文档库 最新最全的文档下载
当前位置:文档库 › 基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签
基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签

蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。

美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。

以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。

TrxHIS

His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点:

标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;

His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;

His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;

His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。

可应用于多种表达系统,纯化的条件温和;

可以和其它的亲和标签一起构建双亲和标签。

Flag标签蛋白

Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:

FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。

FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。

MBP(麦芽糖结合蛋白)

MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。MBP标签可通过免疫分析很方便地检测。有必要用位点专一的蛋白酶切割标签。如果蛋白在细菌中表达,MBP 可以融合在蛋白的N端或C端。纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。结合的融合蛋白可用10mM麦芽糖在生理缓冲液中进行洗脱。结合亲和力在微摩尔范围。一些融合蛋白在0.2% Triton X-100或0.25% Tween 20存在下不能有效结合,而其他融合蛋白则不受影响。缓冲条件为pH7.0到8.5,盐浓度可高达1M,但不能使用变性剂。如果要去除MBP融合部分,可用位点特异性蛋白酶切除。

检测:可用MBP抗体或表达的目的蛋白特异性抗体检测。

GST(谷胱甘肽巯基转移酶)

GST(谷胱甘肽巯基转移酶) 标签蛋白本身是一个在解毒过程中起到重要作用的转移酶,它的天然大小为26KD。将它应用在原核表达的原因大致有两个,一个是因为它是一个高度可溶的蛋白,希望可以利用它增加外源蛋白的可溶性;另一个是它可以在大肠杆菌中大量表达,起到提高表达量的作用。GST融合表达系统广泛应用于各种融合蛋白的表达,可以在大肠杆菌和酵母菌等宿主细胞中表达。结合的融合蛋白在非变性条件下用10mM 还原型谷胱甘肽洗脱。在大多数情况下,融合蛋白在水溶液中是可溶的,并形成二体。GST标签可用酶学分析或免疫分析很方便的检测。标签有助于保护重组蛋白免受胞外蛋白酶的降解并提高其稳定性。在大多数情况下GST融合蛋白是完全或部分可溶的。

纯化:该表达系统表达的GST标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶(Glutathione sepharose)亲和树脂进行纯化。GST标签蛋白可在温和、非变性

条件下洗脱,因此保留了蛋白的抗原性和生物活性。GST在变性条件下会失去对谷胱甘肽树脂的结合能力,因此不能在纯化缓冲液中加入强变性剂如:盐酸胍或尿素等。

如果要去除GST融合部分,可用位点特异性蛋白酶切除。

检测:可用GST抗体或表达的目的蛋白特异性抗体检测。

HA

HA标签蛋白,标签序列YPYDVPDYA,源于流感病毒的红细胞凝集素表面抗原决定簇,9个氨基酸,对外源靶蛋白的空间结构影响小, 容易构建成标签蛋白融合到N端或者C 端。易于用Anti-HA抗体检测和ELISA检测。

c-Myc

C-Myc 标签蛋白,是一个含11个氨基酸的小标签,标签序列Glu-Gln-Lys-Leu-Ile- Ser-Glu-Glu-Asp-Leu,这11个氨基酸作为抗原表位表达在不同的蛋白质框架中仍可识别其相应抗体。C-Myc tag已成功应用在Western-blot杂交技术、免疫沉淀和流式细胞计量术中, 可用于检测重组蛋白质在靶细胞中的表达。

eGFP

eGFP标签蛋白,是增强型绿色荧光蛋白eGFP,激发波长为488nm,发射波长为507nm,其是由野生型绿色荧光蛋白GFP通过氨基酸突变和密码子优化而来的。相对于GFP,eGFP荧光强度更强、荧光性质更稳定。同时载体中构建的Kozak序列使得含有eGFP 的融合蛋白在真核表达系统中表达效率更高。eGFP作为标签蛋白,其融合表达目的蛋白后具有以下优点:

不用破碎组织细胞和不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测更显得快速、简便、灵敏度高而且重现性。

其低消耗、高灵敏度检测,十分适用于高通量的药物筛选。因此现eGFP 表达标签被广泛地应用于基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

