文档库 最新最全的文档下载
当前位置:文档库 › 朱国平-内蒙古高庙子膨润土热学性能研究

朱国平-内蒙古高庙子膨润土热学性能研究

朱国平-内蒙古高庙子膨润土热学性能研究
朱国平-内蒙古高庙子膨润土热学性能研究

膨润土

1 饱和膨润土及其与砂混合物的压缩变形特性 [期刊论文] 《岩土力学》ISTIC EI PKU -2009年11期孙文静,孙德安,孟德林,SUN Wen-jing,SUN De-an,MENG De-lin 对用不同制样方法得到的饱和膨润土及其与砂混合物进行了压缩试验.试验结果表明,饱和膨润土的压缩曲线呈双线性,不同于普通黏土的压缩曲线.压缩试验中量测了侧向应力,由此得到的饱和膨润土的静止侧向压力系数值较一般黏... 关键词:饱和膨润土膨润土与砂混合物压缩曲线侧向应力浸水膨胀试验骨架孔隙比 saturated bentonite sand-bentonite mixtures compression curve lateral stress swelling test skeleton void ratio 查看全文 - 下载全文 - 导出 - 引用通知 2 钠基膨润土防水毯在国贸三期地下工程中的应用 [期刊论文] 《中国建筑防水》-2007年3期周竞天,Zhou Jingtian 介绍了钠基膨润土防水毯在北京国贸三期地下防水工程中的施工工艺,并对工程各构造部位的防水设计方案及质量监控要点作了阐述. 关键词:地下工程钠基膨润土防水毯底板桩头膨润土密封膏膨润土防水粉 查看全文 - 下载全文 - 导出 - 引用通知 3 地下工程使用的膨润土防水技术新发展(被引用 8 次) [期刊论文] 《水利水电科技进展》ISTIC PKU -2002年4期鞠建英 简要介绍国内外用膨润土(天然纳米材料)作为防水材料的技术发展概况.重点介绍膨润土毯、膨润土板的应用技术及其优点、特性.这些产品已在国内外大量使用,并已代替或可能代替地下工程防水的其他材料. 关键词:膨润土蒙脱石天然纳米材料膨润土板膨润土毯止水条 查看全文 - 下载全文 - 导出 - 引用通知 4 天然钠基膨润土在防水工程上的应用鉴别 [会议论文] 张启凤,高嵩,2006 - 2006中国防水工程技术论坛 笔者通过本文旨在以简捷、有效的方法,告知用户如何鉴别地应用"天然钠基膨润土"于地铁、隧道、垃圾填埋场、高层建筑地下、人工湖等防渗工程上,以便为用户节约人力、物力、财力,确保防渗工程达到"百年大计,质量第一"。 关键词:天然钠基膨润土防水工程膨润土防水毯人工改性钠化膨润土防渗工程 导出 5 两种膨润土的土-水特征曲线 [期刊论文] 《岩土力学》ISTIC EI PKU -2011年4期孙德安,孟德林,孙文静,刘月妙,SUN De-an,MENG De-lin,SUN Wen-jing,LIU Yue-miao 用滤纸法和压力板法对Kunigel-V1和高庙子两种膨润土进行试验研究,量测不同孔隙比情况下的土-水特征曲线,研究土-水特征曲线与孔隙比之间的关系以及两种膨润土的土-水特性.试验结果表明:用吸力与含水率的关系表示土-水特... 关键词:Kunigel-V1膨润土高庙子膨润土土-水特征曲线滤纸法高放废物 查看全文 - 下载全文 - 导出 - 引用通知 6 膨润土的改性及在废水处理中的应用研究进展(被引用 3 次) [期刊论文] 《水处理技术》ISTIC PKU -2009年5期晏得珍,何玉凤,王艳,王荣民,Yan Dezhen,He Yufeng,Wang Yan,Wang Rongmin 介绍了膨润土的结构与基本性质,探讨了近年来对膨润土的活化、有机改性、无机改性,及无机/有机复合改性方法,以及改性膨润土在含重金属离子废水、有机废水及含磷废水中的应用研究进展,并指出目前膨润土在环境应用中存在的问...

