文档库 最新最全的文档下载
当前位置:文档库 › 铁路客运专线桥梁工程技术

铁路客运专线桥梁工程技术

铁路客运专线桥梁工程技术
铁路客运专线桥梁工程技术

铁路客运专线桥梁工程技术

中国铁道科学研究院铁建所桥梁室

1 前言

1.1 桥梁是客运专线土建工程中重要组成部分,比例大、高架桥及长桥多。

1.2 客运专线桥梁的主要功能是为高速列车提供稳定、平顺的桥上线路。桥上线路与

路基上、隧道中的线路不同,由于桥梁结构在列车活载通过时产生变形和

振动,并在风力、温度变化、日照、制动、混凝土徐变等因素作用下产生各

种变形,桥上线路平顺性也随之发生变化。因此,每座桥梁都是对线路平顺

的干扰点,尤其是大跨度桥梁。为了保证高速列车的行车安全和乘坐舒适,

高速铁路桥梁除了具备一般桥梁的功能外,首先要为列车高速通过提供高平

顺、稳定的桥上线路。

1.3 客运专线桥梁可分为高架桥、谷架桥和跨越河流的一般桥梁。混凝土和预应力混

凝土结构具有刚度大、噪音小、温度变化引起结构变形对线路影响少、养护工作量小、造价低等优势,在客运专线桥梁设计中广泛采用。

1.4 全面采用无砟轨道是高速铁路发展趋势,桥上无砟轨道对桥梁的变形控制提出更

为严格的要求。

无砟轨道的优点:弹性均匀、轨道稳定、乘坐舒适度进一步改善;养护维修工作量减少;线路平、纵断面参数限制放宽,曲线半径减小,坡度增大。

无砟轨道基本类型:

轨道板工厂预制、现场铺设—日本板式轨道、德国博格型无砟轨道。

现场就地灌筑—德国雷达型无砟轨道(长枕埋入式、双块式)

1.5 客运专线与普通铁路是两个时代的产物,客运专线设计、施工采用新理念,其

建设促进了我国铁路桥梁工程技术的发展。

2 客运专线桥梁特点

2.1 结构动力效应大

桥梁在列车通过时的受力要比列车静臵时大,其比值(1+Q称为

动力系数(冲击系数)。产生动力效应的主要因素:移动荷载列的速度效

应、轨道不平顺造成车辆晃动。客运专线速度效应大于普通铁路,桥梁的动

力效应相应较大。

跨度40m以下的客运专线简支梁桥当n v 1.5v/L时,会出现大的动力效应,

甚至发生共振。为此,应当选择合理的结构自振频率n,避免与列车通过时

的激振频率接近。

列车高速通过时,桥梁竖向加速度达到0.7g (f < 20HZ以上会使有

碴道床丧失稳定,道碴松塌,影响行车安全。

2.2 桥上无缝线路与桥梁共同作用

修建客运专线要求一次铺设跨区间无缝线路,以保证轨道的平顺和稳定。桥上无缝线路可看作为不能移动的线上结构,而桥梁在列车荷载、列车制动作用下和温度变化时要产生位移。当梁、轨体系产生相对位移时,桥上钢轨会

产生附加应力。客运专线桥梁必须考虑梁轨共同作用。尽量减小桥梁的位移

与变形,以限制桥上钢轨的附加应力,保证桥上无缝线路的稳定和行车安

全。

2.3 满足乘坐舒适度

与普通铁路不同,客运专线要求高速运行列车过桥时有很好的乘坐舒适度,舒适度的评价指标为车厢内的垂直振动加速度。

影响乘坐舒适度的主要因素有列车车辆的动力性能、车速、桥跨结构的自振频率和桥上轨道的平顺性。桥梁应具有较大的刚度、合适的自振频率,保

证列车在设计速度范围内不产生较大振动。

2.4 100 年使用寿命对客运专线桥梁首次提出在预定作用和预定的维修和使用条件

下,主要承力结构要有100 年使用年限的耐久性要求。设计者应据此进行

耐久性设计。

2.5 维修养护时间少客运专线采用全封闭行车模式;行车密度大;桥梁比例大、数

量多。

2.6 客运专线桥梁设计要求应有足够的竖向、横向、纵向和抗扭刚度,使结构的各

种变形很小;跨度40m 及以下的简支梁应选择合适的自振频率,避免列车过

桥时出现共振或过大振动;

结构符合耐久性要求并便于检查;常用跨度桥梁应标准化并简化规格、品

种;长桥应尽量避免设臵钢轨伸缩调节器;桥梁应与环境相协调(美观、降

噪、减振)。

3 主要设计原则及相关限值

3.1 设计活载图式设计活载图式的大小直接影响桥梁的承载能力和建造费用,是重要

的桥梁设计参数。图式的制定应满足运输能力和车辆的发展。我国普通铁路

桥梁采用中-活载图式和相应的动力系数。

日本高速铁路采用非常接近运营列车的N、P和H型活载图式。相应的动力系数与跨度、车速和结构自振频率有关。

欧洲统一采用UIC 活载图式,它涵盖 6 种运营列车,包括高速列车和重载列车,相应的动力系数仅与跨度有关。

我国客运专线采用ZK 活载图式( 0.8UIC )以及与UIC 一致的动力系数和结

构自振频率范围,我国新建时速200 公里客货共线铁路仍采用中-活载及相应的动力系数。

中-活载与UIC 活载效应大致相当,欧洲与日本的活载图式相差较大(一倍以上) ,导致日本高速铁路桥梁的体量略小。

3.2 结构刚度与变形控制限值

我国普通铁路桥梁的规定

欧盟高速铁路桥梁标准的规定( ENV1991-3:1995 )

我国客运专线桥梁的规定(V > 250km/h)

3.3 车桥动力响应

客运专线桥梁结构除进行静力分析满足有关规定外,尚应按实际运营客车通

过桥梁的情况进行车桥耦合动力响应分析。分析得出的各项参数指标应满足

有关规定要求。

车桥耦合动力响应分析是利用有限元方法建立车辆及线-- 桥结构动力模型、

运动方程。在满足轮轨间几何相容和作用力平衡的条件下,求解行车过程中

车、线、桥相应的动力参数指标,并判断其是否符合行车安全和乘坐舒适。

动力响应分析方法采用移动荷载列以不同速度通过桥梁,计算桥梁结构的动力特性;

采用车、桥平面模型计算车桥动力特性;

采用车、桥空间模型计算车桥动力特性。

3.4 梁轨纵向力传递

桥上无缝线路钢轨受力与路基上不同,由于桥梁自身的变形和位移会使桥上

钢轨承受额外的附加应力。为了保证桥上行车安全,设计应考虑梁轨共同

作用引起的钢轨附加力,并采取措施将其限制在安全范围内。钢轨附加应力

的分类:

制动力列车制动使桥墩纵向位移产生的钢轨附加力伸缩力梁体随气温变化纵向伸缩产生的钢轨附加力挠曲力梁体受荷挠曲变形产生的钢轨附加力

根据轨道的位移—阻力关系建立的轨道—桥梁共同受力的力学计算模型可

以分析墩台纵向刚度、跨度、跨数、列车位臵与钢轨附加力的关系。

为了保证桥上无缝线路(有砟)稳定和安全,要求:桥上无缝线路钢轨附加压应力不大于61MPa;桥上无缝线路钢轨附加拉应力不大于

81MPa;制动时,梁轨相对快速位移不大于4mm 。

客运专线桥梁刚度大、钢轨挠曲力不大,且最大值与制动力、伸缩力不在同

一位臵,挠曲力不控制。

最大制动力出现在停车前瞬间,桥梁墩台应有足够的纵向刚度以限制制动时

钢轨出现较大的应力。

3.5 耐久性措施改善结构耐久性是通过实践中吸取大量经验教训得来的,世界各国

总结的经验是:

结构物使用寿命75~100 年只有在设计、施工以及使用中检查、养护十

分精心的条件下才能实现。造成结构病害的主要原因是结构构造上的缺

陷,以往的设计过分重视计算,忽视了构造细节的处理。桥梁的养护重

点是及时检查。病害早发现、早整治,不仅费用少,而且能保证耐久性。

桥梁的经济性应体现为一次建造费用和使用中养护维修费用之和最低。

改善耐久性的原则

采用上承式结构和整体桥面;

高质量的桥面防排水体系和梁端接缝防水,不让桥面污水流经梁体;结

构构造简洁,常用跨度桥梁标准化、规格品种少;结构便于检查,可方便

地到任何部位察看;

足够的保护层厚度,普通钢筋最小保护层厚度》3cm,预应力

管道最小保护层'管道直径;截面尺寸拟定首先应保证混凝土的灌筑质

量,应力不宜用足采用高品质混凝土。

我国客运专线桥梁设计暂规以及设计图纸中比较充分地考虑了耐久性措施:采用整体、密闭的桥面;

提高了保护层厚度;

预留检查通道;

简化常用跨度标准梁的品种;

采用高性能混凝土;

优化构造细节。

3.6 桥面布臵

桥面布臵优劣直接影响结构耐久性和桥梁使用方便。除线路结构外,桥面主

要设施有:

防、排水系统(防水层、保护层、泄水管、伸缩缝);电缆槽及盖板

(检查通道);遮板、栏杆或声屏障;挡砟墙或防护墙;接触网支

柱;

长桥桥面每隔2~3km 设臵应急出口。

特点:

用挡砟墙(防撞墙)替代护轨,便于线路维修养护;

有砟轨道桥梁,挡砟墙内侧至线路中心线距离 2.2m,便于大型

养路机械养修线路;直曲线梁的桥面等宽,接触网支柱设在桥面,线路中

心至立柱内侧净距不小于 3.0m;桥面总宽按检查通道是否行走桥梁检

查车而定。时速350km 客运专线桥梁(无砟)顶宽分别为13.4m 和

12.0m;采用优质防水层和伸缩缝,确保桥面污水不直接在梁体上流

淌。

3.7 支座与墩台

支座

客运专线桥梁对支座的要求应明确区分固定和活动支座,保证桥上无缝线路的安全;支座应纵、横向均能转动,并能使结构在支点处可横向自由伸

缩;

支座应便于更换。盆式橡胶支座能符合上述要求,被广泛应用于各国高速铁路桥梁每孔简支箱梁的四个支座采用四种型号有砟桥梁的坡道梁支座应垂

直设臵(无砟桥梁另作考虑)采用架桥机架设箱形梁,要保证四支点在同一

平面上

墩台

墩台基础的纵向刚度应满足纵向力安全传递的要求,横向刚度应保证上部结

构水平折角在规定的限值以内。

为保证桥墩具有足够的刚度,结构合理、经济,墩高20m 以下宜采用实体

墩,大于20m 宜采用空心墩,禁止使用轻型墩;为便于养护维修、同时注重外观简洁,取消了墩帽、并在墩顶设有0.5~1m 深的凹槽;同时墩顶预留千

斤顶顶梁位臵;预制架设简支梁,墩顶支座纵向间距由普通铁路桥梁70cm

放大至120cm;

桥位制梁时,应考虑相邻孔梁端张拉空间,墩顶支座宜采用170cm;梁

底进人孔设臵在墩顶位臵。

3.8 无砟轨道桥梁设计

桥上无砟轨道建成后可调整余量很小,扣件垫板在高程上调整量约为

2cm ,为了保证客运专线线路的平顺和稳定,必须限值桥梁的各种变形。

影响桥上无砟轨道平顺性的主要因素:墩台基础工后沉降;预应力混凝土梁在运营期间的残余徐变上拱;梁端竖向转角;桥面高程施工误差;

梁端接缝两侧钢轨支点的相对位移;日照引起的梁体挠曲和旁弯;相邻

不等高桥墩台顶的横向位移差。

墩台基础工后沉降应满足以下要求(必要时可采用调高支座):均匀沉降冬20mm;

相邻墩台不均匀沉降冬5mm。

梁端竖向转角会引起钢轨的局部隆起,造成梁端接缝两侧钢轨支点承受附加拉力和压力。应限制转角使附加拉力小于扣件的扣压力、附加压力不超过垫

板允许的疲劳压应力;轨道板上抬的稳定安全系数小于 1.3。当梁端悬出长度过大时,宜采用平衡板构造措施。

无砟轨道铺设后,预应力混凝土梁残余徐变上拱应不大于1cm,大

跨度桥梁应不大于2cm。控制徐变上拱的措施有:增大梁高;优化预应力筋布臵;采用部分预应力结构;延长预施应力至铺设无砟轨道的时间间

隔,一般不少于桥面高程施工误差应控制在+0/-30mm。以保证有足够

的无砟轨道建筑高度。施工应根据梁高偏差、架梁时支座与垫石间灌浆

层厚度确定支承垫石顶面的高程。

60 天。

梁端接缝两侧钢轨支点在活载及横向力作用下的竖向和横向相

对位移不大于1mm。应考虑支座弹性压缩变形、梁端转角、坡道梁伸缩、

支座横向间隙等影响。

日照引起梁体挠曲或桥墩横向位移应与其它因素组合满足竖向与

水平折角的要求,必要时需进行动力检算。

客运专线铁路桥梁构造

客运专线铁路桥梁构造

客运专线铁路桥梁结构构造 高速铁路客运专线上,列车对桥梁的动力作用大,为满足行车安全、乘坐舒适以及适应高速铁路线路的构造要求,高速铁路桥梁必须具有足够的强度、更高的刚度、良好的稳定性、更大的抗扭能力、更好的耐久性和较高的减振降噪特性,同时,还要利于检查与维修。 一、桥面布置 客运专线铁路桥梁桥面结构主要由人行道栏杆(声屏障)、人行道盖板、电缆槽、防撞墙(挡碴墙)、排水孔、防水层及保护层、轨道系统等组成。无碴轨道桥面与有碴轨道桥面相比结构要稍复杂一些,下面我们以京津城际铁路桥梁为例对桥面结构做如下具体介绍。 - - 55 - -

图2-2-1 京津城际铁路箱梁桥面断面图 如图2-2-1所示,京津城际铁路桥面栏杆内净宽13.2m,正线线间距5m,线路两侧设防撞墙(高1m、强度C40)取代护轮轨,防撞墙内净宽9.1m;在箱梁翼缘板两侧的遮板上安装可拼装式混凝土桥梁栏杆(高 1.2m),穿越居民区时,安装声屏障(高2.15m);桥面喷涂聚脲弹性涂料防水层(厚度2mm),防水层上无保护层,梁缝间用橡胶止水带连接。 - - 55 - -