此外由我公司提供的IRES双顺反子载体,可同目的基因共表达eGFP,用于目的基因的体内蛋白示踪研究。

eYFP

eYFP标签蛋白为增强型黄绿色荧光蛋白eYFP,激发波长为513nm,发射波长为527nm,其是由野生型黄绿色荧光蛋白YFP通过氨基酸突变和密码子优化而来的。相对于YFP,eYFP荧光强度更强、荧光性质更稳定。同时载体中构建的Kozak序列使得含有eYFP 的融合蛋白在真核表达系统中表达效率更高。eYFP作为标签蛋白,其融合表达目的蛋白后具有以下优点:

不用破碎组织细胞和不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测更显得快速、简便、灵敏度高而且重现性。

其低消耗、高灵敏度检测,十分适用于高通量的药物筛选。因此现eYFP 表达标签被广泛的应用与基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

此外由我公司提供的IRES双顺反子载体,可同目的基因共表达eYFP,用于目的基因的体内蛋白示踪研究。

eCFP

eCFP标签蛋白为增强型青色荧光蛋白eCFP,激发波长为433nm或453nm,发射波长为475nm或501nm,其是由野生型青色荧光蛋白CFP通过氨基酸突变和密码子优化而来的。相对于CFP,eCFP荧光强度更强、荧光性质更稳定。同时载体中构建的Kozak序列使得含有eCFP的融合蛋白在真核表达系统中表达效率更高。eCFP作为标签蛋白,其融合表达目的蛋白后具有以下优点:

不用破碎组织细胞和不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测更显得快速、简便、灵敏度高而且重现性。

其低消耗、高灵敏度检测,十分适用于高通量的药物筛选。因此现eCFP 表达标签被广泛的应用与基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

Avi Tag

AviTag标签蛋白是一个15 个氨基酸的短肽,具有一个单生物素化赖氨酸位点,与已知天然可生物素化序列完全不同,可以加在目标蛋白的N端和C端。融合表达后,可被生物素连接酶生物素化,为了纯化重组蛋白选用低亲和性的单体抗生物素蛋白或抗生物素蛋白衍生物,除了用于蛋白质分离纯化,还用于蛋白质相互作用研究。

Avi Tag标签系统具有以下几大优点:

无论在体外或者体内,几乎所有的蛋白都可以在一个独特的Avi Tag位点轻易且有效地被生物素化;

生物素化是通过酶和底物的反应来实现,反应条件相当温和而且标记的专一性极高;

生物素Avi Tag只有15个氨基酸,对蛋白空间结构的影响非常小。

SNAP-Tag

SNAP-Tag是新一代的蛋白标签技术,不仅专一性极高而且稳定,最大的优点是适用于多种环境下的蛋白质检测与纯化,如活细胞内、溶液中、或固态相(如SDS-PAGE gels)等。

SNAP-Tag是从人的O6-甲基鸟嘌呤-DNA甲基转移(O6-alkylguanine-DNA- alkyltransferase)获得。无论体内还是体外,SNAP-Tag都能与底物高特异性地共价结合,使蛋白标记上生物素或荧光基团(如荧光素和若丹明)。SNAP所带的活性巯基位点接受了苯甲基鸟嘌呤所携带的侧链苯甲基基团,释放出了鸟嘌呤。这种新的硫醚键共价结合使SNAP 所带的目的蛋白携带上了苯甲基基团所带的标记物。苯甲基鸟嘌呤在生化条件下稳定,并且没有其他蛋白会和这类物质作用,所以SNAP标签反应是高特异的。检测:生物素或各种颜色荧光的底物(如荧光素、若丹明)可渗透进入细胞,方便快捷地进行活细胞内SNAP-Tag 融合蛋白的标记与检测。它们也可特异性地标记大肠杆菌,酵母和哺乳动物等细胞抽提液或已经纯化的蛋白液中的SNAP-tag融合蛋白。

将纯化的或未纯化的SNAP-Tag融合蛋白与表面固定了苯甲基鸟嘌呤的基质混合,蛋白即可特异与底物作用,形成共价键,融合蛋白间接被固定在了基质表面上,可以达到更方便快捷地研究蛋白功能或纯化蛋白的目的。