聚四氟乙烯PTFE的耐腐蚀性

聚四氟乙烯(铁氟龙,PTFE、F4、四氟、特氟龙、铁氟龙、塑料王)是用于密封的氟塑料之一,其具有高耐腐蚀,耐高低温,物理性能稳定等特点。素有“塑料王”的美称。它是由四氟乙烯用悬浮法或分散法聚合而成,具有非常优良的耐高、低温性能,可在-180~260℃的范围内长期使用,几乎耐所有的化学药品,在侵蚀性极强的王水中煮沸也不起变化,摩擦系数极低,仅为0.04。聚四氟乙烯不吸水、电性能优异,是目前介电常数和介电损耗最小的固体绝缘材料。它的耐腐蚀性能甚至超过不锈钢、金、铂、陶瓷,聚四氟乙烯密封圈,聚四氟乙烯薄膜,聚四氟乙烯管材制品等制品,在市场上广受好评。 图一聚四氟乙烯图源:网络 聚四氟乙烯为什么耐腐蚀性如此之好? 我们看看它的结构简式:-[-CF2-CF2-]n-。C-F共价键决定了它耐腐蚀的优越性,氧化,氯化等一些反应不能给C-F共价键带来破坏,由于C-C共价键通常处于C-F共价键的保护之中,也就是说其他原子很难接近C-C键之间的电子云就被F原子的电负性排斥走了,因此聚四氟乙烯不跟绝大多已知的强化学性试剂,强酸强碱、水和各种有机溶剂反应,其耐腐蚀性不言而喻。 另外,聚四氟乙烯相对分子质量较大,低的为数十万,高的达一千万以上一般为数百万(聚合度在104数量级,而聚乙烯仅在103)。一般结晶度为90~95%,熔融温度为327~342℃。聚四氟乙烯分子中CF2单元按锯齿形状排列,由于氟原子半径较氢稍大,所以相邻的CF2单元不能完全按反式交叉取向,而是形成一个螺旋状的扭曲链,氟原子几乎覆盖了整个高分子链的表面。这种分子结构解释了聚四氟乙烯的各种性能。温度低于19℃时,形成13/6螺旋;在19℃发生相变,分子稍微解开,形成15/7螺旋,这也是聚四氟乙烯拥有抗腐蚀的重要原因。 下面是聚四氟乙烯腐蚀性能参考表:

膨润土有机改性工艺研究

第27卷第2期2009年6月 河北建筑工程学院学报 JOU RNA L OF HEBEI INSTITU TE OF ARC HITEC TURE AND C IVIL ENGINEERIN G Vol 27No 2June 2009 收稿日期:20081219 作者简介:男,1979年,助工,张家口市,075000 膨润土有机改性工艺研究 安志军1 刘宏波2 李 丹2 赵文娟2 1 张北县华建工程有限责任公司; 2 河北建筑工程学院 摘 要 以新疆托克逊柯尔碱矿区天然钙基土为原料,从原土的结构性能入手直接利用十六烷基三甲基溴化铵作为有机包覆剂来制备有机膨润土.通过对产物的差热分析及粒度、亲疏水性能的测定,探索了有机膨润土制备的影响因素. 关键词 膨润土;有机改性;有机插层膨润土 中图分类号 TU5 0 引言 膨润土是指主要有蒙脱石组成的一种粘土岩,依据其所含蒙脱石主要交换阳离子种类的不同,膨润土可划分为钠基(碱性土)、钙基(碱土型土)、镁基、锂基及氢基膨润土(活性白土)和人工改性的有机质膨润土.我国膨润土资源丰富,且各种类型的膨润土都有,但到目前为止,全国开采利用量还是很低,而价格昂贵的高技术含量膨润土仍以进口为主.有机膨润土石膨润土高层次开发利用的一个方面,是膨润土改性的深加工产品.因为膨润土有许多优点:不溶解于有机溶剂中,但可形成触变性凝胶体;具有亲油疏水性,抗稀酸和碱性,防水和热稳定等性能,能耐150 ~175 高温,因此它能被广泛的应用于各生产和生活领域.有机膨润土的制备一般油湿法、干法和凝胶法3种.通常都是对先对钙基膨润土进行提纯和钠化改型处理后采用不同工艺制成有机膨润土.研究表明,用纯钠基膨润土制备的有机膨润土并不理想,原土中的钠和钙离子有一定的比例,即少量的钠离子被钙离子置换,才能达到最大的膨胀倍数和最快的水合速度.试验证明,钙基膨润土未经钠化处理也可以制备出较好的有机膨润土.在此研究基础上,本文利用新疆托克逊柯尔碱地区的钙基膨润土直接进行有机改性得到有机膨润土,并对制备影响因素进行了分析研究. 1 试验部分 1 1 本试验所用膨润土原料取自新疆托克逊柯尔碱矿区,其主要特点 (1)样品呈灰白色,具土状光泽,有滑腻感,松散如土,有很好的粘结性,干燥后裂成块,其化学成分分析数据如下(%): Mg O,1 45;CaO,3 12;M nO,0 076;Na 2O,1 72;K 2O,2 00;Fe 2O 3,4 94;AL 2O 3,14 64;SiO 2,53 63;烧失量,13 25. (2)将样品制浆发现柯尔碱地区膨润土在水介质中颗粒分散均匀,有很好的悬浮性,吸水量大,吸水膨胀倍数高,亦有很好的润滑性,矿将PH 值约为9. (3)样品膨胀容测定值为20ml/g ,胶质价为195m l/15g. 综合以上三方面的分析可知样品用柯尔碱地区膨润土具有良好的理化性能,尤其是其悬浮性,膨胀容,胶质价都超过一般钙基土.基于样品的优良品质,本试验就直接进行有机改性. 1 2 试验原理 蒙脱石是一种2 1型(即两层硅氧四面体夹一层八面体层)的二八面体层状结构硅酸盐,其结构层间以弱的库仑力结合,使其不仅具有很大表面积而且具备较高的阳离子交换容量和良好的吸附性能.但由于其表面结构极强的吸水性及层间离子的水解,这些特性只能在极性较强的介质如水中才能表现出来.利用有机阳离子置换蒙脱石中可交换的阳离子(如Na +等),使其覆盖于蒙脱石表面,从而堵塞水的