图2-2-2 京津城际桥面现状图 图2-2-3 翼缘板上部断面详图 - - 55 - -

梁体梁体混凝土底座板 止水带弹性缓冲材料 图2-2-4 梁端止水带和缓冲层示意图 与既有线普通桥梁不同,为使轨道系统与桥梁形成两个相互独立的系统而自由伸缩移动,桥面与轨道系统的混凝土底座之间增加了滑动层;在梁端的混凝土底座与桥面间增加了弹性缓冲材料;同时为防止轨道系统的横向位移和向上敲起,在桥面的混凝土底座两侧增设了C、D两种侧向挡块。 在底座板和桥梁表面之间有一层滑动层,由土工布-薄膜-土工布组成。它使底座板下的梁跨伸缩不影响钢轨的受力,从而不受无缝线路的纵向力影响。 - - 55 - -

铁路桥梁拱桥的各种施工工艺

拱桥 9.1 支架法施工 9.1.1 工艺概述 支架法施工拱桥主要适用于跨度、矢高小,跨越区域冲刷及支架施工方便,两岸高差小,及通航要求低等。其主要工艺特点,无需大型起吊设备,可同步进行作业,安装精度易控制。 9.1.2 作业内容 本工艺规定了拱在支架施工工程中应遵照的操作规则和质量检测方法。支架施工大致分为以下工序:施工准备、支架基础施工、拼装支架、支架预压、架设或现浇拱圈及桥面、支架拆除等。 9.1.3 质量标准及检验方法 《铁路混凝土工程施工技术指南》(铁建设〔2010〕241 号) 《铁路混凝土工程施工质量验收标准》(TB10424-2010) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 《铁路混凝土梁支架法现浇施工技术规程》(TB 10110-2011)

9.1.4 工艺流程图 图9.1.4.1a 上承式拱桥施工流程图 图9.1.4.1b 下承式拱桥施工流程图 9.1.5 工艺步骤及质量控制说明 一、施工准备

1.对施工区域进行清理、平整,修筑便道或便桥,并对施工区域进行围护; 2.对支架基础进行测量放线; 3.根据施工方案要求配备相应的材料及机械设备。 二、支架基础施工 1.扩大基础或满堂基础施工 (1)进行基础开挖、基底处理(如换填、压实),设置防排水系统; (2)立模浇注基础并及进养护。 2.桩基或钢管桩施工 (1)进行钻孔(挖)并浇注混凝土,或采用振拔机进行钢管桩插打; (2)桩间承台或联结系及平台施工,预埋支架预埋件。 三、拼装支架 1.支架各构件在加工厂进行加工,加工好后对单个构件进行验收; 2.验收合格后进行预拼,通过平板车及船舶等运至墩位处,采用吊机进行安装,安装时需对吊点进行计算并加强,以免支架变形,对位准确后需及时将支架固定,固定后才能松钩。 四、支架检查及预压 1.支架安装完成后,需对支架进行全面检查,一是看是否按设计进行安装,有无错、漏现象;二是检查各构件连接情况,如螺栓或焊缝等;三是检查各构件有无变形情况,有变形的需立即更换; 2.支架检查并整改合格后,进行签证,准备预压; 3.支架预压可采用堆载法进行,采用现有材料或采用水袋、砂(土)袋等; 4.支架预压量荷载不小于设计荷载的 1.2 倍,并进行分级预压,每级需作好观测测量,

解读我国高铁现状和发展前景

发布时间:2010.08.18 23:08 来源:人民网作者:人民网 我国高速铁路发展规划,是2004年经国务院批准的《中长期铁路网规划》确定的。2008年,国家根据我国综合交通体系建设的需要,对《中长期铁路网规划》进行了调整。目前,中国是世界上高速铁路发展最快、系统技术最全、集成能力最强、运营里程最长、运营速度最高、在建规模最大的国家。 一、中国高速铁路的创新 为实现建设世界一流高速铁路的宏伟目标,中国铁路大力推进体制创新、管理创新、技术创新。 ——在体制创新方面,创建了合资建路的崭新模式。铁道部与31个省市自治区签订了加快铁路建设的战略合作协议,新线建设项目基本上都是与地方政府或战略投资者合资,广泛吸引各方面资金投资铁路建设,形成了集全社会之力建高铁、推进铁路现代化的生动局面。 ——在管理创新方面,充分发挥我国铁路路网完整、运输集中统一指挥的优势,统筹利用铁路内外的各方面科研力量和人力资源,形成强大合力。在铁路建设中,无论是工程管理部门,还是设计、施工、监理单位,都协调行动,组织起了强大的工程建设队伍;在技术装备制造中,无论是运营单位,还是制造企业、科研院所,都统一步调,形成了强大的研发制造体系。这种科学高效的管理模式,大大提高了我国高速铁路网建设的效率和效益。 ——在技术创新方面,我们瞄准世界最先进水平,把原始创新、集成创新和引进消化吸收再创新有机结合起来,立足于提高自主创新能力,统一组织,形成一个“拳头”,坚持整个铁路技术创新体系一盘棋,在引进和掌握先进技术的基础上,统一搭建了我国高速铁路的技术平台,走出了一条铁路自主创新的成功之路。我国高速铁路的工程建造技术、高速列车技术、列车控制技术、客站建设技术、系统集成技术、运营维护技术不仅达到了世界先进水平,而且形成了具有自主知识产权的高速铁路成套技术体系。

高速铁路桥梁高墩专项施工方案

目录 1.编制依据和原则.................................................................. - 1 - 1.1.编制依据.................................................................. - 1 - 1.2.编制原则.................................................................. - 1 - 2.工程概况........................................................................ - 1 - 2.1.工程概况.................................................................. - 1 - 2.2.气象特征.................................................................. - 2 - 2.3.水文地质.................................................................. - 2 - 3.人员及机械部署.................................................................. - 2 - 4.施工进度计划.................................................................... - 3 - 5.高墩施工方案.................................................................... - 4 - 5.1.圆端形实体高墩施工........................................................ - 4 - 5.2.圆端形空心高墩施工....................................................... - 10 - 6.安全保证措施................................................................... - 16 - 6.1制度保证措施.............................................................. - 16 - 6.2机械安全保证措施.......................................................... - 18 - 6.3高空作业安全保证措施...................................................... - 18 - 6.4桥梁施工安全基本要求...................................................... - 20 - 7.质量保证措施................................................................... - 20 - 7.1质量保证体系.............................................................. - 20 - 7.2 质量保证措施............................................................. - 23 - 7.3 冬季施工措施............................................................. - 28 - 7.4 夏季施工措施............................................................. - 31 - 8.环境保护措施................................................................... - 34 - 8.1 临时工程环保措施......................................................... - 34 - 8.2 废水、废渣处理措施....................................................... - 35 - 8.3防止空气污染和扬尘措施.................................................... - 35 - 8.4施工噪音控制措施.......................................................... - 35 - 8.5施工水土保持措施.......................................................... - 36 - 9.文明施工措施................................................................... - 36 - 9.1文明施工管理措施.......................................................... - 36 - 9.2文明施工措施.............................................................. - 37 -

