文档库 最新最全的文档下载
当前位置:文档库 › Combinatorial sequences arising from a rational integral

Combinatorial sequences arising from a rational integral

Combinatorial sequences arising from a rational integral

Victor H.Moll

Department of Mathematics

Tulane University

New Orleans,LA 70118

vhm@https://www.wendangku.net/doc/4c17040816.html,

Submitted:;Accepted:January 23,2007;Published:March 14,2007

Abstract

We present analytical properties of a sequence of integers related to the evaluation of a rational integral.We also discuss an algorithm for the evaluation of the 2-adic valuation of these integers that has a combinatorial interpretation.

1Introduction

The sequence of positive integers b l,m =m

k =l 2k 2m ?2k m ?k m +k m k l (1.1)

for m ∈N and 0≤l ≤m appeared in the process of evaluating the de?nite integral N 0,4(a ;m )= ∞0

dx (x 4+2ax 2+1)m +1.(1.2)The author has shown in [7]that the polynomial

P m (a ):=2

?2m m l =0b l,m a l (1.3)satis?es P m (a ):=

2m +3/2(a +1)m +1/2N 0,4(a ;m ).(1.4)The coe?cients b l,m do not have a natural combinatorial interpretation,but they have some combinatorial ?avor.The goal of this work is to present several conjectures that illustrate this.For instance,in Section 3we discuss a criteria developed in order to establish the unimodality of {b l,m :0≤l ≤m }.We have conjectured that b l,m are logconcave,that is,b 2l,m ≥b l ?1,m b l +1,m .We present several of our attempts to establish this conjecture.In the last section we discuss arithmetical properties of b l,m .In particular we describe an algorithm to evaluate their 2-adic valuation.Based on extensive numerical data,we have conjectured that this valuation can be determined in terms of two natural operators acting on sequences:the ?rst one simply repeats the initial element of a sequence,that is,F ({a 1,a 2,a 3,···}):={a 1,a 1,a 2,a 3,···},

(1.5)Online Journal of Analytic Combinatorics,Issue 2(2007),#41

and the second one picks every other term:

T({a1,a2,a3,···}):={a1,a3,a5,a7,···}.(1.6) The algorithm involves the operator

L l:=ω(l)

j=1

F[T n j?c](1.7)

whereω(l)∈N,c is de?ned by

c:={ν2(m):m≥1}={0,1,0,2,0,1,0,3,0,···},(1.8) and the exponents n j are(conjecturally)related to the distinct compositions of a binary sequence of?xed length.Conjecture4.8presents all the details.We conclude that the combinatorics of b l,m is hidden in their arithmetic properties.

Section2presents a hypergeometric evaluation of(1.2).Section3discusses the unimodal-ity of the sequence b l,m and describes our work on the conjectured logconcavity.Section4 presents an alternative expression for b l,m that is used to discuss their divisibility properties and to state our main conjecture.

2A hypergeometric evaluation of the integral

The integral(1.2)is now evaluated by standard methods in terms of the hypergeometric

function

2F1[a,b;c;z]=

k=0

(a)k(b)k

(c)k k!

z k.(2.1)

Here a∈R,k∈N,and(a)k=a(a+1)(a+2)···(a+k?1)is the Pochhammer symbol, with the usual convention(a)0=1.The reader will?nd in[3]detailed information about this function.In particular,the integral representations

2F1[a,b;c;z]=

Γ(c)

Γ(b)Γ(c?b)

1

t b?1(1?t)c?b?1(1?tz)?a dt(2.2)

and

2F1[a,b;c;z]=

Γ(c)

Γ(b)Γ(c?b)

s b?1(1+s)a?c(1+sz)?a ds(2.3)

appear there.The gamma function in(2.2)and(2.3)is given by

Γ(z)=

t z?1e?t dt(2.4)

for z>0.This function has a meromorphic extension to C with simple poles at the negative integers.The special values

Γ(n)=(n?1)!andΓ(n+1

2)=

π

22n

(2n)!

n!

(2.5)

Online Journal of Analytic Combinatorics,Issue2(2007),#42

for n ∈N ,will be used throughout.

The reader will ?nd in [7,9]alternative proofs of the value of N 0,4(a ;m ).The latter establishes a connection between N 0,4(a ;m ),the Taylor expansion around c =0of the function a +√1+c and some results of Ramanujan.This was quite a tour de force .Theorem 2.1.Let a >?1and m ∈N .De?ne

P m (a )=1π

2m +3/2(a +1)m +1/2N 0,4(a ;m ).(2.6)Then P m (a )is a polynomial in a given by

P m (a )=2?2m m k =02k 2m ?2k m ?k m +k m (a +1)k .(2.7)

Proof.The change of variable t =x 2yields N 0,4(a ;m )=12 ∞0t ?1/2(t +t +)?m ?1(t +t ?)?m ?1dt where t ±=?a ±√a 2?1are the roots of t 2+2at +1=0.The representation (2.2)and the identity t +t ?=1show that N 0,4(a ;m )is given by N 0,4(a ;m )=π24m +3/2 4m +22m +1 a ?√a 2?1×2F 1 m +1,12;2m +2;2 1?a 2+a √a 2?1