膨润土施工工艺

一、工艺流程 基层处理,找平去角——测量尺寸、预定下料次序——防水毯驳岸和河底的铺设——施工验收——做砂浆或回填保护层。 二、主要机具 铲车或叉车、压路机、射钉枪、壁刀纸、卷尺、直尺、锤子、抹刀、钳子等。 三、基层处理 1)河道的防渗主要有坡面施工、立面(或驳岸)施工和底面施工,但一般需要连续统筹安排。铺设GCL前必须采用必要的设备将底部的细纱整平夯实,出现大块的岩石需特殊处理(剔除或通过碾压把其大块石子碾小),在大的缝隙里塞入细纱,直至表面平整,压实度达85%以上。 2)表面应基本干燥,不能有明显的水渍和坑洼。GCL可以在潮湿的环境下施工,但应避免浸泡在水中。 3)如基础土层底部标高低于地下水位,应采取有效的降水措施排干积水。 4)在细纱层的表面铺设5公分厚的黏土层,在粘土层上进行夯实(或压实、振捣等),压实密度需大于85%。 5)基层和立墙地部风应做成圆弧形或钝角。 6)膨润土防水毯的施工应在基底支持层工程验收合格后进行。 四、膨润土铺设前的准备工作: 1)做下料分析,画出膨润土防水毯铺设顺序和裁剪图。 2)检查膨润土防水毯的外观质量,记录已发现的机械损伤和生产创伤、孔洞等缺陷,以便在铺设时进行修补。 3)防水毯的施工应在无雨、无雪天气下进行。施工时如雨、雪,应用塑料薄膜进行遮盖,防止GCL提前水化。 五、GCL的铺设 1、在基础达到要求后,防水毯的铺设应沿水流方向顺水搭接,先坡岸(护岸)后底层的顺序进行,即上游的GCL搭接在下游的GCL上。 2、搭接应平整且搭接长度≥300mm。 3、搭接处均匀撒上0.4kg---0.6kg/m的膨润土粉。 4、考虑基础的下沉变形,必要时GCL可以在底部打皱1~2个,打皱长度为100mm。 5、GCL的无纺土工布即白色面冲上铺设,上面再用300mm厚夯实的粘土、中砂或用60mm---100mm厚素砼覆盖,也可用50mm厚水泥砂浆嵌粒径50--80的卵石。当坡底与坡壁防水斜面的角度其比例大于1:3时,在坡壁防水斜面上用100mm厚素砼覆盖。 6、GCL铺设时,边缘铺设高度高出设计水位100mm。 7、如遇到管线或桩头等穿越GCL,先用一块完整的GCL依其管径再加周径300mm做个底部加强处理,整卷铺设后,再用水将膨润土粉搅拌成浆状涂补管边。 8、如遇到GCL破损或较复杂的接缝处,用一块完整的GCL依其破损或接缝处尺寸再加周径300mm进行覆盖,重叠部分两层GCL之间撒膨润土粉。 六、立面护岸和坡岸的GCL铺设施工: 1、根据现场施工的实际情况,建议采用由上往下的顺序铺贴防水毯。对于角度小的坡面,可以直接在坡岸上开卷铺设。并尽快作好保护层。 2、护岸在墙施工的阴、阳角处应作成圆弧形或钝角,阴角部位最好先裁剪400mm宽度的防水毯做加强处理,然后再进行大面的铺设。驳岸立面上铺设膨润土防水毯时,为避免其不贴实,可用25mm长钢钉加垫片将其固定。也可直接用砖石预压。 3、除了在防水毯重叠部风和边缘部位用钢钉固定外,整幅防水毯中间也需要视平整度加