2016新编中国高速铁路发展历程

2016新编中国高速铁路发展历程 中国高速铁路发展历程 2010年12月03日 12月3日,中国自主研发的“和谐号”CRH380高速动车组列车在京沪高铁枣庄至蚌埠段试验运行最高时速达486.1公里。这是中国铁路创造的世界纪录,更是世界铁路发展史上值得书写的重要章节,因为,高速铁路是人类文明与智慧的宝贵结晶,是人类社会走向现代化的重要标志和有力支撑。 目前,中国高速铁路建立了较为完善的运营管理体系,确保了运营持续安全,取得了良好的经营业绩,提供了安全、快捷、舒适、经济的运输服务,有力地促进了经济社会又好又快发展。如今,中国铁路每天开行“和谐号”高速动车组列车1000多列,发送旅客近百万人。而且高速铁路开通后,既有铁路通道的货运能力得到了巨大释放,为实现货运增量、丰富货运产品体系、提升货运服务质量奠定了坚实基础。 中国人在建设和发展高速铁路的历史进程中,不仅在技术上取得了重大突破,在营业里程上不断快速扩展,而且锤炼了“勇攀科技高峰,争创世界一流”的高速铁路精神,形成了以“运行高速度、安全高可靠、服务高品质”为基本内涵的高速铁路文化体系。 作为带动性产业、战略性新兴产业,高速铁路不仅大大加快了中国铁路现代化建设进程,而且对国家新兴产业的发展和产业结构的优化产生了积极影响,在加快转变经济发展方式、促进经济社会又好又快发展中发挥了重要作用,对政治、经济、文化、社会等诸多领域产生了重要而深远的意义,是加快实现国家现代化的助推器。 中国高速铁路发展的历史起点

在中国,铁路是国家重要的基础设施、国民经济的大动脉和大众化交通工具,在综合交通运输体系中处于骨干地位。新中国成立以来,尤其是改革开放以来,中国铁路取得了长足进步,为经济建设做出了重要贡献。但与其他行业相比,铁路发展相对滞后,运输能力严重不足,“一票难求、一车难求”的现象十分突出,铁路成为制约经济社会发展的“瓶颈”。 从世界范围看,速度作为交通运输现代化的重要标志之一,往往在很大程度上影响着某种运输方式或某种交通工具的兴衰。铁路自诞生以来,正是由于它在运输速度和运输能力上的巨大优势,才在很长的历史时期内成为世界各国交通运输的骨干,极大地推动着社会进步和历史进程。曾几何时,由于忽视了普遍提高行车速度,铁路在速度方面的优势迅速缩小,甚至消失。速度慢成了阻碍铁路发展的重要因素之一。 20世纪中叶以来,世界铁路以高速客运为突破口开始了新一轮的复兴。高速铁路的问世,使一度被人们称为“夕阳产业”的铁路焕发了青春,出现了新的生机。客运高速化是世界铁路发展的趋势。在许多国家,越来越多的旅客把乘坐舒适便捷的高速列车作为出行的首选。 建设现代化的中国铁路,必须在速度上“突出重围”。高速铁路具有速度快、运量大、节约土地、节能环保等明显优势。发展高速铁路,符合中国经济社会发展需要,对于构建现代综合交通运输体系,实施可持续发展战略,建设创新型国家具有重要作用。 2003年,中国政府从落实科学发展观、实现国民经济又好又快发展的战略全局出发,做出了加快发展铁路的重要决策,中国铁路进入加快推进现代化的历史阶段。 七年来,铁路系统自觉践行科学发展观,立足中国国情和路情,着眼快速扩充铁路运输能力、快速提升铁路技术装备水平,中国铁路现代化建设取得了重大进

路基工程预算定额说明

路基工程预算定额说明 第一部分综合说明 一、本定额系对原《铁路路基工程预算定额》(铁建设[2004]47号)的修订,适用于铁路路基工程、改移道路、平交道、改沟及其他土石方工程。 二、本定额按照“机械施工与人力施工”分别编制的子目,需人工完成的工程量由施工组织设计确定。 三、本定额按照“工厂化施工与非工厂化施工”分别编制的子目,应优先采用“工厂化施工”的定额子目,需人工完成的工程量由施工组织设计确定。 四、混凝土定额单位为“10m3”的子目系按集中拌制编制,未含混凝土拌制、运输内容,混凝土拌制、运输按《铁路桥涵工程预算定额》相关子目另计。当根据规定采用商品混凝土时,混凝土按当地的市场价格计算,不再计算混凝土拌制与运输的费用。 五、本定额中的混凝土构件预制、钢筋制作等子目是按工厂化生产考虑的,未含场外运输,场外运输按相关标准另计。 六、除另有说明外,本定额用于封锁线路作业时,人工和机械台班消耗量乘2.0的系数。 第二部分分章说明 第一章土方工程 一、土石方挖填工程,除工作内容说明以外,另包括:路堑修坡检底、取土坑整修等所需的工人、材料、机械消耗量。 二、土石方工程定额单位,挖方为天然密实方,填方为压(夯)实方。当以填方压实体积为工程量,采用以天然密实方为计量单位的定额时,所采用的定额应乘以以下系数: 注:上表系数已包括路堤施工要求两侧加宽的土石方数量。 三、土石方运输定额已考虑了道路系数(便道及交通干扰等因素),土石方工程中汽车增运定额仅适用于运距10 km及以内运输,10~30km(含)乘以0.85的系数,超过30km部分按运杂费计算。 四、工程量计算规则: (一)开挖与运输数量以天然密实体积计算,填筑数量以压(夯)实体积计算,光面(预

铁路桥梁工程施工技术方案

铁路桥梁工程施工技术方案 桥梁下部工程采取分段平行施工,多开工作面的方法进行组织。桥梁下部施工每个工作面按钻孔桩、承台、墩身、桥台的顺序进行流水作业,合理投入资源,长桥短修,以保证全桥工期。桥梁基础施工围堰类型:位于河流岸边选用草袋围堰筑岛、钢板桩等。位于既有铁路、公路(城市道路)或管线附近采用钢板桩、钢筋混凝土套箱防护。 根据本工程桥梁地质、设计桩径、桩长等情况,基础为钻孔桩基础。钻孔桩采用冲击钻、旋挖钻机成孔,对于不等长桩施工,应按先长桩后短桩的顺序施工,桩身钢筋笼根据工地起吊能力,采用加工场集中加工,现场吊装就位;钢筋笼应加工制成“长笼”尽量减少分节,钢筋笼孔口接头采用机械连接方式;如采用搭接焊,必须确保上下钢筋对中,保证现场立焊的焊接质量。混凝土采用耐久性混凝土,混凝土拌和站集中拌制,混凝土输送车运输,导管法灌注水下混凝土。 陆地上的桩孔,将原地整平压实后钻机直接就位钻孔。桥梁桩基施工泥浆沉淀后外运至弃土场,及时按设计要求施工弃土场支挡防护。本工程桥桩基础采用声波检测法及低应变法进行检测。 ⑵承台 基坑采用人工配合挖掘机开挖,基坑开挖时作好防水措施,在基底开挖至设计标高0.3~0.5m时,人工清理,避免基底承载力受损,基坑开挖到设计标高后,采用空压机及风镐破除桩头,桩头设计桩顶以上20cm用人工破除。桩头破除后平整基坑底面,浇筑10cm混凝土垫层。垫层混凝土达到设计强度后,在其上绑扎承台钢筋,支立钢模板,浇筑混凝土,洒水养生。 ⑶墩台身 本工程桥梁桥墩为圆端形实体墩、圆端形空心墩。圆端形实体墩15m以下采用大块定型模板一模到顶法施工,15m以上较高的实体墩采取分段浇筑;圆端形空心墩采用翻模施工,现场整体吊装。 墩台身混凝土连续灌注,当分段浇筑时,其间隔时间不超过3天,其接触面应严格按施工接缝处理。施工中严格控制墩身垂直度和允许误差满足设计及规范要求。混凝土进行分段集中拌和,用混凝土输送车运送至施工现场,混凝土输送泵泵送入模,插入式振捣棒振捣。墩身混凝土采用洒水养护。