.This can now be simpli?ed using Kummer’s formula 2F 1 α,β;2β;4z (1+z )2

=(1+z )2α2F 1 α,α+12?β;β+12;z 2 ,described in [3].Apply it with z =√a ?1/√a +1,α=12and β=m +1and use a ?√a 2?1=1√2 √a +1?√a ?1 to obtain N 0,4(a ;m )=π24m +5/2 4m +22m +1 1√a +1

2F 1 12,?m ;m +32;a ?1a +1 .This can be simpli?ed further using the relation

2F 1[a,b ;c ;z ]=Γ(c )Γ(c ?a ?b )Γ(c ?a )Γ(c ?b )

2F 1[a,b ;a +b ?c +1;1?z ]++(1?z )c ?a ?b Γ(c )Γ(a +b ?c )Γ(a )Γ(b )

2F 1[c ?a,c ?b ;c ?a ?b +1;1?z ],that in the case b =?m ∈N reduces to 2F 1[a,?m ;c ;z ]=Γ(c )Γ(c ?a +m )Γ(c ?a )Γ(c +m )

2F 1[a,?m ;a ?m ?c +1;1?z ],Online Journal of Analytic Combinatorics,Issue 2(2007),#4

3

in view of1/Γ(?m)=0.The resulting expression for the quartic integral is

N0,4(a;m)=

π

22m+3/2

a+1

2m

m

2F1

1

2

,?m;?2m;

2

a+1

.(2.8)

The second argument of the2F1is a negative integer so the hypergeometric series termi-nates.This proves that P m,de?ned by(2.6),is a polynomial given by

P m(a)=

m

k=0

m

k

2k

k

2m

m

2m

k

?1

2?m+k(a+1)k.

It is elementary to check that this form is equivalent to(2.7).The proof is complete.

We now de?ne d l(m)to be the coe?cient of a l in P m(a).

Corollary2.2.For m∈N and0≤l≤m,we have d l(m)=2?2m b l,m,that is,

P m(a)=2?2m

m

l=0

b l,m a l.(2.9)

Proof.Expand the term(a+1)k in(2.7).

3Unimodality and logconcavity

A?nite sequence of numbers{d0,d1,···,d m}is said to be unimodal if there exists an index 0≤j≤m such that d0≤d1≤···≤d j and d j≥d j+1≥···≥d m.The sequence {d0,d1,···,d m}with d j>0is said to be logarithmically concave(or logconcave for short)if d j?1d j+1≤d2j for1≤j≤m?1.It is easy to see that if a sequence is logconcave then it is unimodal[22].We say that a polynomial is unimodal(logconcave)if the sequences of its coe?cients is unimodal(logconcave).

Unimodal sequences arise often in combinatorics,geometry,and algebra,and have been the subject of considerable research.The reader is referred to[11,18]for surveys of the diverse techniques employed to prove that speci?c sequences are unimodal.Aside from establishing the unimodality(or logconcavity)of a speci?c sequence,it is desirable to produce a combinatorial proof.The reader will?nd in[23]an account of Kathy Ohara’s proof of the unimodality of gaussian polynomials.A combinatorial proof of the logconcavity of i(n,k), the number of permutations of n letters with k inversions,appears in[4].

We?rst established the unimodality of the sequence{b l,m}in[8]by a complicated argu-ment.The proof of Theorem3.1given in[6]is completely elementary.The identity(2.7) shows that the unimodality of b l,m follows from it.

Theorem3.1.If P(x)is a polynomial with positive nondecreasing coe?cients,then P(x+1) is unimodal.

Online Journal of Analytic Combinatorics,Issue2(2007),#44

The theorem can be improved to conclude the unimodality of the polynomial P (x +d ),with arbitrary d >0.The case d ∈N appears in [2]and [20]treats arbitrary d ∈R +.We now turn to the question of logconcavity of the sequence {b l,m }.Based on extensive numerical evidence,we propose

Conjecture 3.2.For each m ∈N ,the sequence {b l,m :0≤l ≤m }is logconcave.We now describe our (failed)attemps to setteled this question.

(A).The ?rst attempt is based on a result of F.Brenti [11]that is in the same spirit as Theorem 3.1:

Theorem 3.3.Let Q (x )be a logconcave polynomial.Then so is Q (x +1).

The hypothesis of this theorem do not hold in our case.De?ne

Q (x )=2?2m

m k =02k 2m ?2k m ?k m +k m x k ≡m k =0

a k x k .(3.1)

Then P m (a )=Q (a +1).But the polynomial Q (x )is not unimodal.Indeed,

24m ?2k a 2k ?a k ?1a k +1 = 2m m ?k 2 m +k m 2× 1?k (m ?k )(2m ?2k +1)(m +k +1)(k +1)(m +k )(2m ?2k ?1)(m ?k +1)

could be negative.Symbolic experiments show that roughly √m terms are negative.

(B)The WZ-method developed by H.Wilf and D.Zeilberger can be used to produce a recurrence for the numbers b l,m .Details on this procedure can be found in [17].One ?nds that b l,m satis?es

b l +1(m )=2m +1l +1b l,m ?(m +l )(m +1?l )l (l +1)b l ?1,m .(3.2)Therefore the sequence {b l,m }is logconcave provided

(m +l )(m +1?l )b 2l ?1,m +l (l +1)b 2l,m ?l (2m +1)b l ?1,m b l,m ≥0.(3.3)

We have extensive numerical evidence to support the next conjecture:

Conjecture 3.4.The left-hand side of (3.3)attains its minimum at l =m with value 22m m (m +1) 2m m 2.