高分子材料典型力学性能测试实验

《高分子材料典型力学性能测试实验》实验报告 学号姓名专业班级 实验地点指导教师实验时间 在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲 击试验作为介绍。 实验一:高分子材料拉伸实验 一、实验目的 (1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测 试条件对测定结果的影响。 (2)通过应力—应变曲线,判断不同高分子材料的性能特征。 二、实验原理 在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的 两端沿轴向施加载荷直至拉断为止。拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。 玻璃态聚合物在拉伸时典型的应力-应变曲线如下:

是在较低温度下出现的不均匀拉伸,所以又称为冷拉。 将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、 形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力—应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服 点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。所涉及的相关计算公式: (1)拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力σt σt 按式(1)计算: (1) 式中σt—抗拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力,MPa; p—最大负荷或断裂负荷或屈服负荷或偏置屈服负荷,N; b—实验宽度,mm;d—试样厚度,mm。 (2)断裂伸长率εt εt 按式(2)计算: 式中εt——断裂伸长率,%;

有机膨润土的制备及其结构表征

Material Sciences 材料科学, 2016, 6(6), 329-333 Published Online November 2016 in Hans. https://www.wendangku.net/doc/4b17023159.html,/journal/ms https://www.wendangku.net/doc/4b17023159.html,/10.12677/ms.2016.66043 文章引用: 薛永丽. 有机膨润土的制备及其结构表征[J]. 材料科学, 2016, 6(6): 329-333. Study on the Preparation and Structure Characterization of Organobentonites Yongli Xue Housing and Urban-Rural Planning Construction Bureau of Wushenqi, Wushenqi Inner Mongolia Received: Oct. 11th , 2016; accepted: Nov. 6th , 2016; published: Nov. 9th , 2016 Copyright ? 2016 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/4b17023159.html,/licenses/by/4.0/ Abstract This paper is based on the use of artificial Na-bentonite as raw material, cetrimonium bromide (CTAB) as modifier of Na-base bentonite for organic modification. The structure and properties of the Na-bentonites and organobentonites are characterized by means of XRD, FTIR and TG. The results showed that CTAB effectively entered layered structure of bentonite, increasing the layer spacing and providing with a good hydrophobicity, which widened application fields of Na-bentonite. Keywords Bentonite, Organic Modification, Structural Characterization 有机膨润土的制备及其结构表征 薛永丽 乌审旗住房和城乡规划建设局,内蒙古 乌审旗 收稿日期:2016年10月11日;录用日期:2016年11月6日;发布日期:2016年11月9日 摘 要 本文利用十六烷基三甲基溴化铵(CTAB)对辽宁黑山的Na-膨润土进行有机改性,并利用XRD 、FTIR 和TG Open Access

膨润土系统改造

一选题背景 1.1 区间概况 新华大街站~玉带河大街站区间线路北起新华大街北侧、滨河北路以西200m 的规划路环岛路口下的新华大街站,线路出站后下穿新华东街,沿滨河北路西侧的规划道路向东南敷设,到达玉带河东街北侧、滨河北路西侧的玉带河大街站,盾构区间隧道主要穿越粉细砂④3层和细中砂⑤层。隧道穿越地层详情如下: 1.粉细砂④3层:褐黄~灰色,中密~密实,饱和,属低压缩性土,含云母、石英、长石等,局部含中粗砂夹层,偶见圆砾。 2.细中砂⑤层:灰黄~灰色,中密~密实,饱和,标贯击数平均值为39,属低压缩性土,局部含粉细砂层、粉土夹层,偶见圆砾; 拱顶覆土主要为人工堆积层房渣土、粉质粘土填土、粉土填土,第四纪新近沉积层粉土、粉质粘土、细粉砂,以及第四纪全新世洪冲积层:粉细砂④3层等。 本次勘察钻孔最大深度42m,在勘察深度范围内,根据区域水文地质资料,本工程场区主要赋存两层地下水,地下水类型为潜水(二)和承压水(四)。地下水详细情况见表1.1所示。 表1.1地下水特征 地下水性质 水位 埋深(m) 水位 标高(m) 观测 时间 含水层 潜水(二) 5.0-9.1 12.24-17.49 2011.2-2011.3 粉细砂②3层、粉细砂④3层、 细中砂⑤层、及圆砾⑤4层承压水(四)12.3-17.3 5.17-9.49 2011.2-2011.3 细中砂⑦层 1.2 膨润土系统改造原因 新玉盾构区间采用盾构快速掘进施工,膨润土系统作为盾构机设备的重要系统,在盾构掘进中发挥着关键的作用,改造膨润土系统原因如下: 1、盾构掘进区间土质密实度高,渣土流塑性,改变了盾构机原膨润土设计 只能单一注入泡沫或膨润土的结构,同时注入泡沫与膨润土进行渣土改良,改变 渣土流塑性,减小刀盘扭矩,延长刀具正常使用寿命,加快渣土切削速率,保证