我国高速铁路发展概况

我国高速铁路的发展概况 中国铁道科学研究院研发中心徐鹤寿 速度是铁路运输现代化的重要标志之一。自1964年日本成功建成世界第一条高速铁路——东海道新干线以来,高速铁路以其速度快、运能大、效益高、全天候、节能、环保、安全等显著特点,在世界各国得到迅速发展。 1.我国高速铁路的发展 1.1 国外高速铁路简介 目前,日本、德国、法国、西班牙、意大利、瑞典、韩国、英国、荷兰、比利时、丹麦、瑞典、中国台湾等国家和地区已拥有不同长度、不同速度的高速铁路。世界各国由于国情和运输需求不同,采用了不同的技术标准和装备,其最高运行速度也在不断地提高。 日本是世界第一个修建高速铁路的国家。自1964年修建了世界第一条高速铁路——东海道新干线后,陆续又修建了山阳、上越、东北、北陆、九州等5条新干线,全部是纯客运运输,新干线总长度已达2258km。同时,其最高运行速度不断提高,如东海道新干线从建成运营的210km/h,已提高到270km/h;山阳新干线的运行速度已达300km/h。2011年3月采用最新型高速列车“隼”号,运行速度300km/h,2012年达到320km/h。 德国从1991年建成汉诺威~维尔茨堡高速铁路以来,陆续修建了曼海姆~斯图加特、汉诺威~柏林、科隆~法兰克福、纽伦堡~英戈尔施塔特等高速铁路以及科隆~迪伦、拉斯塔特~奥芬堡、莱比锡/哈雷~格勒伯斯等高速段,运行速度均为250km/h及以上,其总里程已达1057km。其中,2002年建成的科隆~法兰克福高速铁路的运行速度最高,为300km/h。德国高速铁路的运输模式分为两类:一类为客货共线,如汉诺威~维尔茨堡,采用旅客列车与货物列车分时段运行,最高运行速度为250km/h;科隆~法兰克福高速铁路为纯客运。 法国第一条新建高速铁路为1983年通车的TGV巴黎东南线,初期运行速度为270km/h,1989年提高到300km/h。目前,已建成并开通运营8条高速铁路,总长度已达1884km,运营速度均为250km/h 及以上,都是纯客运运输。目前,法国高速铁路的运行速度都达到300km/h,其中TGV东部线的运行速度达320km/h,是国外高速铁路中运行速度最高的。 西班牙的既有铁路为轨距1668mm的宽轨铁路,新建高速铁路为与欧洲铁路网连接,均采用标准轨距。1992年建成马德里~塞维利亚高速铁路,客货混运,运行速度为270km/h;2008年全线开通的马德里~巴塞罗那,为纯客运,设计速度350km/h,最高运行速度300km/h。目前,已建成的高速铁路的总里程达1902km(运营速度均为250km/h及以上),为欧洲高速铁路长度第一。 上世纪90年代,世界上时速300公里速度等级的高速铁路技术已趋于成熟。因此,随后新建高速铁路的国家或地区,充分利用已成熟的先进技术,实现速度的技术跨越,将速度目标值确定为300km/h及以上,如法国2001年开通的TGV地中海线、2007年开通的TGV东部线(巴黎~斯特拉斯

如何编制铁路工程概预算,铁路定额

如何编制铁路工程概预算

如何编制铁路工程概预算 为加强铁路基本建设工程造价管理,合理编制铁路基本建设工程设计概(预)算,根据国家有关规定,结合铁路工程建设特点,在认真总结经验的基础上,铁道部在2006年6月对《铁路基本建设工程设计概(预)算编制办法》(铁建设[1998]115号)进行了全面修订。修订后的《铁路基本建设工程设计概(预)算编制办法》为(铁建设[2006]113号)。自2006年7月1日起施行。 铁道部原发《铁路基本建设工程设计概算编制办法》(铁建设[1998]115号)同时废止。 《关于对铁路工程定额和费用进行调整的通知》(铁建设[2003]42号)中对《铁路基本建设工程设计概算编制办法》(铁建设[1998]115号)和《铁路工程建设材料预算价格》(铁建设[2001]28号)进行调整的相关规定中与本办法相悖的规定同时废止。 由于目前许多在建工程,在l13号文发布后没有完工,所以到现在为止,一些在建工程仍采用115号文和42号文进行计算,例如:京广线信陈改造工程、黔桂线工程、襄胡站后工程等。因此这次首先向大家讲述115和42号文。并请大家按照115和42号文编制施工图个别预算。 自2006年以后新设计投资的铁路建设工程。将采用新的113号文编制。 下面向大家先概括介绍一下42号文,它主要是对115号文中的费率进行调整,其中: 1.企业管理费、现场管理费:两项费用以基期工料机费加其他直接费

为计算基数,按“115号文”表22中所列费率企业管理费费率乘以0.5的系数、现场管理费费率乘以0.9的系数计算。 2.计划利润:本项费用以直接工程费(不含运杂费和临时房屋及小型临时设施费)、间接费之和为计算基数,按“115号文”表24中所列费率乘以0.7的系数计算。 3.不计列财务费用。 4.运杂费不作为计取现场管理费、临时房屋及小型临时设施费、企业管理费、劳动保险费、计划利润的计算基数;基期至编制期的价差、临时房屋及小型临时设施费不作为计取计划利润的计算基数。 5.(略) 6.设备综合业务费提成:按“115号文”所列费率乘以0.5的系数计算。 材料综合业务费提成率按“28号文”附表一中所列的业务费提成率乘 以0.5的系数计算。 接下来介绍115号文: 一、总则 《铁路基本建设工程设计概(预)算编制办法》(铁建设[1998]115号),是为统一铁路基本建设项目设计概算编制方法及计费标准,根据国家及铁道部有关文件规定,结合铁路基本建设工程的特点,制定的办法。 115号文适用于铁路基本建设工程大中型项目。自1999年1月1日起施行,2006年7月1日起作废。自2006年7月1日以后新设计投资的铁路建设工程。将采用新的113号文编制。 二、编制方法