The inequality (3.3)can be written in terms of u =b l,m /b l ?1,m as

l (l +1)u 2?l (2m +1)u +(m +l )(m +1?l )≥0.

(3.4)Online Journal of Analytic Combinatorics,Issue 2(2007),#45

Unfortunately,the discriminant of the quadratic form,is

disc=l(4l3?4m2?4m?3l),(3.5) that is not strictly negative.

(C)A useful criterion to establish the logconcavity of a sequence{a j}is provided by the zeros of the polynomial P(x)=a0+a1x+···+a m x m.

Theorem3.5.If the polynomial P has only real roots,then it is logconcave.

The reader will?nd in[5]a proof and several examples.

The analysis of the zeros of P m(a)was discussed in[7]and[8].It turns out that P m(a)is

part of the family of Jacobi polynomials P(α,β)

m(z)de?ned by

P(α,β) m (z)=

m

k=0

(?1)m?k

m+β

m?k

m+k+α+β

k

z+1

2

k

.(3.6)

The special valuesα=m+1

2,β=?(m+12)produce P m(a).The zeros of Jacobi polynomials

are studied in detail in[19](see page145?).We concluded that P m(a)has at most one real zero.

The zeros of P m(a)have interesting properties.Dimitrov[12]recently established our conjecture that,when scaled appropriately,the limit curve of these zeros is the left half of Bernoulli’s lemniscate

L={z∈C:|z2?1|=1,Re z<0}.(3.7) A generalization.The coe?cients{b l,m}seem to have a property much stronger than the logconcavity stated in Conjecture3.2.Introduce the operator L on the space of sequences, via

L(a l):=a2l?a l?1a l+1.(3.8) The?nite sequence{a1,···,a n}is replaced by{...,0,0,a1,···,a n,0,0,...}before apply-ing L.Thus,{a l}is logconcave if L(a l)is nonnegative.We say that{a l}is r-logconcave if L(k)(a l)≥0for0≤k≤r.The sequence{a l}is∞-logconcave if it is r-logconcave for every r∈N.

Conjecture3.6.For each m∈N,the sequence{b l,m:0≤l≤m}is∞-logconcave.

The binomial coe?cients is the canonical sequence on which these issues are tested.The solution of the next conjecture should provide guiding principles on how to approach Con-jecture3.6.

Conjecture 3.7.For m∈N?xed,the sequence of binomial coe?cients{

m

l

}is∞-

logconcave.

A direct calculation proves the existence of rational functions R r(m,l)such that

L(r)

m

l

=

m

l

2r

R r(m,l).(3.9)

Online Journal of Analytic Combinatorics,Issue2(2007),#46

Moreover R r satisfy the recurrence

R r +1(m,l )=R 2r (m,l )? l (m ?l )(l +1)(m ?l +1)

2r ×R r (m,l ?1)R r (m,l +1).Therefore we only need to prove that R r (m,l )≥0.This could be di?cult.

Note .Conjecture 3.2has been established by Manuel Kauers and Peter Paule.The preprint A computer proof of Moll’s logconcavity conjecture established the conjecture using the RISC package MultiSum.

4Divisibility properties of b l,m

The original expression for b l,m (1.1),written in the form

b l,m =2l

m k =l 2k ?l 2m ?2k m ?k m +k m k l (4.1)

shows that the power of 2that divides b l,m is at least l .A more detailed study of this power requires the alternative representation of b l,m discussed in this section.

The evaluation of b l,m using (4.1)is e?cient if l is close to m .Indeed,b m,m =2m 2m m

and b m ?1,m =2m ?1(2m +1) 2m m .The formulas described below are e?cient for l small.

A direct computation of the (?nite)Taylor series of the polynomial P m yields its coe?-cients in terms of de?nite integrals related to (1.2).The details of the next theorem appear in [10].

Theorem 4.1.There exist polynomials αl (m )and βl (m ),with positive integer coe?cients,such that b l,m =2m ?l l !m ! αl (m )m k =1(4k ?1)?βl (m )m k =1

(4k +1) .(4.2)The degrees of αl and βl are l and l ?1respectively.For instance

b 0,m

=2m m !m k =1(4k ?1)(4.3)b 1,m =2m ?1m ! (2m +1)m k =1(4k ?1)?m k =1(4k +1) (4.4)

Numerical calculations on the roots of these polynomials,lead us to conjecture the location of these roots.The next theorem was established by J.Little in [15].

Theorem 4.2.For every m ∈N ,all the zeros of the polynomials αl ,βl lie on the vertical

line Re m =?12

.Online Journal of Analytic Combinatorics,Issue 2(2007),#47

The proof is based on the fact that the auxiliary polynomialsαl(u),βl(u),with u=

(s?1)/2,satisfy the three-term recurrence

p l+1(s)=2sp l(s)?(s2?(2l?1)2)p l?1(s).(4.5) A generalization of the classical Sturm separation theorem(see[16]for proofs)is then used to establish the result.

The valuations.Arithmetic properties of numbers appearing in combinatorics have always been of interest.The reader will?nd in[1]information about the prime decomposition of

Catalan numbers and[21]describes divisibility by2of the Stirling numbers of second kind.