高分子材料的力学性能及表征方法

高分子材料的力学性能及表征方法 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。 采用摆锤式冲击试验机,按一定标准制备样品,在恒定温度、湿度下,用摆锤迅速冲击被测试样,根据摆锤的质量和刚好使试样产生裂痕或破坏时的临界下落高度及被测样品的截面积,按一定公式计算聚合物试样的冲击强度(或冲击韧性单位为J/cm2)。 (4)聚合物单分子链的力学性能。 用原子力显微镜(AFM)。将聚合物样品配成稀溶液,铺展在干净玻璃片上,除去溶剂后得到一吸附在玻璃片上的聚合物薄膜(厚度约90mm)。用原子力显微镜针尖接触、扫描样品膜,由于针间与样品中高分子的相互作用,高分子链将被拉起,记录单个高分子链被拉伸时拉力的变化,直至拉力突然降至为零。可得到若干高分子链被拉伸时的拉伸力和拉伸长度曲线,由此曲线可估算单个高分子链的长度和单个高分子从凝聚态中被拉出时的“抗张强度”。所用仪器 万能材料试验机 摆锤式冲击试验机

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

腐植酸有机改性膨润土及其应用研究

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1膨润土和腐植酸的结构及性能 (2) 1.1膨润土的结构 (2) 1.2腐植酸的结构 (2) 2膨润土的吸附原理 (2) 2.1物理吸附 (2) 2.2化学吸附 (3) 2.3离子交换吸附 (3) 3有机改性膨润土 (3) 3.1有机改性膨土的性能 (3) 3.2腐植酸改性膨润土 (4) 4 改性膨润土的应用 (4) 4.1环保材料 (4) 4.2催化剂及载体 (4) 4.3石油钻井、铸造和冶金材料 (5) 4.5农业、畜牧业材料 (5) 4.6其他用途 (5) 5 结语 (6) 参考文献 (6)

腐植酸有机改性膨润土及其应用研究 摘要:本文主要介绍了膨润土、腐植酸的结构,讨论了膨润土物理吸附、化学吸附、离子交换吸附的原理。通过有机改性膨润土的特点,制备腐植酸改性膨润土,进而研究改性膨润土的应用。 关键词:腐植酸;膨润土;改性膨润土;应用 Abstract:This article mainly describes the structure of bentonite, humic acid, discusses the modified principle of bentonite ,such as: physical adsorption,chemical adsorption, ion-exchange adsorption. Through the characteristics of organic modified bentonite, we make of humic acid modified bentonite and study on the application of modified bentonite. Keywords:humic acid ;bentonite; modified bentonite;application 引言 膨润土是一种片层结构的硅酸盐,主要成分是蒙脱石,其层间的阳离子易被交换,具有很大的离子交换容量。根据蒙脱石层间可交换阳离子种类、含量将膨润土划分为钠基膨润土、钙基膨润土、镁基膨润土和铝(氢)基膨润土,膨润土具有膨胀性、吸附性、阳离子交换性、悬浮性和分散性等优异性能[1]。我国膨润土资源十分丰富,预测资源量在80亿吨以上,居世界首位,占世界总量的60%,但由于钙基者多,蒙脱石含量偏低,而采选加工方法较简单,产品质量受到影响,对外贸易中处于低出高进局面,导致其应用范围受到限制[2]。 腐植酸是自然界植物残体经腐烂分解后的产物,是一种大分子有机弱酸混合物,广泛存在于土壤有机质、泥炭、褐煤、风化煤以及湖泊和海洋沉积物中,它在水中呈高分子电解质和弱酸的特性,可吸附水中可溶性有机物、重金属离子等,对水环境中金属离子的络合、有机化合物的迁移与转化、水处理中消毒副产物的形成、氧化还原作用等都有重要影响。 近年来,有关膨润土、腐植酸吸附重金属离子的研究已有报道,膨润土可与土壤中的腐植酸等有机物相互作用,形成有机-无机复合体,从而改变其原先吸附重金属的性能[3]。加强和加快这种腐植酸-膨润土复合体资源的开发应用,具有