铁路桥梁基础知识

铁路桥梁基础知识

第一章 桥 梁 第一节 基本知识 一、概述 桥梁是跨越河流、山 谷、线路及各种障碍物的架空结构,按照不同的分类方法,桥梁可分为很多种类:按照桥梁长度分有特大桥、大桥、中桥、小桥;按使用材料分主要有木桥、钢桥、圬工桥、石桥、混合桥、结合梁桥;按梁跨结构分主要有梁桥、拱桥、斜拉桥、悬索桥;按按桥面位置分有上承式桥、下承式桥、中承式桥。 桥梁由上部的梁或(和)拱、支座、墩(台)、基础组成。也有把桥梁分为上部结构和下部结构两部分。上部结构:包括梁或(和)拱、桥面、支座等跨越桥孔的结构。下部结构:包括桥墩、桥台及下面的基础。桥梁附属建筑物:包括护锥、护坡、护底、护岸等防护建筑物;有时还需修建导流堤、拦沙坝等调节河流建筑物。 桥梁的特点:造价高,构造复杂,技术性强,一旦遭受损坏加固或修复比较困难。 二、高速铁路桥梁基本知识 高速铁路桥梁的总体要求是简洁、耐久、美观,便于施工和养护维修,具有较大的竖向、横向、纵向和抗扭刚度,小的工后沉降,具有良好的高速行车动力性能,并满足限界、通航、立交净空、渡洪、抗震要求。 高速铁路桥梁设计使用年限规定为100年,设计洪水频率百年一遇。设计活载采用ZK活载。对高速铁路桥梁首次提出在预定作用和预定的维修和使用条件下,主要承力结

钢桁拱桥 钢桁梁斜拉桥 预应力混凝土连续钢构—钢管拱组合桥 预应力混凝土连续刚构桥

预应力混凝土连续梁—钢管拱组合桥 预应力混凝土连续梁 钢箱梁系杆拱 钢箱叠合拱桥 预应力混凝土简支梁桥 预应力混凝土简支梁桥和桥上CRTSⅡ型板式轨道基本组成

第二节 高速铁路桥涵技术特点 1.墩台基础以桩基础为主 为确保高速铁路正常行车和减少维修量,墩台大量采用桩基础,以严格控制墩台基础工后沉降。常用跨度简支梁,根据墩高及地质条件采用直径1.0m或1.25m桩基础;大跨度连续梁及其它特殊形式的采用直径1.5~3.4m桩基础。 2.一字型桥台 高速铁路的设计活载ZK活载较中—活载小很多,在结构受力上,桥台力学指标不控制桥台设计,无需采用大体积重力式桥台,而大量采用一字型桥台,一字型桥台较好地适用于台后路基填土高度10m以下桥梁。 双线一字型桥台(单位:cm)

我国高速铁路发展概况及发展趋势

动车组概论二〇一三年十二月

我国高速铁路发展概况及发展趋势 摘要:铁路运输一直以来都是一项重要的运输方式,而我国人口众多,物资量巨大,因此对铁路的需求更大。而中国铁路曾经面临的主要问题是客运速度慢、运输能力严重不足,“一票难求、一车难求”的现象十分突出,铁路已经成为制约经济社会发展的“瓶颈”,由于高速铁路相对具有运载能力大、运行速度快、运输效率高等特点,因此高速铁路越来越受到重视。 关键字:铁路;高速;经济 1.中国高速铁路发展背景 为了提高列车运行速度,使铁路适应社会发展,从20世纪初至50年代,德国、法国、日本等国都开展了大量的有关高速列车的理论研究和试验工作。铁路作为陆上运输的主力军,在长达一个多世纪的时间里居于垄断地位。但是自20世纪以来,随着汽车、航空和管道运输的迅速发展,铁路不断受到新的浪潮的冲击。 中国内陆面积宽广,人口众多,幅员辽阔,经济发展与联系的跨度大,需要有一种强而有力的运输方式将整个国家和国民经济联系起来。铁路作为重要的基础设施,国民经济的大动脉和大众化的交通工具,最显著的特点是运载量大、运行成本低、耗能少,在大流量长距离的客货运输有着绝对优势,也在大流量、高密度的城际中短途旅客运输中具有强大的竞争力。 我国自1876年出现第一条铁路以来已经120多年了。遗憾的是百余年来,我国的铁路事业无论从横向上还是从纵向上来讲,都是远远落后的。同其他国家

相比,我国的铁路在运营里程、运输效率、技术水准、装备质量等方面相差极远,令人堪忧。我国国民经济的大动脉,在我国交通运输体系中居于主导的骨干地位。但我国铁路的现状是路网不发达,技术装备较落后,运能与运量的矛盾比较突出,一些主要干线的能力利用程度已经趋于饱和,铁路负荷水平居世界首位。 兴建高速铁路的建议早在20世纪80年代中期就被提出,十多年来,国家有关部门组织了数以百计的专家学者从各个方面对高速铁路项目进行了详细的考察、分析和论证。经过多次的反复和论争,各方面的意见已经大致趋同:高速铁路技术可行、经济合理、社会效益良好、国力能够承受,因此应该建,而且应该及早建。1998年3月,全国人代会在“十五”计划纲要草案中提出建设高速铁路。 2.我国高速铁路发展的历程 2004年1月——国务院常务会议讨论并原则通过历史上第一个《中长期铁路网规划》,以大气魄绘就了超过1.2万公里“四纵四横”快速客运专线网。同年,中国在广深铁路首次开行时速达160公里的国产快速旅客列车。广深铁路被誉为中国高速铁路成长、成熟的“试验田”。2004年至2005年——中国北车长春客车股份、唐山客车公司、南车青岛四方、先后从加拿大庞巴迪、日本川崎重工、法国阿尔斯通和德国西门子引进技术,联合设计生产高速动车组。2007年4月18日——全国铁路实施第六次大提速和新的列车运行图。繁忙干线提速区段达到时速200至250公里。这是世界铁路既有线提速最高值。同时,“和谐号”动车组从此驶入了百姓的生活中。2008年2月26日——原铁道部和科技部签署计划,共同研发运营时速380公里的新一代高速列车。2008年8月1日——中国

铁路工程定额概预算编制说明

铁路工程定额概预算编制说明 1.建设项目名称,编制范围 建设项目名称:xx铁路工程。 该工程概算已知资料如下:该新建铁路地处成都地区,是设计速度为200km/h 的高速铁路,正线全长21km。 主要工程数量如下:挖土方1685813 m,借土方85453m,土方总量1771263m;石方总量1140283 m;轨道正线长度29km;拆迁民房5002m,拆迁其他建筑物3002m;迁移通信线路2处;共征用土地200亩。 2.编制依据 (一)一般规定 1、铁建设[2006]113号文发布的《铁路基本建设工程设计概(预)算编制办法》(以下简称“113号文”)。 2、铁建设[2006]129号文发布的《铁路工程建设材料基期价格(2005年度)》。 3、铁建设[2006]129号文发布的《铁路工程施工机械台班费用定额(2005年度)》。 4、《铁路路基工程预算定额(2010年)》; 5、《铁路轨道工程预算定额(2010年)》; (二)采用定额 采用现行《铁路预算定额》;不足部分采用补充定额。 (三)人工费、材料费、施工机械台班费、运杂费取费标准 1、人工费 按“113号文”及铁建设[2008]26号文《关于补充铁路基本建设工程设计概预算综合工费类别划分的通知》规定执行。 2、材料费 采用铁道部铁建设[2006]129号文发布的《铁路工程基本建设材料基期价格》(2005年度)作为基期价格;地方材料采初设编制期价格;其他不足部分采用调查价或参考2010年1季度价格。