We now describe divisibility properties of the sequence{b l,m}.We recall?rst some basic de?nitions on valuations.Given a prime p and a rational number r,there exist unique

integers a,b,m with a and b not divisible by p such that

r=a

b

p m(4.6)

The integer m is the p-adic valuation of r and we denote it byνp(m).Observe that we depart from the usual convention m=?νp(m).

A basic result of number theory states that

νp(m!)=

k=1

m

p k

.(4.7)

Naturally the sum is?nite and we can end it at k= log2m .There is a famous result of Legendre[13,14]for the p-adic valuation of m!.It states that

νp(m!)=m?s p(m)

p?1

,(4.8)

where s p(m)is the sum of the base-p digits of m.In particular

ν2(m!)=m?s2(m).(4.9) The2-adic value of b0,m follows directly from(4.3).It follows that

ν2(b0,m)=m?ν2(m!)

and Legendre’s result(4.9)reduces this to

ν2(b0,m)=s2(m).(4.10) The next coe?cient b1,m given in(4.4)was analyzed in[10].The main result there is: Theorem4.3.The2-adic valuation of b1,m is given by

ν2(b1,m)=s2(m)+ν2(m(m+1)).(4.11) The key element of the proof is to express the products in the de?nition of b1,m in terms of the Stirling numbers of the?rst kind

x(x+1)(x+2)···(x+r?1)=

r

k=0

r

k

x k(4.12)

Online Journal of Analytic Combinatorics,Issue2(2007),#48

and the representation

r

r?k

=

k?1

i=0

r

2k?i

C k,i(4.13)

for some integers C k,i.

We now present some conjectures about the functionsν2(b l,m)for l≥2.Introduce the

notation

A l,m=αl(m)

m

k=1

(4k?1)?βl(m)

m

k=1

(4k+1),(4.14)

so that Theorem4.1states that

A l,m=l!m!2?m+l b l,m,for m≥l.(4.15) For example,

A1,m=m!2?m+1b1,m(4.16) and Theorem4.3implies that

ν2(A1,m)=ν2(2m(m+1)).(4.17) The?rst few values ofν2(A1,m)are given by

ν2(A1,m)={2,2,3,3,2,2,4,4,2,2,···}(4.18) and we observe that this set consists of blocks of length2,starting at odd integers,on which the function A1,m has the same value.The explicit formula(4.17)can be used to chek this property.Indeed,for m odd,we have

ν2(A1,m)=ν2(2m(m+1))=1+ν2(m+1),

and

ν2(A1,m+1)=ν2(2(m+1)(m+2))=1+ν2(m+1).

This type of block structure it is conjectured to remains valid for l≥2.

De?nition4.4.Let s∈N,s≥2.We say that a sequence{a j:j∈N}is simple of length s,or just s-simple if,for each t∈{0,1,2,···},we have

a st+1=a st+2=···=a s(t+1).(4.19)

For example,the sequence{ν2(A1,m),m∈N}is2-simple.

The function A2,m is given by

A2,m=2(2m2+2m+1)

m

k=1

(4k?1)?2(2m+1)

m

k=1

(4k+1).(4.20)

and its2-adic values are

ν2(A2,m)={5,5,5,5,6,6,6,6,5,5,5,5,···}.

Similarly

ν2(A3,m)={7,7,9,9,8,8,9,9,7,7,10,10,···}.

Thereforeν2(A2,m)is4-simple andν2(A3,m)is2-simple.

Online Journal of Analytic Combinatorics,Issue2(2007),#49

Conjecture 4.5.Let l ∈N be ?xed.Then the set {ν2(A l,m ):m ≥l }is an s -simple sequence with s =21+ν2(l ).

A recurrence .The recurrence (3.2)for the numbers b l,m and (4.15)yield

A l +1,m =2(2m +1)A l,m ?4(m +l )(m +1?l )A l ?1,m .

(4.21)Using the WZ-method,now in the variable m ,automatically produces the recurrence b l,m +2=2(8m 2?4l 2+24m +19)(m +2)(m ?l +2)b l,m +1?4(4m +5)(4m +3)(m +l +1)(m +2)(m +1)(m ?l +2)

b l,m that yields A l,m +2=8m 2?4l 2+24m +19m ?l +2A l,m +1?(4m +5)(4m +3)(m +l +1)m ?l +2

A l,m .In particular,for l =1we obtain

(4.22)

A 1,m +2=8m 2+24m +15m +1A l,m +1?(4m +5)(4m +3)(m +2)m +1A 1,m .Some partial results on Conjecture 4.5can be obtained from this recurrence.To illustrate this,let m =2k ?1and as induction hypothesis we assume

ν2(A 1,2k ?1)=ν2(A 1,2k ):=t.

(4.23)

To establish the conjecture we need to prove that

ν2(A 1,2k +1)=ν2(A 1,2k +2).(4.24)We write A 1,2k ?1=2t x and A 1,2k =2t y ,with x,y odd integers.Then m =2k ?1in (4.22)yields kA 1,2k +1=2

t ?1 (32k 2+16k ?1)y ?(128k 3+64k 2?2k ?1)x .Writing

A 1,2k +1=2w z

with z odd and using m =2k in (4.22)yields

(2k +1)A 1,2k +2=2w (32k 2+48k +15)z ?2t +1(k +1)(8k +3)(8k +5)y.