膨润土

膨润土在石油工业中应用及发展前景 摘要:本文主要介绍了膨润土的主要成分是蒙脱石基本概念、和胖闰土的组成、性质、分类,对膨润土在石油工业中的应用和发展前景进行主要介绍。 关键字 膨润土(Bentonite)是以蒙脱石为主的含水粘土矿。蒙脱石的化学成分为:(Al2,Mg3)Si4O10 OH2?nH2O,由于它具有特殊的性质。如膨润性、粘结性、吸附性、催化性、触变性、悬浮性以及阳离子交换性。所以广泛用于各个工业领域。比如:膨润土由于有良好的物理化学性能,素有“万能”粘土之称,可做粘结剂、悬浮剂、触变剂、稳定剂、净化脱色剂、充填料、饲料、催化剂等,广泛用于石油开采、定向穿越、钢铁铸造、冶金球团、化工涂料、复合肥、浆纱、橡胶、塑料、造纸、净化水、吸潮剂、农药等领域。 膨润土的用途及其广泛,但是今天我们主要介绍膨润土在石油工业中的应用和发展前景。 首先我们来了接一下膨润土的基本概念和其性质、组成、分类等。 膨润土是以蒙脱石为主要矿物成分的非金属矿产,蒙脱石结构是由两个硅氧四面体夹一层铝氧八面体。膨润土组成的2:1型晶体结构,由于蒙脱石晶胞形成的层状结构存在某些阳离子,如Cu、Mg、Na、K等,且这些阳离子与蒙脱石晶胞的作用很不牢固,易被其它阳离子交换,故具有较好的离子交换性。国外已在工农业生产24领域100多个部门中应用,有300多个产品,因而人们称之为“万能土”。 膨润土也叫斑脱岩,皂土或膨土岩。我国开发使用膨润土的历史悠久,原来只是做为一种洗涤剂。(四川仁寿地区数百年前就有露天矿,当地人称膨润土为土粉)。真正被广泛使用却只有百来年历史。美国最早发现是在怀俄明州的古地层中,呈黄绿色的粘土,加水后能膨胀成糊状,后来人们就把凡是有这种性质的粘土,统称为膨润土。其实膨润土的主要矿物成分是蒙脱石,含量在85-90%,膨润土的一些性质也都是由蒙脱石所决定的。蒙脱石可呈各种颜色如黄绿、黄白、灰、白色等等。可以成致密块状,也可为松散的土状,用手指搓磨时有滑感,小块体加水后体积胀大数倍至20-30倍,在水中呈悬浮状,水少时呈糊状。蒙脱石的性质和它的化学成分和内部结构有关。 膨润土的组成: 1898年美国地质学者Knighl在美国怀俄明州落基山河附近发现了一种绿黄色吸水膨胀的粘土物质,由于产地为:“Fort Beton ”,因而取名膨润土(Betonite)。膨润土也叫斑脱岩或膨土岩,膨润土的主要矿物成分是蒙脱石,含量在85-90%,膨润土的一些性质也都是由蒙脱石所决定的。蒙脱石可呈各种颜色如黄绿、黄白、灰、白色等等。可以成致密块状,也可为松散的土状,用手指搓磨时有滑感,小块体加水后体积胀大,在水中呈悬浮状,水少时呈糊状。蒙脱石有吸附性和阳离子交换性能,可用于除去石油的毒素、汽油和煤油的净化、废水处理;由于有很好的吸水膨胀性能以及分散和悬浮及造浆性,因此用于钻井泥浆、阻燃(悬浮灭火);还可在造纸工业中做填料,可优化涂料的性能如附着力、遮盖力、耐水性、耐洗刷性等;由于有很好的粘结力,可代替淀粉用于纺织工业中的纱线上浆既节粮,又不起毛,浆后还不发出异味。 膨润土矿石的矿物组成:

常用高分子材料性能检测国家标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料

高分子材料的基本物理性能

高分子材料的主要物理性能 高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性和复杂性。联系材料微观结构和宏观性质的桥梁是材料内部分子运动的状态。一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。例如天然橡胶在常温下是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。聚甲基丙烯酸甲酯(PMMA )在常温下是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。 本着“结构?分子运动?物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性和粘弹性、溶液性质、流变性质、电学性能等。同时通过介绍结构与性能的关系,帮助我们根据使用环境和要求,有目的地选择、使用、改进和设计高分子材料,设计和改进加工工艺和设备,扩大高分子材料使用范围。 第一节 高分子材料的分子运动、力学状态转变及热性能 一、高分子运动的特点 与低分子材料相比,高分子材料的分子热运动主要有以下特点: (一)运动单元和模式的多重性 高分子的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。 在各种运动单元和模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运动有直接关系。链段运动状态是判断材料处于玻璃态或高弹态的关键结构因素;链段运动既可以引起大分子构象变化,也可以引起分子整链重心位移,使材料发生塑性形变和流动。 (二)分子运动的时间依赖性 在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。例如将一根橡胶条一端固定,另一端施以拉力使其发生一定量变形。保持该形变量不变,但可以测出橡胶条内的应力随拉伸时间仍在变化。相当长时间后,内应力才趋于稳定,橡胶条达到新的平衡。 设材料在初始平衡态的某物理量(例如形变量、体积、模量、介电系数等)的值为x 0,在外场作用下,到t 时刻该物理量变为x (t ),许多情况下x (t )与x 0满足如下关系: ()τ /0t e x t x -= (4-1) 公式(4-1)实质上描述了一种松弛过程,式中τ称松弛时间。当t =τ时,()e x x /0=τ,可见松弛时间相当于x 0变化到x 0/e 时所需要的时间。 低分子物质对外场的响应往往是瞬时完成的,因此松弛时间很短,而高分子材料的松弛时间可能很长。高分子的这种松弛特性来源于其结构特性,由于分子链的分子量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此其松弛过程进行得较慢。 不同运动单元的松弛时间不同。运动单元越大,运动中所受阻力越大,松弛时间越长。比如键长、键 角的变化与小分子运动相仿,其松弛时间与小分子相当,约10-8-10-10 s ;链段运动的松弛时间较长,可达到分钟的数量级;分子整链的松弛时间更长,可长达几分、几小时,甚至几天、几个月。由于高分子材料结构具有多重性,因此其总的运动模式具有一个广阔的松弛时间谱。 了解材料的松弛时间谱十分重要,因为材料的不同性质是在不同的松弛过程(它们具有不同的松弛时间)中表现出来的。在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式(或性质)最早和最明显地被测试或表现出来。例如要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。如果要研究分子整链的运动(如材料的流动),