Halo Tag

HaloTag?标签蛋白是一种脱卤素酶的遗传修饰衍生物,可与多种合成的HaloTag?配基有效地共价结合。这个分子量为33KDa的单体蛋白能融合在重组蛋白的N端或C 端,并在原核和真核系统中表达。

HaloTag?配基是小分子化学物,能够在体外或体内与HaloTag?蛋白共价结合。这些配基由两个关键组分组成:(1)一个通用的HaloTag?反应联结子,结合HaloTag?蛋白;(2)一个功能基团,例如荧光染料或亲和媒介。

能够共价和特异性结合多种合成的报告基团和亲和配基的特性,使得HaloTag?蛋白能够用于检测和亲和结合或固相化固定目的蛋白。

SUMO

SUMO标签蛋白是一种小分子泛素样修饰蛋白(Small ubiquitin-like modifier),是泛素(ubiquitin)类多肽链超家族的重要成员之一。在一级结构上,SUMO与泛素只有18%的同源性,然而两者的三级结构及其生物学功能却十分相似。研究发现SUMO可以作为重组蛋白表达的融合标签和分子伴侣,不但可以进一步提高融合蛋白的表达量,且具有抗蛋白酶水解以及促进靶蛋白正确折叠,提高重组蛋白可溶性等功能。

此外SUMO还有一项重要的应用,就是可用于完整地切除标签蛋白,得到天然蛋白。因为SUMO蛋白水解酶(我公司可提供)能识别完整的SUMO标签蛋白序列,并能高效地把SUMO从融合蛋白上切割下来。切除SUMO后,经过亲和层析,去除标签蛋白部分,就得到和天然蛋白一样的重组蛋白。所以SUMO标签也常用于和其他标签一起应用,作为特异酶切水解位点。

荧光素酶(Luciferase)

荧光素酶不是标签蛋白,但是由我公司提供的IRES载体,可同目的基因共表达萤火虫荧光素酶基因,用于目的基因的体内蛋白示踪研究。

荧光素酶(Luciferase)能催化荧光素氧化,在氧化的过程中,发出生物荧光,然后通过荧光测定仪或液闪测定仪就可以测定荧光素氧化过程中释放的生物荧光。荧光素酶的优势在于发生物荧光,无需激发,无本底的影响,所以相关线性程度高;而且萤火虫荧光素酶在一般细胞中不会出现;荧光素酶分析的灵敏度很高,也容易操作;生物荧光的测定用简单的手动或全自动的微孔板化学发光检测仪都可以用;适合高通量筛选。

常见tag蛋白标签介绍

蛋白标签 蛋白标签(proteintag )是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia (复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag ?、Halo Tag?、AviTag ?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。 标签纯化促进溶解度抗体效价细胞标记 His6++/-+/- Flag++/-+ GST+++ MBP++++ His-MBP++++ HA+ eGFP/CFP/YFP+++ Myc+ His-Myc++ His-AviTag ?++++++ Sumo++++ His-Sumo+++++ SNAP-Tag ?++++++ Halo Tag ?++++++ TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特 的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的分子量小,只有?0.84KD,而GST和蛋白A分别为?26KD和?30KD,—般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK ),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:

常见tag蛋白标签介绍讲课讲稿

常见t a g蛋白标签介 绍

蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 ?标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; ?His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; ?His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; ?His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 ?可应用于多种表达系统,纯化的条件温和; ?可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。 FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: ?FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 ?融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。?FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。 ?融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。 MBP(麦芽糖结合蛋白) MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。MBP标签可通过免疫分析很方便地检测。有必要用位点专一的蛋白酶切割标签。如果蛋白在细菌中表达,MBP可以融合在蛋白的N端或C端。纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。结合的融合蛋白可用10mM麦芽糖在生理缓冲液中进行洗脱。结合亲和力在微摩尔范围。一些融合蛋白在0.2% Triton X-100或0.25% Tween 20存在下不能有效结合,而其他融合蛋白则不受影响。缓冲条件为pH7.0到8.5,盐浓度可高达1M,但不能使用变性剂。如果要去除MBP融合部分,可用位点特异性蛋白酶切除。