In particular,if w

A geometrical interpretation .The graphs of the function ν2(A l,m ),where we reduce the repeating blocks to a single value,are shown in the next ?gures.Online Journal of Analytic Combinatorics,Issue 2(2007),#410

6

5

4

3

51015202530

Figure1:The2-adic valuation of d1(m)

The main experimental result is that these graphs have an initial segment from which the rest is determined by adding a central piece followed by a folding rule.For example,in the case l=1,the?rst few values of the reduced table are

{2,3,2,4,2,4,2,3,2,5,...}.

The ingredients are:

initial segment:{2,3,2},

central piece:the value at the center of the initial segment,namely3.

rules of formation:start with the initial segment and add1to the central piece and re?ect. This produces the sequence

{2,3,2}→{2,3,2,4}→{2,3,2,4,2,3,2}→{2,3,2,4,2,3,2,5}→

→{2,3,2,4,2,3,2,5,2,3,2,4,2,3,2}.

The details are shown in Figure1.

The di?culty with this procedure is that,at the moment,we have no form of determining the initial segment nor the central piece.Figure2shows the beginning of the case l=9. From here one could be tempted to predict that this graph extends as in the case l=1. This is not correct as it can be seen in Figure3.The new pattern described seems to be the correct one as shown in Figure4.

The initial pattern could be quite elaborate.Figure5illustrates the case l=53.

Online Journal of Analytic Combinatorics,Issue2(2007),#411

27

26.5

26

25.5

234567

Figure2:The beginning for l=9

An algorithm and the main conjecture.We now present an algorithm that we hope will lead to the derivation of an analytic expression forν2(A l,m).The algorithm requires two operators de?ned on sequences:

F({a1,a2,a3,···}):={a1,a1,a2,a3,···},

and

T({a1,a2,a3,···}):={a1,a3,a5,a7,···}.

Now recall the sequence c de?ned in(1.8):

c:={ν2(m):m≥1}={0,1,0,2,0,1,0,3,0,···}.

We begin the description of the algorithm with the example l=12.The sequence

X1(12):={ν2(A12(m)):m≥1}

begins with

X1(12)={34,34,34,34,34,34,34,34,36,36,36,36,36,36,36,36,

35,35,35,35,35,35,35,35,36,36,36,36,36,36,36,36,

34,34,34,34,34,34,34,34,37,37,37,37,37,37,37,37,···}.

This is8-simple,illustrating Conjecture4.5,in view of21+ν2(12)=8.

The?rst step in the algorithm is to replace X1(12)by Y1(12)=T3(X1(12)).This sequence contains every eight element of X1(12)and it begins with

Y1(12)={34,36,35,36,34,37,36,37,34,36,35,36,34,38,37,38,

34,36,35,36,34,37,36,37,34,36,35,36,34,39,38,39,

34,36,35,36,34,37,36,37,34,36,35,36,34,38,37,38,···}. Online Journal of Analytic Combinatorics,Issue2(2007),#412

5101520

26

27

28

29

Figure 3:The continuation of l =9

The next step is to de?ne Z 1(12):=Y 1(12)?c ,with c as above.This sequence begins with

Z 1(12)={30,31,31,30,30,33,33,31,31,32,32,31,31,33,33,30,

30,31,31,30,30,34,34,32,32,33,33,32,32,34,34,30,

30,31,31,30,30,33,33,31,31,32,32,31,31,33,33,30,···},

that is almost 2-simple,except that the ?rst element appears only once.This motivates the map F .The last step is to de?ne W 1(12):=F (Z 1(12)),that produces

W 1(12)={30,30,31,31,30,30,33,33,31,31,32,32,31,31,33,33,

30,30,31,31,30,30,34,34,32,32,33,33,32,32,34,34,

30,30,31,31,30,30,33,33,31,31,32,32,31,31,33,33,···}.

This new sequence is 2-simple and the ?rst loop is completed.

Algorithm .

1)Start with the sequence X 1(l ):={ν2(A l (m )):m ≥1}.

2)Find n 1∈N so that the sequence X 1(l )is 2n 1-simple.De?ne Y 1(l ):=T n 1(X 1(l )).We conjecture that n 1=1+ν2(l ).

3)Introduce the constant shift Z 1(l ):=Y 1(l )?c .

4)De?ne W 1(l ):=F (Z 1(l )).

The sequence W 1is 2n 2-simple.Then return to step 1)with W 1instead of X 1.

Conjecture 4.6.After a ?nite number of steps,the algorithm yields a constant sequence of the form {a,a,a,a,a,a,···}.The constant term will be denoted by a ∞(l ).

Online Journal of Analytic Combinatorics,Issue 2(2007),#413

30

29

28

27

26

1020304050

Figure4:The pattern for l=9persists

161

160

159

158

157

156

10203040506070

Figure5:The initial pattern for l=53

Online Journal of Analytic Combinatorics,Issue2(2007),#414

De?nition4.7.Letω(l)be the number of steps required in the previous conjecture.The sequence of integers

?(l):=

n1,n2,n3,···,nω(l)

(4.25)

is called the reduction sequence of l.

