物清除除型等 第一节离子交换剂的结构 离子交换树脂属于高分子化合物,结构比较复杂.离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架;另一部分是带有可交换离子的基团(称为活性集团),它们化合在高分子骨架上.所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,正象动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物,现将常用离子交换剂的结构简单介绍如下。 一、磺化煤 磺化煤是一种半化合成的离子交换剂,它利用煤质本身的空间结构作为高分子骨架,用浓硫酸处理的方法(称磺化)引入活性基团而制成。 磺化煤的活性基团,除了有由于磺化而引入的-SO3H外,还有一些煤质本身原有的基团(如-COOH和-OH)以及因硫酸氧化作用生成的羧酸(-COOH),所以它实质上是一种混合型离子交换剂。 磺化煤的价格比较便宜,是过去水处理系统中广泛应用的交换剂,但由于它有以下的缺点,所以现在大都为合成离子交换树脂所替代:

阳离子交换树脂制备资料

1前言 1.1离子交换树脂简介 1.1.1科技名词定义 中文名称:阳离子交换树脂 英文名称:cation exchange resin 定义1:离子交换树脂官能团上的离子只能与水中阳离子相互交换的树脂。 所属学科:电力(一级学科) ;热工自动化、电厂化学与金属(二级学科) 定义2:含功能性阴离子基团、可与带阳离子的物质进行交换反应的一类高分子量不溶性多聚体。可用于阳离子交换层析。 所属学科:生物化学与分子生物学(一级学科) ;方法与技术(二级学科) 1.1.2阳离子交换树脂分类 阳离子离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.5~1.0mm,其离子交换能力依其交换能力特征可分: 1. 强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子。 2.弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子

交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。 1.2种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。

阴离子交换树脂

阴离子交换树脂 离子交换法2007年02月05日星期一23:04一、前言 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一 种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生) 如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 . 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3-> Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下: OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2-> PO43->NO2-> Cl->醋酸根-> HCO3- 注意事项 1、离子交换树脂含有一定水份,不宜露天存放,储运过程中应保持湿润,以免风干脱水,使树脂破碎,如贮存过程中树脂脱水了,应先用浓食盐水(10%)浸泡,再逐渐稀释,不得直接放入水中,以免树脂急剧膨胀而破碎。 2、冬季储运使用中,应保持在5-40℃的温度环境中,避免过冷或过热,影响质量,若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水浓度可根据气温而定。 3、离子交换树脂的工业产品中,常含有少量低聚合物和未参加反应的单体,还含有铁、铅、铜等无机杂质,当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量,因此,新树脂在使用前必须进行预处理,一般先用水使树脂充分膨胀,

相关文档