植物基因克隆实验指导

植物基因克隆实验规则 一、植物基因克隆实验课的目标 根据基因克隆实验操作的整体性和连贯性特点, 将该实验设计为综合性实验课程,实验内容设计上完全抛弃了原来分散的、孤立的单纯学习某一实验技术的缺陷, 将单个实验综合为系统的、连贯的系列型大实验,注重科研成果在教学中的应用,我们从以往的科研项目中选取了部分研究内容用于学生的综合性实验教学,这是基于教学实验与实际科学研究实验之间的新的实验教学模式。 整套实验围绕洋甘菊倍半萜生物合成途径中关键酶基因HMGR的克隆这一研究课题进 行操作, 设计的实验内容具有极强的连续性和综合性,让学生在独立实践操作中学习基因克隆的基本研究方法和体会科学研究的严密逻辑和培养科研理念。 我们将实验内容设置为8个部分, 实验内容前后衔接紧密, 环环相扣, 不可分割, 前一个实验的结果是下一个实验的材料。该课程使学生获得了整个类似科研实践过程的训练和体验, 学习了从事科研工作的基本功, 对完成自己的毕业论文及将来从事生命科学研究奠定了科 研基础。 二、实验的进行程序和要求 1、预习学生在课前应认真预习实验指导以及教材有关章节,必须对该次实验的目的要求、实验内容、基本原理和操作方法有一定的了解。 2、讲解教师对该实验内容的安排及注意事项进行讲解,让学生有充分的时间按实验指导的要求进行独立操作与观察。 3、独立操作与观察除个别实验分组进行外,一般由学生个人独立进行操作和观察。在实验中要按实验指导认真操作,仔细观察,作好记录。有关基本技能的训练,要按操作程序反复练习,以达到一定的熟练程度。

4、演示每次的实验都备有演示内容,其目的是帮助学生了解某些实验中的难点,扩大在实验课有限时间内获得更多感性知识的机会。 5、作业实验报告参照硕士毕业论文的格式写,必须强调科学性,实事求是地记录、分析、综合。在实验结束时呈交。 6、小结每次实验结束后,由师生共同小结本次实验的主要收获及今后应注意的问题。 三、实验规则和注意事项 1、每次上课前,必须认真阅读实验指导,明确本次实验的目的要求、实验原理和注意事项,熟悉实验内容、方法和步骤。 2、上实验课时必须携带实验指导、记录本及文具等。进入实验室要按规定座位入座。 3、实验时要遵守纪律,听从教师指导,保持肃静。有问题时举手提问,严禁彼此谈笑喧或随意走动,也不得私自进行其他活动。 4、实验时要遵守实验操作规程,严格按照教师的安排和实验指导的要求进行。操作观察要认真仔细,边做、边看、边想,认真做好实验记录。 5、要爱护仪器和器材设备,注意节约实验材料、药品和水电。如有损坏器材应立即报告并主动登记、说明情况。 6、实验结束后,应清理实验台面,认真清理好仪器、药品及其他用品,放回原处,放好凳子,方可离开实验室。值日生要负责清扫地面,收拾实验用品,处理垃圾,关好水、电、门窗后再离开。

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询产品的结果列表里面看到各种推荐的蛋白标签和载体。 TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

绿色荧光蛋白GF基因的克隆表达和粗提取

绿色荧光蛋白G F基因 的克隆表达和粗提取 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

绿色荧光蛋白(G F P)基因的克隆、表达和粗提取 南方医科大学 2011预防医学(卫生检验检疫) 摘要 目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。方法:从 DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。将含有GFP基因的质粒转化到感受态细胞 BL-21中,用LB培养基对转化后的进行扩大培养。用IPTG诱导GFP基因表达可以看到浅绿色菌落。最后对绿色荧光蛋白进行粗提取。结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。 关键词:绿色荧光蛋白基因克隆重组表达转化粗提取 目录