We now present the values of the limiting constant a∞(l)and the sets?(l)for1≤l≤32. The data presented below was checked with tables of size200and validated with size400.

l a∞(l)?(l) 121

252 371,1 4113 5131,2 6162,1 7181,1,1 8234 9251,3 10282,2 11301,1,2 12343,1 13361,2,1 14392,1,1 15411,1,1,1 16475

l a∞(l)?(l) 17491,4 18522,3 19541,1,3 20583,2 21601,2,2 22632,1,2 23651,1,1,2 24704,1 25721,4,1 26752,2,1 27771,1,2,1 28813,1,1 29831,2,1,1 30862,1,1,1 31881,1,1,1,1 32956

The main conjecture stated below provides a combinatorial interpretation of the sets ?(l).

Conjecture4.8.The sets?(l)associated to the integers l from2j+1to2j+1are the2j distinct compositions of j+1.

To obtain the order in which the compositions appear,write all the binary sequences of length j in lexicographic order and then preprend a1to each of these.For instance,for j=3we obtain

1000,1001,1010,1011,1100,1101,1110,1111.

Read these sequences from right to left.The?rst part of the set associated to l is the number of digits up to and including the?rst1read in the corresponding binary sequence;the second one is the number of additional digits up to and including the second1read,and so on.In the case j=3,this yields

4;1,3;2,2;1,1,2;3,1;1,2,1;2,1,1;1,1,1,1

as desired.

Online Journal of Analytic Combinatorics,Issue2(2007),#415

One last experimental conjecture.Based on observations of the values ofν2(A l,m), Dante Manna has conjectured an analytic expression for this function:

ν2(A l,m)=ν2((m?l+1)2l)+l.(4.26) This is a generalization of Theorem4.3.Expressing the Pochhammer symbol as quotients of factorials,we can write(4.26)as

ν2(A l,m)=3l+s2(m?l)?s2(m+l).(4.27) It follows that the asymptotic value in Conjecture4.6is

a∞(l)=3l?s2(l).(4.28) Acknowledgements.The author acknowledges the partial support of NSF-DMS0409968. The author wishes to thank T.Amdeberhan for providing WZ-expertise and insight,Aaron Jaggard for identifying the data that lead to the main conjecture and Dante Manna for comments that improved the manuscript.

This work was completed when the author was a Katrina refugee at the Courant Institute of New York University.Their hospitality is gratefully acknowledged.

References

[1]R.Alter and K.Kubota.Prime and prime power divisibility of Catalan numbers.J.

Comb.Theory Ser.A,15:243–256,1973.

[2]J.Alvarez,M.Amadis,G.Boros,D.Karp,V.Moll,and L.Rosales.An extension of a

criterion for https://www.wendangku.net/doc/4c17040816.html,b.,8:1–7,2001.

[3]G.Andrews,R.Askey,and R.Roy.Special Functions,volume71of Encyclopedia of

Mathematics and its Applications.Cambridge University Press,New York,1999. [4]M.Bona.A combinatorial proof of the logconcavity of a famous sequence counting

https://www.wendangku.net/doc/4c17040816.html,b.,11:1–4,2004.

[5]https://www.wendangku.net/doc/4c17040816.html,binatorics of Permutations.Chapman and Hall,Boca Raton,1st edition,

2004.

[6]G.Boros and V.Moll.A criterion for https://www.wendangku.net/doc/4c17040816.html,b.,6:1–6,1999.

[7]G.Boros and V.Moll.An integral hidden in Gradshteyn and https://www.wendangku.net/doc/4c17040816.html,p.

Applied Math.,106:361–368,1999.

[8]G.Boros and V.Moll.A sequence of unimodal polynomials.Jour.Math.Anal.Appl.,

237:272–287,1999.

[9]G.Boros and V.Moll.The double square root,Jacobi polynomials and Ramanujan’s

master https://www.wendangku.net/doc/4c17040816.html,p.Applied Math.,130:337–344,2001.

[10]G.Boros,V.Moll,and J.Shallit.The2-adic valuation of the coe?cients of a polynomial.

Scientia,7:37–50,2001.

Online Journal of Analytic Combinatorics,Issue2(2007),#416

[11]F.Brenti.Log-concave and unimodal sequences in Algebra,Combinatorics and Geom-

etry:an update.Contemporary Mathematics,178:71–89,1994.

[12]D.Dimitrov.Asymptotics of zeros of polynomials arising from rational integrals.Jour.

Math.Anal.Appl.,299:127–132,2004.

[13]R.Graham,D.Knuth,and O.Patashnik.Concrete Mathematics.Addison Wesley,

Boston,2nd edition,1994.

[14]A.M.Legendre.Theorie des Nombres.Firmin Didot Freres,Paris,1830.

[15]J.Little.On the zeroes of two families of polynomials arising from certain rational

integrals.Rocky Mountain Journal,35:1205–1216,2005.

[16]M.Mignotte.Mathematics for Computer Algebra.Springer-Verlag,New York,NY.,

1991.

[17]M.Petkovsek,H.Wilf,and D.Zeilberger.A=B.A.K.Peters,Ltd.,1st edition,1996.

[18]R.Stanley.Log-concave and unimodal sequences in Algebra,Combinatorics and Geom-

etry.graph theory and its applications:East and West(Jinan,1986).Ann.New York Acad.Sci.,576:500–535,1989.

[19]G.Szego.Orthogonal polynomials.American Mathematical Society,4th edition,1939.

[20]Yi Wang and Yeong-Nan Yeh.Proof of a conjecture on unimodality.Europ.Journal of

Comb.,26:617–627,2005.

[21]S.De Wannemacker.On the2-adic orders of Stirling numbers of the second kind.