材料费= (使用此种材料的工程数量×相应的材料消耗定额×相应的材料预算单价) 3、施工机械使用费 基期施工机械使用费单价参照《铁路工程施工机械台班费用定额(2005年度)》(铁建设[2006]129号)。 4、按材料运输计划及个别概算分项材料重量直接计列运杂费。 (四)工程用水、电单价 工程用水基期单价为0.38元/吨。 工程用电基期单价为0.55元/kw·h。 (五)施工措施费 以各类工程的基期人工费与基期施工机械使用费之和为计算基数,根据“113号文”施工区段划分表及铁道部铁建设[2007]139号文“关于执行《高危行业企业安全生产费用财务管理暂行办法》有关问题的通知”的规定,按相应的费率计列。 (六)间接费 以基期人工费和基期施工机械使用费之和为计算基数,按不同工程类别,按“113号文”规定计算。 (七)价差 1、材料价差计算 材料价差=材料费×(价差系数-1)(以[2001]28号文预算价格编制设计概算) 材料价差=其他材料费×(价差系数-1)(以[2006]129号文预算价格编制设计概算) 2、施工机械使用费价差根据“113号文”的规定,按定额统计的机械台班消耗量乘以编制期与基期机械台班单价的差额计算。 (八)税金 根据“113号文”的规定,税金统一按建筑安装工程费(不含税金)的3.35%计列。 税金 = (直接费 + 间接费)×3.35%

最新客运专线铁路桥梁构造

客运专线铁路桥梁构 造

客运专线铁路桥梁结构构造 高速铁路客运专线上,列车对桥梁的动力作用大,为满足行车安全、乘坐舒适以及适应高速铁路线路的构造要求,高速铁路桥梁必须具有足够的强度、更高的刚度、良好的稳定性、更大的抗扭能力、更好的耐久性和较高的减振降噪特性,同时,还要利于检查与维修。 一、桥面布置 客运专线铁路桥梁桥面结构主要由人行道栏杆(声屏障)、人行道盖板、电缆槽、防撞墙(挡碴墙)、排水孔、防水层及保护层、轨道系统等组成。无碴轨道桥面与有碴轨道桥面相比结构要稍复杂一些,下面我们以京津城际铁路桥梁为例对桥面结构做如下具体介绍。 图2-2-1 京津城际铁路箱梁桥面断面图 如图2-2-1所示,京津城际铁路桥面栏杆内净宽13.2m,正线线间距5m,线路两侧设防撞墙(高1m、强度C40)取代护轮轨,防撞墙内净宽9.1m;在仅供学习与交流,如有侵权请联系网站删除谢谢- 55 -

箱梁翼缘板两侧的遮板上安装可拼装式混凝土桥梁栏杆(高1.2m),穿越居民区时,安装声屏障(高2.15m);桥面喷涂聚脲弹性涂料防水层(厚度 2mm),防水层上无保护层,梁缝间用橡胶止水带连接。 图2-2-2 京津城际桥面现状图 图2-2-3 翼缘板上部断面详图 仅供学习与交流,如有侵权请联系网站删除谢谢- 55 -

弹性缓 图2-2-4 梁端止水带和缓冲层示意图 与既有线普通桥梁不同,为使轨道系统与桥梁形成两个相互独立的系统而自由伸缩移动,桥面与轨道系统的混凝土底座之间增加了滑动层;在梁端的混凝土底座与桥面间增加了弹性缓冲材料;同时为防止轨道系统的横向位移和向上敲起,在桥面的混凝土底座两侧增设了C、D两种侧向挡块。 在底座板和桥梁表面之间有一层滑动层,由土工布-薄膜-土工布组成。它使底座板下的梁跨伸缩不影响钢轨的受力,从而不受无缝线路的纵向力影响。 图2-2-5 滑动层与梁体及轨道系统的关系示意图如图所示,桥梁结构中,每个梁体是相互独立的单元,而桥上则是无碴轨道的整体道床,为使梁体不受无缝线路纵向力的影响,在桥面与混凝土底座之仅供学习与交流,如有侵权请联系网站删除谢谢- 55 -

铁路桥梁桥面系及附属工程施工方法及工艺

铁路桥梁桥面系及附属工程施工方法及工艺本工程桥面系及附属工程施工本着“优化工艺、减少资源投入、合理工序衔接、先入为主、全面跟进、资源共享、分段实施”的原则,以确保为铺架施工提供作业面为目标,利用桥梁下部劳务队,在梁部施工结束后,开始展开桥面系及附属的施工。 电缆槽及防撞墙采用现浇施工,模板采用拼装式钢模板,保证外观效果。桥梁遮板、人行道栏杆在预制场中预制,采用吊装设备现场安装就位。钢筋在钢筋加工场内加工,现场安装定位,混凝土施工采用泵车泵送,插入式振捣及平板振捣相结合的方式进行。声屏障基础采用定型钢模板,现浇施工。 1.挡砟墙施工 挡砟墙:测量放样→底部清理→扶正预埋钢筋→钢筋绑扎→模板安装→浇筑混凝土→模板拆除→养护→成品报验 现场施工要符合设计图纸和设计规范的要求,严格按规范和技术交底进行施工。钢筋半成品在钢筋加工棚加工完成后,用平板车运至桥面施工处进行绑扎。钢筋绑扎之前,将挡砟墙两侧、底部清理干净,同时将梁体预埋的挡砟墙钢筋进行调整,确保钢筋保护层厚度,便于立模。模板使用定制大块钢模板,在施工现场直接进行安装。混凝土在拌和站集中拌制,用罐车将混凝土运至施工处,然后将混凝土放入存料槽,采用运料小车运至混凝土浇筑处进行浇筑。混凝土养护,采用洒水养护。 混凝土浇筑前,必须检查各预埋件、预留孔是否设置正确、所用所有原材料是否经过检验并合格。 挡砟墙每2m设置10mm断缝,挡砟墙下泄水端设泄水孔并进行防水处理。 2.电缆槽施工 电缆槽由竖墙和盖板组成,竖墙兼作分割电缆槽、连接遮板和支撑电缆槽盖板的作用,竖墙在梁体现浇完成后在桥面上进行现场灌筑。电缆槽竖墙按2m一段设置单元,竖墙施工时各竖墙的高度必须保持一致,确保电缆槽盖板受力均匀。 电缆槽盖板为预制结构,分为通讯、信号电缆槽盖板和电力电缆槽盖板两大类,盖板0.5m为一个单元,设6mm断缝。施工电缆槽盖板时,电缆槽盖板顶面设置横向波纹或凹槽,一方面可起到防滑作用,另一方面对盖板方向进行标识,避免放错。在盖板各方向的交角处设置倒角,以避免盖板的损坏。电缆槽盖板采用集中预制,振捣成型的工艺,安装时确保盖板受力均匀,必要时用砂浆找平。 3.声屏障及人行道栏杆施工