1 前言 绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿

色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。1962 年,下村修等分离纯化了水母中发光蛋白水母素,并发现一种绿色的荧光蛋白。1974 年,他们分离得到了这个蛋白,当时称绿色蛋白,以后称绿色荧光蛋白(GFP)[1] GFP 作为一种新的报告基因,其优点在于①荧光强度高,稳定性高;②GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;③不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测; ④GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;⑤通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[ 2~3]。采用GFP 作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有效的手段[ 4、5 ]。采用基因工程手段生产GFP标记的方法,可建立一种简便、快速的免疫诊断技术[6]。 质粒转化进入大肠杆菌(Escherichia coli)感受态细胞是分子克隆的关键步骤[7],是基因克隆以及DNA文库构建等研究中一项重要的常规操作。目前,感受态 法,该方法操作简单、容易掌握、重复性好、转化率 细胞的制备主要采用CaCl 2 高,可广泛应用于一般的实验室。其原理是Ca2+ 破坏细胞膜上的脂质阵列,并与膜上多聚羟基丁酸化合物、多聚无机磷酸形成复合物以利于外源DNA的渗入[8]。 大肠杆菌是第一个用于重组蛋白生产的宿主菌,它不仅具有遗传背景清楚、培养操作简单、转化和转导效率高、生长繁殖快、成本低廉、可以快速大规模地生产

蛋白表达标签

蛋白质融合表达的标签及切割研究 蛋白质融合表达的标签及切割研究 摘要:随着蛋白质组学技术的迅猛发展,重组蛋白的使用在近年来大大增加。许多蛋白质、结构域或者肽类能与目标蛋白融合。利用融合蛋白的有助于目标蛋白的纯化和检测这个优点被广泛赞同。本文对多种融合标签及切割方法做了简单的概述。 引言 近年来,一些抗原表位的肽类和蛋白质已被用于大量生产重组蛋白质.这些亲和标签系统具有以下特征:(a)一步的吸附纯化,(b)对三级结构和生物活性影响小,(c)可方便且专一的去除以产生天然蛋白质,(d)在纯化过程中重组蛋白的分析简便准确,(e)适用于大量的不同蛋白质.有几种不同的策略用于大规模生产重组蛋白质.其中一种办法是使用很小的肽标签,这些标签不会与融合的蛋白质发生干扰.使用最为广泛的有多聚精氨酸,FLAG-,多聚组氨酸-, S-, and Strep II-tag等. 对于某些应用,小标签无需去除.这些标签不像大标签具有免疫原性,经常可以直接作为抗原用于产生抗体. 小标签对于融合蛋白的三级结构和生物活性的影响取决于标签的位置和氨基酸组成.另一种方法是使用大的肽类或蛋白质作为融合蛋白.,它们的使用可以增加目标蛋白的溶解性.缺点是对于一些应用如结晶或抗体产生等,标签必须加以去除.一般来说,对于特定的目标蛋白很难决定最佳的融合系统.这取决于目标蛋白本身(如稳定性,疏水性),表达系统,纯化后蛋白的用途. 1.融合标签 融合标签的作用是用于检测和纯化目的蛋白,有时也用来增加目的蛋白在细胞质中的可溶性或帮助将目的蛋白运转到细胞周质中以提高目的蛋白的生物活性。

1 .1多聚精氨酸-标签(Arg-tag) 精氨酸-标签通常由5或6个精氨酸组成.它已被成功用作细菌C末端标签,精氨酸是碱性最强的氨基酸,带5个精氨酸标签的蛋白质可以结合到阳离子交换树脂SP-Sephadex上, 而大部分杂蛋白不结合.结合后,带标签的蛋白质在碱性pH下运行线性NaCl梯度洗脱得到.当C末端为疏水性区域时,多聚精氨酸可能影响蛋白质的三级结构.氨酸残基的C末端序列可用羧肽酶B处理去除.这一酶促处理已被成功用于一些例子,但常常由 于低的切割得率或者在期望的蛋白质序列间发生不必要的切割而受到限制.然而精氨酸标签并不常用,与第二标签联用是很有趣的蛋白质纯化工具. 1.2 多聚组氨酸-标签(His-tag) 已广泛采用的方法是利用固定化金属螯合层析纯化带有由多聚组氨酸残基组成的一个短的亲和标签的重组蛋白质.固定化金属螯合层析的基础是固定在基质上的过渡态金属离子(Co2+, Ni2+,Cu2+, Zn2+)与特定的氨基酸侧链之间的相互作用.组氨酸是与固定化金属离子作用最强