INTEGERS,5(1):A–21,2005.

[22]H.S.Wilf.generatingfunctionology.Academic Press,1st edition,1990.

[23]D.Zeilberger.Kathy O’Hara’s constructive proof of the unimodality of the gaussian

polynomials.Amer.Math.Monthly,96:590–602,1990.

Online Journal of Analytic Combinatorics,Issue2(2007),#417

福尼斯TPS-500i焊机

Fronius福尼斯TPS 500i焊机 Fronius福尼斯焊接技术国际有限公司成立于1945年,是来自奥地利的高端焊接设备制思奉造商和焊接解决方案供应商。总部拥有超过400名研发专家,获1200多项发明专利,工业成为以创新技术为核心竞争力的全球焊机领导品牌(电弧焊、自动化焊接、激光焊接、供点焊等)。产品遍布60多个国家,广泛应用于汽车轨道、航天、工程建设等高质量要求应的行业。 福尼斯TPS 500i不仅仅是一台工具– 它更是通过各种方式与用户进行沟通的焊接合作现伙伴。纯文本显示屏以描述性文本的形式向用户显示所有的焊接参数。集成在Jobmaster 货焊枪上的迷你显示屏使用户从远处的工作地点来控制电源。TPS 500i以模块化设计为理的福尼斯念,这表示她的核心是以未来为主导的标准模块,只需简单操作即可进行拓展。例如,焊机设备可以通过升级,添加脉冲电弧工艺,LSC电弧工艺,PMC电弧工艺等。通过USB 联或Internet网络连接,将新特性上载至焊机设备,更可以用同样的方式为固件进行更新。系这种模块化的体系结构使Fronius TPS 500i能够应对未来的一切变化。

信息化生产管理 Fronius TPS 500i会自动检测所有焊接系统的组成部分,比如:焊枪,冷却装置,送丝装电置等,如果出现不兼容现象,系统会自动发出警告。同时,焊接工艺数据的归档和分析对话于焊接技术的提高正在变得日益重要。毕竟,只有在准确性达到最理想的水平时,才能实021-现技术最佳化这一目标。福尼斯秉承着这一理念潜心研发了名为WeldCube 的归档和数33据分析系统。WeldCube 可连接多达50 组电源,对无数的参数执行评估。因此,用户可75显著提高输出效率,并使其生产作业更加安全可靠。 优越的焊接性能:TPS 500i福尼斯焊机已全新地进行了模块化设计。更快的处理器意味03着现在可以监控到更多的变量,这使分析和控制成为可能。通过一些非常细小的高精度95控制,使焊接工艺更准确。如控制熔滴过渡时的飞溅、改进的熔滴分离形式、更高焊接速度下保证更稳定的电弧、可控的起弧性能,还有许多等等。拥有这一出色的性能、用户可获得更好的焊接体验,提高了焊接品质和效果,让焊接变得从未如此简单。

CMT 焊机常见故障排除操作指导书

CMT 焊机常见故障排除操作指导书 CMT 焊接电源的示意图 常见故障代码 ①Efd 15.1缓冲器内设置太松 出现此故障是由于缓冲器前端送丝机的送丝阻力过大导致送丝不畅引起推拉丝系统不协调。 解决办法:1)检查送丝机内的送丝轮压杆是否调到了适当的压力 2)检查送丝机内的送丝轮的规格是否选择正确 3)检查送丝轮是否磨损 4)用高压缩空气对焊枪内的导丝管进行清理 5)更换焊枪内的导丝管 6)联系福尼斯售后 ②Efd 15.2缓冲器内设置太紧 出现此故障是由于缓冲器后端焊枪的拉丝马达阻力过大导致送丝不畅引起推拉丝系统不协调。 解决办法: 1)检查CTM手工焊枪的拉丝轮压杆是否调到了适当的压力(一般压杆的压力调到刻度标识在1.5左右)

2)检查CTM手工焊枪的拉丝轮规格是否选择正确 3)检查拉丝轮是否磨损及时更换 4)检查焊丝是否在拉丝轮的槽内 5)检查枪头内导丝管是否磨损请及时更换 6)检查导电嘴是否磨损严重请及时更换 7) 更换焊枪内的导丝管 8)联系福尼斯售后 后续注意提示 在正常情况下缓冲器内的软管是卡在平衡杆内,平衡杆是处于槽内中间位置,如果平衡杆是处于下方的位置时焊机这时候就会报故障代码Efd 15.1这时候你就要按照上面的解决方法排除故障,然后关焊机等30秒后再开启,开焊机后最好手动将平衡杆放置中间位置,按点动送丝键看送丝是否正常,再焊接。如果平衡杆处于上方的位置时焊机这时候就会报故障代码Efd 15.2同样按照上面的解决方法排除故障,然后关焊机等30秒后再开启,开焊机后同样手动将平衡杆放置中间位置,按点动送丝键看送丝是否正常,再焊接。 ③Efd 30.1 LHSB没接好 出现此故障是由于焊机与送丝机之间的高速传输信号中断引起 解决方法: 1)检查焊机与送丝机之间的LHSB 高速传输线是否损坏,方法用万用表测