高速铁路桥梁综述

高速铁路桥梁综述 【摘要】高速铁路桥梁在高铁建设中起到了至关重要的作用,我国高速铁路桥梁的建设发展迅速,与实际工程结合中也凸显其特色。本文全面介绍了高速铁路桥梁的特点,我国高速铁路桥梁的主要设计标准及主要结构型式,提出了在基础理论研究、新技术的应用方面与国外存在的差距及急需解决的问题。 【关键词】高速铁路桥梁;发展;特点;结构形式 前言 高速铁路桥梁可分为高架桥、谷架桥和跨越河流的一般桥梁。其中,高架桥用以穿越既有交通路网、人口稠密地区及地质不良地段,通常墩身不高,跨度较小,桥梁往往长达十余公里;谷架桥用以跨越山谷,跨度较大,墩身较高。由于桥梁建设投资规模大,列车高速运行时对桥上线路的平顺性要求高,特别是采用无渣轨道技术后,对桥梁的变形控制提出了更高的要求,因此高速铁路桥梁是我国高速铁路建设中重点研究的问题之一。 1 高速铁路桥梁的发展现状: 桥梁建设作为高速铁路土建工程的重要组成部分,主要功能是为高速列车提供平顺、稳定的桥上线路,以确保运营的安全和旅客乘坐的舒适。以京沪高速铁路为例,它经过的区域是东部经济发达地区,京沪高速铁路桥梁总长达1060km,桥梁比重为80%。我国通过借鉴德国、日本等国高速铁路桥梁先进技术和成功建设经验,逐渐完善技术的同时形成自己的特色。 2 高速铁路桥梁的特点 桥梁是高速铁路土建工程的重要组成部分,与普通铁路桥梁相比,在数量、设计理念及方法、耐久性要求、养护维修等诸多方面都存在较大差异。其特点可归纳为以下几个方面: (1)高架桥所占比例大。主要原因是在平原、软土以及人口和建筑密集地区,通常采用高架桥通过。 (2)大量采用简支箱梁结构形式。根据我国高速铁路建设规模、工期要求和技术特点,通过深入的技术比较,确定以32m简支箱梁作为标准跨度,整孔预制架设施工。 (3)大跨度桥多。据统计,在建与拟建客运专线中,100m以上跨度的高速桥梁至少在200座以上。其中,预应力混凝土连续梁桥的最大跨度为128m,预应力混凝土刚构桥的最大跨度为180m。

国内外高速铁路发展概况

国内外高速铁路发展概况 发布时间:2011-06-16 浏览次数:328 【字体调整:大中小】 根据UIC(国际铁路联盟)定义,高速铁路是指通过原有线路直线化、轨距标准化,使营运速率达到每小时200公里以上,或者专门修建新的“高速新线”,使营运速率达到每小时250公里以上的铁路系统。高速铁路除了列车营运速度达到一定标准外,车辆、路轨、操作都需要配合提升,广义的高速铁路还包含使用磁悬浮技术的高速轨道运输系统。与其他运输方式相比,高速铁路具有运载能力大、运行速度快、运输效率高、运载成本低、安全系数高的特点,比较优势明显。从各地运行状况看,高速铁路以客运为主,仅有少数线路开展货运业务。 一、世界高速铁路发展的三次浪潮 回顾世界高铁发展,先后经过三次浪潮。 第一次浪潮:1964年—1990年。世界上第一条真正意义上的高速铁路是日本东海道新干线。该线路从东京起始,途经名古屋、京都等地终至(新)大阪,全长515.4公里,运营速度高达210公里/小时。1964年10月新干线的正式通车,标志着世界高速铁路新纪元的到来。东海道新干线在技术、商业、财政以及社会效益上都获得了极大的成功,高速铁路建设成就极其显著。由于运行效益好,日本于1972年又修建了山阳、东北和上越新干线。日本新干线的成功,给欧洲国家以巨大冲击,各国纷纷修建高速铁路。1981年,法国高铁(TGV)在巴黎与里昂之间开通,如今已形成以巴黎为中心、辐射法国各城市及周边国家的铁路网络,法国(TGV)东南线也在运营10年的期限里完全收回了投资。此后,德国开发了高铁系统,意大利修建了罗马至佛罗伦萨线。除北美外,世界上经济和技术最发达的日本、法国、意大利和德国共同推动了高速铁路的第一次建设高潮。 第二次浪潮:1990年至90年代中期。这一时期高速铁路表现出新的特征。一是已建成高速铁路的国家进入高速铁路网规划建设阶段。这一时期,日、法、德等国对高速铁路网进行了全面规划。日本于1971年通过了新干线建设法,并对全国的高速铁路网做出了规划,日本高速路网的建设开始向全国普及发展。法国1992年公布全国高速铁路网的规划,20年内新建高速铁路总里程4700km。德国于1991年4月批准了联邦铁路公司改建、新建铁路计划,包括

高速铁路桥梁结构型式

高速铁路桥梁结构型式 高速铁路上的桥梁,应能在列车达到最高设计速度的条件下,满足行车安全和旅客乘坐的舒适度。因而桥梁结构必须具有足够的强度、稳定性、刚度和耐久,并且保持桥上线路的平顺状态。 (一)桥梁结构体系 1.小跨度刚架桥的截面形式以现浇板梁为宜;简支梁与连续梁桥的截面以单箱单室箱梁为宜;板梁的截面推荐用日本高架桥的截面形状,箱梁截面推荐采用德国新干线标准设计截面。钢桁架桥的桥面系以采用正交异性板为宜;组合梁桥也以箱形截面形状为宜。 2. 混凝土简支梁结构构造简单、技术成熟、架设快捷、更换方便,是我国既有铁路桥梁的主要型式,总数90%以上。近年来,拼装式移动支架造桥机研制成功,使混凝土简支梁的跨度达56。这就更 加扩大了铁路混凝土简支梁的使用范围。在特殊条件下,其它型式的混凝土简支梁,如槽形梁等,也可采用。 3. 混凝土连续梁70年代以来,在我国新线铁路上修建了大量混凝土连续梁,以扩大混凝土梁桥的使用范跨度多在40~80m之间,最大达 84m,成为中等跨度铁路混凝土梁桥的主要型式。作为一个实例,在小跨度范围内应用不多,钱塘江二桥的引桥,采用了7 ~9孔1联,共6孔跨度32 联47孔跨度32m等高度箱形截面双线铁路连续梁桥,是目前我国跨度最小的铁路预应力混凝土连续梁桥。 4. 混凝土刚架桥是一种空间超静定结构,整体性好,具有较好的刚度和抗震性能。在日本高速铁路高架桥中占有十分重要的地位。

刚架桥多为3 ~ 5 孔一联,跨度 6 ~ 8 m 左右,联间以简支挂 孔相连。填土高度7~12 m,基础多采用打入桩和扩大基础型式。与我国京沪高速铁路沪宁段的线路和地质情况相近,具有较好的参考价值。 (二)上部结构型式 1. 分离式结构与整体式结构的比较。在双线并列的情况下,梁部结构可采用两单线桥的分离式结构,也可采用双线桥整体式结构,对于中等跨度混凝土连续梁结构,考虑到一般采用悬臂灌注法施工。尤其重要的是,双线单箱整体式结构,虽不能有效降低桥梁的动力系数,但从车辆运动平稳性考虑,由于结构自重增大,旅客乘坐舒适度有进一步改善,是值得重视的。 2.箱形截面和T形截面的比较。箱形截面整体性强,抗扭刚度大是当代混凝土桥,特别是大跨度桥的主要形式。它用于高速行车的桥梁上动力性能更显得优越。这种截面形式混凝土梁的主要缺点是,在架设过程中需在桥位上进行梁片间的连结工作。特别是对于高速铁路桥梁,当需进行工地横向预应力钢筋的张拉工作,费工费时,影响架桥进度。分片式简支T梁是梁式桥构造简单,最易设计为各种标准跨径的装配式结构,施工工序少,架设程序固定,在多孔简支梁桥中,由于各跨构造和尺寸简化了施工管理工作,降低了施工费用,也便于养护和维修。整孔简支箱梁在国外高速铁路中小跨度桥梁中常被采用,整孔简支箱梁具有受力简单、明确、型式简洁、外形美观、抗扭刚度

相关文档
相关文档 最新文档