红豆杉中MYB家族基因克隆及表达分析 开题报告 于凯

毕业设计/论文 开题报告 课题名称红豆杉中MYB家族基因克隆及表达分析类别毕业论文 系别城市建设学院 专业班生物工程0701班 姓名于凯 评分 指导教师 华中科技大学武昌分校

华中科技大学武昌分校学生毕业论文开题报告

癌活性,对于治疗卵巢癌、乳腺癌等疗效突出。但是由于含量少、提取困难等诸多因素,高纯度紫杉醇价格昂贵,每公斤200万元人民币左右。因此,近年来国内外许研究人员、实验室和公司一直试图通过生物合成、化学合成、微生物提取、组织和细胞培养、寻找类似物等途径来解决紫杉醇的药源短缺问题。 研究紫杉醇的生物合成,尤其一些限速反应步骤机理的阐明对于人为定向的提高合成效率,克隆重组形成关键酶基因从而提高紫杉醇的产量意义重大。从理论上来说这是一个好方法,但是紫杉醇的合成途径非常复杂,涉及到多种酶以及很多分支途径,单纯依靠转化一、两种限速酶基因,只能保证转入的限速酶表达量提高,使之不再是限速因素,但其它阶段对于最终产量的限制依然存在,而且同时转入多种基因的可行性非常低,这种方法的缺陷很明显。 若采用化学合成,如从红豆杉植物中分离得到的巴卡亭Ⅲ经过四步化学过程可合成紫杉醇,为合成紫杉醇提供了新途径[5]。但化学合成从实质意义上说还没有取得彻底的突破,目前还不具备应用价值。 如果从共生真菌中直接提取紫杉醇,能够利用真菌生长速度快的优势,但目前分离的菌株无论从种类还是数量上都远不够工业化的要求,而且还存在很多不确定因素[1]。生产紫杉醇的微生物大多是与红豆杉共生的真菌,其紫杉醇含量极微,并且这些真菌的培养和大规模发酵困难,菌株衰退也是一个难题。 另外,红豆杉愈伤组织和细胞培养生产紫杉醇是研究的热点之一,是工厂化大规模生产紫杉醇的重要手段之一。但运用植物组织、细胞培养技术生产紫杉醇仍处在实验室阶段,如何获得高含量、产紫杉醇稳定的愈伤组织一直都是组织培养、细胞培养生产紫杉醇的关键。 1.1.3关于MYB基因 ①MYB基因 目前,在几乎所有的真核生物中都发现了与禽类逆转录病毒癌基因和细胞原癌基因c-MYB相似的基因,它们的编码产物在结构和功能上具有高度保守的DNA结合域,是一类转录因子[6]。在植物中首先从玉米中克隆了含有MYB结构域的转录因子C1基因,之后在植物中发现的MYB相关基因的数量迅速增加[7]。

常见tag蛋白标签介绍

蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag ?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。 标签纯化促进溶解 度 抗体效价细胞标记 His6++/-+/- Flag++/-+ GST+++ MBP++++ His-MBP++++ HA+ eGFP/CFP/YFP+++ Myc+ His-Myc++ His-AviTag?++++++ Sumo++++ His-Sumo+++++ SNAP-Tag?++++++ Halo Tag?++++++ TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: ·标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; ·His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; ·His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; ·His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 ·可应用于多种表达系统,纯化的条件温和; ·可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: ·FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 ·融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。·FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。·融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。

植物基因的克隆|植物基因克隆的基本步骤

植物基因的克隆 08医用二班姚桂鹏0807508245 简介 克隆(clone)是指一个细胞或一个生物个体无性繁殖所产生的后代群体。通常所说的基因克隆是指基于大肠埃希菌的DNA片段(或基因)的扩增,主要过程包括目标DNA的获取、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。本文主要介绍植物基因的特点、基因克隆的载体、基因克隆的工具酶、基因克隆的策略以及植物目的基因的分离克隆方法等内容。 关键词 植物基因基因克隆载体工具酶克隆策略分离克隆方法 Plant gene cloning Introduction Cloning (clone) refers to a cell or an individual organisms asexual reproduction produced offspring. Usually said cloning genes means