膨润土流程

膨润土整体流程简介 一、地质勘查 (一) 勘探类型的划分 根据占矿床总储量70%以上的主矿层(体)勘探的难易程度划分,包括以下五个方面: 1.矿层(体)延伸规模 (1) 大型沿走向大于2 000m,沿倾向大于1 500m。延展面积大于3km2。 (2) 中型沿走向1 000~2 000m,沿倾向500~1 500m 。延展面积0.5~3km2。 (3) 小型沿走向小于1 000m,沿倾向小于500m。延展面积小于0.5km2。 2.矿层(体)形态复杂程度 (1) 规则呈层状。外形规则,边界模数大于0.85或剖面面积变化系数小于0.55。 (2) 较规则呈层状、似层状或大透镜状。外形较规则,边界模数0.85~0.55或剖面面积变化系数0.55~0.85。 (3) 不规则呈透镜状、脉状。外形不规则,边界模数小于0.55或剖面面积变化系数大于0.85。 3.矿层(体)厚度稳定程度 (1) 厚度稳定厚度变化系数小于30%,变化有规律;矿层(体)内无不可采工程,相邻工程矿层(体)厚度变化二倍率以上小于30%。 (2) 厚度较稳定厚度变化系数30%~70%,变化较有规律;矿层(体)内无不可采工程,相邻工程矿层(体)厚度变化二倍率以上小于50%。 (3) 厚度不稳定厚度变化系数大于70%,厚度变化规律不明显;不可采、无矿工程时有出现,相邻工程矿层(体)厚度变化二倍率以上大于50%。 4.矿层(体)内部结构复杂程度 (1) 内部结构简单矿层(体)内无夹层或偶见一层夹层,剖面平均含夹石率小于10%;矿石质量稳定,蒙脱石含量变化系数小于20%。 (2) 内部结构较简单矿层(体)内有夹层,一般为1~2层,变化有规律,剖面平均含夹石率10%~20%;矿石质量较稳定,蒙脱石含量变化系数20%~30%。 (3) 内部结构复杂矿层(体)分支复合普遍或夹层多,剖面平均含夹石率大于20%;矿石质量有变化,蒙脱石含量变化系数大于30%。 5.构造复杂程度 (1) 构造简单矿层(体)呈单斜,产状无明显变化或呈简单的开阔向、背斜。勘探地段无切割矿层(体)开采影响较大的破坏性断裂及脉岩。 (2) 构造较简单矿层(体)有次一级的向、背斜,褶幅不大或局部较紧密;有少数较大