福尼斯(FRONIUS)铝合金焊接培训考题

福尼斯(FRONIUS)铝合金焊接培训考题 姓名:单位:得分: 一、填空题: 1、焊接接头共有五种基本类型即:------、------、-------、-------、 ---------。 2、熔化极氩弧焊的电源特性一般采用--------------------------------。 钨极氩弧焊的电源特性一般采用---------------------------。 3、熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合 的部分称为-----------------------------------------。 4、---------------------------------是一种危害性最大的缺陷。不仅使焊 接接头的强度降低,还会引起应力集中,焊接承载后,还会造 成结构断裂的起源。 5、与钢的焊接比较,铝及铝合金从固态变成液态时,无------什么 变化,因此在焊接时给操作者带来不少困难。 6、铝合金的导热系数,比热容很大,因此焊接时要消耗更多的热 量,为获得高质量的焊接接头,必须采用-----------、----------- 的热源、有时需采用-----------------工艺措施。 7、铝合金通常采用氩弧焊,氩弧焊影响人体的有害因素有 1--------、2--------------、3-----------。 8、手工电弧焊的焊条是一根外表涂有药皮的钢丝,焊条芯的作用 是1----------------、2------------------------。 9、一般手工电弧焊焊接电源的空载电压为---------伏。 10、Fe代表金属元素-------其密度为7.87克/立方厘米,熔点 为------------℃。Al代表金属元素--------。 11、 ----------相----------伏。 12、---------------。 二、选择题: 1、手工电弧焊选择E5051,焊条焊接时,焊接电源应选择()。 A 交流焊机 B 直流正接电源 C 直流反接电源 2、在正常的焊接时,焊丝的干伸长应是焊丝直径的()倍 A 5—9 B10—15 C 16—20 D不考滤 3培训所选的焊接材料是() A 特殊合金 B 碳钢 C 铝及铝合金 4、福尼斯焊机焊接电源在过热情况下会出现() A 过热指示灯亮 B 过热指示灯熄灭 C 没反应 5、福尼斯焊机在焊接前应() A 先选择焊接规范 B 进行安全检查 C 先开气 6、培训所采用的焊接电源型号是() A TPS2700 B TPS4000 C TPS5000 7、培训所采用的送丝机型号是() A VR4000 B VR1500 C VR7000 8铝合金气体保护焊时,常采用的气体是() A 氩气或氦氩混合配气 B 氩+CO2 C 氮气 D 乙炔 9、气孔在铝合金焊接时是不可避免的,下面那一种气孔存在的形 态是允许存在的() 10、气体保护焊时,为保证保护效果,保护气体从喷嘴出后的状态 应为() A 紊流 B 层流 C 涡流 11、铝合金采用熔化极氩弧焊时,焊丝熔滴的过渡形式通常为() A 短路过渡 B 喷射过渡 C 大熔滴过渡 12、熔化极气保焊通常采用()电源 A 直流正接 B 直流反接 C 交变电源 13、焊接坡口的钝边过大,则易导致的焊接缺陷是() A 未焊透 B 焊瘤 C 焊穿 D 咬边 14、铝合金焊接时,最常见的裂纹是() A 延迟裂纹 B 热裂纹 C 冷裂纹 15铝合金氩焊时,常采用直流反接或交变电源,这是因为() A 更易操作 B 有阴极破碎作用 C 工件表面不需要清理 D 提高焊接效率 三、判断题: 1、铝合金焊接时,弧坑裂纹是由于在焊接时,焊枪停留时间过短 造成的。() 2、对于不重要的铝合金焊接构件,坡口及附近不需要进行清理也 能保证焊接质量。()

全球电阻焊机品牌有哪些【大全】

全球电阻焊机品牌 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 最早的现代焊接技术出现在19世纪末,先是弧焊和氧燃气焊,稍后出现了电阻焊。20世纪早期,随着第一次和第二次世界大战开战,对军用器材廉价可靠的连接方法需求极大,故促进了焊接技术的发展。今天,随着焊接机器人在工业应用中的广泛应用,研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,以进一步提高焊接质量。 国内外专家认为:到2020年焊接技术仍将是制造业的重要加工手段,它是一种精确、可靠、低成本,并且是采用高技术连接材料的方法。电焊机作为工业部门中的必备设备,被广泛应用于各行各业。所以对于电焊机的选择来说,同样是非常受企业重视的一个环节,下面金属加工编辑为您介绍一下排在前十位的电焊机品牌。 瑞典伊萨(ESAB) 1904年,奥斯卡·卡尔伯格(OscarKjellberg)发明了药皮焊条,随后建立了伊萨公司。自成立之始,公司就从未间断对已有技术和材料进行改进。与此同时,伊萨还发明了许多新方法来迎接技术革新所带来的挑战。目前公司生产的焊材和设备应用到焊接和切割工艺的各个方面。经过一百多年的持续钻研、发展和生产,伊萨已成为焊接切割和全球产品供应的领军企业,在专业技术和客户服务方面均无人能及。 伊萨公司在很多国家设有代表处,向世界各地提供最出色的焊材和设备。在四个关键行业中,伊萨就是专业经验的代名词—手工焊接及切割设备、焊接自动化、焊接材料以及切割系统。 2005年7月,伊萨在中国正式注册成立伊萨焊接切割器材(上海)管理有限公司,并由此陆续开始在中国投资设厂。金属加工在线编辑统计截止目前,伊萨已在中国张家港、烟台、无锡等地建立了4家工厂及1家

相关文档
相关文档 最新文档