based on escherichia coli segment of DNA (or genes), including the main course target DNA, restructuring of the carrier, transformation of receptor cells and reorganization of screening and reproductive cells. This paper mainly introduces the characteristics of plant gene and gene cloning and carrier, gene clone tool enzyme, gene cloning and plant gene strategy of separation cloning method, etc. Keywords Plant gene cloning tool enzyme gene cloning vector method of separation of cloning strategy 一、植物基因的结构和功能 基因(gene)是核酸分子中包含了遗传信息的遗传单位。一般来说,植物基因都可分为转录区和非转录的调控区两部分。 (一)植物基因的启动子 启动子(promoter)是指在位于结构基因上游决定基因转录起始的区域,植物积阴德启动子包括三个较重要的区域,一时转录起始位点,而是转录起始位点上游25~40bp的区域,三是转录起始位点上游-75bp处或更远些的区域。 (二)植物基因的增强子序列

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

蛋白标签技术简介及常用蛋白标签

蛋白标签技术简介及常用蛋白标签 蛋白质作为生命活动的主要执行者,人们对其功能和生物学机能的研究逐步深入。那么如何分离和研究某一特定蛋白呢?蛋白标签技术的广泛应用可以有效的解决这令许多研究者颇为头疼的问题。目前,一些肽类和蛋白质被广泛的用于大量生产重组蛋白,它们与目的蛋白融合表达,以便于目的蛋白表达、检测、示踪和纯化。这类多肽或蛋白,被称为蛋白标签(Protein Tag)。例如MyC、His、GST、HA等。而标签抗体可以高特异地结合对应的标签融合多肽或蛋白,籍以分离纯化和分析检测目的蛋白。目前,云克隆推出了一系列蛋白标签抗体,让您从容面对蛋白实验。 先简单介绍一下系列蛋白标签。 HA标签蛋白,标签序列YPYDVPDYA,源于流感病毒的红细胞凝集素表面抗原决定簇,9个氨基酸,对外源靶蛋白的空间结构影响小,容易构建成标签蛋白融合到N端或者C端。易于被Anti-HA抗体检测和ELISA检测。 MYC标签蛋白,MYC标签蛋白是一个含11个氨基酸的小标签,标签序列Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu,这11个氨基酸作为抗原表位表达在不同的蛋白质框架中仍可识别其相应抗体。Myc tag已成功应用在Western-blot杂交技术、免疫沉淀和流式细胞计量术中,可用于检测重组蛋白质在靶细胞中的表达。 FLAG,Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。 GST,谷胱甘肽巯基转移酶在解毒过程中起到重要作用,它的天然大小为26KD。由于GST高度可溶,可增加外源蛋白的可溶性,另外GST融合表达系统广泛应用于各种融合蛋白的表达,可提高表达量。GST标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶(Glutathione sepharose)亲和树脂进行纯化。而且,GST标签蛋白可在温和、非

绿色荧光蛋白基因克隆及表达结果分析

3 结果与分析 3.1质粒提取 用醋酸铵法提取pET-28a 和pEGFP-N3质粒后,进行琼脂糖电泳检测质粒是否提取成功。得到电泳结果,如图一所示,3、4号泳道有明显清晰的条带说明pEGFP-N3提取成功。1、2泳道同样有明显清晰的条带,说明pET-28a 提取成功。 3.2 双酶切 用BamH1和Not1分别对pEGFP-N3和pET-28a 双酶切。1、2号泳道为pEGFP-N3的酶切结果,如图二所示,电泳会得到两条带,说明pEGFP-N3酶切成功。4号泳道为pET-28a 的酶切产物的电泳有明显条带,证明酶切成功。 3.3 抗性筛选 通过氯化钙法制备DH5α感受态细胞,用热激发将pET-28a-GFP 转入DH5α感 图 1 pET-28a 和pEGFP-N3质粒提取电泳图 1、2泳道为pET-28a 电泳结果 3、4号泳道为pEGFP-N3电泳结果 图 2 BamH1、Not1双酶切 pEGFP-N3和pET-28a 1、2号泳道为pEGFP-N3酶切产物 3号泳道为pEGFP-N3原始质粒 4号泳道为pET-28a 酶切产物 5号用泳道为pET-28a 原使质粒