PTFE解释、聚四氟乙烯

PTFE 百科名片 聚四氟乙烯 PTFE中文名称为聚四氟乙烯,英文名Poly tetra fluoro ethylene ptfe乳液是一种含聚四氟乙烯高分子化学材料,它广泛应用于包装,电子电气,化工能源,耐腐蚀材料,特氟龙高性能特种涂料是以聚四氟乙烯为基体树脂的氟涂料,英文名称为Teflon,因为发音的缘故,通常又被称之为铁氟龙、铁富龙、特富龙、特氟隆等等(皆为Teflon 的译音)。 解释 特富龙(台湾译为:铁氟龙)涂料是一种独一无二的高性能涂料,结合了耐热性、化学惰性和优异的绝缘稳定性及低摩擦性,具有其他涂料无法抗衡的综合优势,它应用的灵活性使得它能用于几乎所有形状和大小的产品上。 PTFE生产方法 聚四氟乙烯由四氟乙烯经自由基聚合而生成。工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。聚合一般在40~80℃,3~26千克力/厘米2压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。每摩尔四氟乙烯聚合时放热171.38kJ。分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。特氟龙基本类型: ·特氟龙PTFE: PTFE(聚四氟乙烯)不粘涂料可以在260℃连续使用,具有最高使用温度290-300℃,极低的摩擦系数、良好的耐磨性以及极好的化学稳定性。 ·特氟龙FEP: FEP 或者F46(氟化乙烯丙烯共聚物)不粘涂料在烘烤时熔融流动形成无孔薄膜,具有卓越的化学稳定性、极好的不粘特性,最高使用温度为200℃。 ·特氟龙PFA: PFA(过氟烷基化物)不粘涂料与FEP一样在烘烤时熔融流动形成无孔薄膜。PFA的优点是具有更高的连续使用温度260℃,更强的刚韧度,特别适合使用在高温条件下防粘和耐化学性使用领域。 ·特氟龙ETFE: ETFE是一种乙烯和四氟乙烯的共聚物,该树脂是最坚韧的氟聚合物,可以形成一层高度耐用的涂层,具有卓越的耐化学性,并可在150℃下连续工作。 经过特氟龙涂装后,具有以下特性: 1、不粘性: 几乎所有物质都不与特氟龙涂膜粘合。很薄的膜也显示出很好的不粘附性能。

膨润土及粉煤灰的作用

作为中国第一条真正意义上的高速客运铁路,武广高速铁路是“十一五”国家重点建设项目。 自2005年6月开工以来,至2006年,铁路全线已进入全面开工阶段——在湖北、湖南和广东三省采取分段 施工的方式。 用于建设铁路的建筑材料,除了普通公众较为熟悉的如钢材、水泥等物之外,还有一种以前较为少见的材料 ——粉煤灰。 粉煤灰曾经是一种大宗工业废料,目前已累计堆存10亿吨以上。以前,粉煤灰被收集后露天堆放,不仅占用了大量的土地,而且污染空气和堆积处的地下水源,对环境的危害很大。 为了解决这些问题,中国的科技工作者经过多年研究论证,提出了一系列将粉煤灰“变废为宝”的综合利用 方法。 目前,粉煤灰广泛应用于建筑工业领域,水泥、砖块、混凝土等建筑材料,都需要大量使用粉煤灰——正在 建设中的武广高速铁路,对粉煤灰的需求与日俱增。 “铁路建设需要海量的混凝土,而混凝土中除了砂石、水泥等材料外,必不可少的还有粉煤灰。”武广铁路一位建设者对记者说,粉煤灰在混凝土中,作用不可替代。 中国经济时报记者查阅了关于粉煤灰在混凝土中所起作用的相关学术资料,其中,同济大学材料科学及工程学院教授级高级工程师沈旦申、上海市建筑科学研究院教授级工程师张荫济的研究成果较为权威。 在相关著述中,沈、张两位专家详细阐述了粉煤灰在混凝土中的作用和机理。这些作用和机理,如今被业内 人士称之为粉煤灰最主要的三大效应。 第一,“形态效应”。在显微镜下显示,粉煤灰中含有70%以上的玻璃微珠,粒形完整,表面光滑,质地致密。这种形态对混凝土而言,无疑能起到减水作用、致密作用和匀质作用,促进初期水泥水化的解絮作用,改变拌和物的流变性质、初始结构以及硬化后的多种功能,尤其对泵送混凝土,能起到良好的润滑作用。 第二,“活性效应”。粉煤灰的“活性效应”因粉煤灰系人工火山灰质材料,所以又称之为“火山灰效应”。 这一效应能对混凝土起到增强作用和堵塞混凝土中的毛细组织,提高混凝土的抗腐蚀能力。 第三,微集料效应。粉煤灰中粒径很小的微珠和碎屑,在水泥中可以相当于未水化的水泥颗粒,极细小的微珠相当于活泼的纳米材料,能明显地改善和增强混凝土及制品的结构强度,提高匀质性和致密性。 这三种效应相互关联,互为补充。粉煤灰的品质越高,效应越大。 粉煤灰在武广高速铁路中所起的作用,在以前的媒体宣传亦可见一斑。 2006年6月29日,由武广二标二分队一工区承担施工的DK1487+169.68 +280段CFG桩正式试桩,这被认为是“以实际行动向党的85周岁的生日献上了一份厚礼”。CFG桩,就是水泥粉煤灰碎石桩。 此前,2006年5月9日,CFG桩长螺旋钻机实施性方案经中铁十二局武广客运专线第十二项目部技术人员的多方努力,首次在武广高速铁路上实施并取得成功。 在另外一篇宣传稿中,也从侧面反映了粉煤灰在混凝土不可替代的作用。“为让混凝土高标准变为现实,更为今后高速铁路制梁提供依据,项目部试验人员在中心实验室里,反复实验与比对,精心寻找最佳配合比。……

相关文档