受态细胞。转化重组质粒后涂平板,进行重组质粒的抗性筛选。因为28a中含有 抗卡那基因,所以筛选后可以得到含28a的重组质粒。从图中可以看出1号平板 长出较多菌落,说明DH5α感受态细胞存活。2号平板无菌落生长,说明DH5α中 不含抗卡那基因。3号板生长出较少菌落,证明卡那有活性。4号板无菌落生长。 失败原因其一可能是在倒了第一个平板加入卡那后,由于倒平板速度太慢,导致 培养基凝固,影响了卡那的浓度和活性。其二可能是在转化过程中,离心后,弃 上清的过程中,将沉淀和上清混在了一起,影响了溶液的浓度。 图3重组质粒转化DH5α感受态细胞 1号图为不含卡那的阴性对照 2号图为含卡那的阴性对照 3号图为含卡那的自提pET-28a的阳性对照 4号图为含卡那的连接产物结果 3.4PCR鉴定 经PCR扩增后,进行琼脂糖凝胶电泳检测是否扩增成功,得到电泳结果如图 四所示,结果表明,1、2泳道的条带约为700bp,说明成功扩增出含有GFP的基 因。DNA电泳检验扩增片段,选出能够得到700bp左右片段的阳性克隆。 图4阳性重组菌的PCR鉴定 1、2号泳道为重组质粒转化结果

常见蛋白质标签总结

https://www.wendangku.net/doc/4717028614.html,/bbs/home.php?mod=space&uid=34800&do =blog&id=38530 常见蛋白质标签总结(Flag、HA、cMyc、CBP等) Protein tags are peptide sequences genetically grafted onto a recombinant protein. Often these tags are removable by chemical agents or by enzymatic means, such as proteolysis or intein splicing. Tags are attached to proteins for various purposes. 一、氨基酸标签(含小肽标签) A stretch of amino acids is added to the protein and enables the recovery of the labelled protein by its unique affinity. Usually its easiest to add the tag to either end of the protein to ensure its accessibility and not to disturb the protein folding. 1.组氨酸标签(His tag)一般为6个组氨酸,用Ni2+(Cu2+)亲和层析纯 化 2.FLAG tag :N-DYKDDDDK-C ,recovered with specific antibody 3.HA tag: an epitope derived from the Influenza protein haemagglutinin (HA, 禽流感病毒血凝素),e.g. N-YPYDVPDYA-C,recovery with an HA antibody 4.MYC tag: an epitope derived from the human proto-oncoprotein MYC,e.g. N-ILKKATAYIL-C, N-EQKLISEEDL-C,recovery with an MYC antibody 5.SBP tag:Streptavidin Binding Peptide,链霉亲合素结合肽,38 amino acid tag (MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP), 更多参考在Sigma 6.CBP tag:钙调蛋白结合肽(CBP; 26aa)钙调蛋白结合肽与钙调素结合 是Ca2+依赖的,这种结合不受标签所处的位置影响(N端和C端均 可),在中性pH条件下使用2mM EGTA可以很方便的将目标蛋白洗 脱下来。这一系统有如下优点:1 特异性很高,因为大肠杆菌没有可以 和钙调素结合的蛋白;2 与His标签相比可以在强还原性条件下纯化。 7.纤维素结合肽(CBD):能与纤维素介质特异性的结合,可以在温和的 条件下洗脱(乙二醇或低盐条件),pET CBD 载体含有纤维素结合肽 (CBD)的序列,可方便构建。 二、蛋白质标签 Rather than adding only a few amino acids a whole protein is fused to the protein to be purified or detected. The affinity of the attached protein enables the recovery of the artificial fusion protein. As for the peptides, the protein tag is added to either end of the target protein. 1.GST tag: the small glutathione-S-transferase (GST; 26 kDa),recovery by affinity to substrate glutathione bound to a column, e.g. glutathione sepharose 2.MBP tag:麦芽糖结合蛋白(MBP; 40kDa)载体:pMAL

植物基因克隆的策略与方法

植物基因克隆的策略与方法 基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1 功能克隆(functional Cloning) 功能克隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此

克隆载体与表达载体教程文件

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。 由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。是最优化的ATG环境,避免ribosome出现leaky scan) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制.

相关文档
相关文档 最新文档