文档库 最新最全的文档下载
当前位置:文档库 › 第三章 牛顿运动定律知识框架

第三章 牛顿运动定律知识框架

第三章  牛顿运动定律知识框架
第三章  牛顿运动定律知识框架

1、物理学史
内容
牛顿第一定律
意义
2、牛顿第一定律和惯性 惯性 一、牛顿第一、第三定律
定义 量度
普遍性
牛顿第三定律的内容 意义 3、牛顿第三定律 作用力与反作用的三个关系 相互作用力与平衡的比较
内容 表达式 三同 三异 三无关
1、牛顿第二定律
五个性质
力和运动的动态分析问题
刚性绳或接触面
2、牛顿第二定律的瞬时性问题
弹簧或橡皮条
二、牛顿第二定律
两类基本问题
第三章 牛顿运动定 律
3、基本问题分析动力学的两类
定义
解决两类问题的方法
两类问题的解题步骤
基本单位制
4、单位制
导出单位制
七个基本物理量及基本单位
视重
1、超重和失重
超重、失重和完全失重的比较
三、牛顿第二定律的应用
2、动力学中的图像问题
3、动力学中的临界、极值问题
恰好、最大、最小、至少
实验目的 板块中的动力学问题
四、板块模型
临界问题
实验原理
实验器材
五、实验四 验证牛顿运动定律
实验步骤
数据处理
注意事项
误差分析

高考物理邢台力学知识点之牛顿运动定律单元汇编含解析

高考物理邢台力学知识点之牛顿运动定律单元汇编含解析 一、选择题 1.如图,某人在粗糙水平地面上用水平力F推一购物车沿直线前进,已知推力大小是 80N,购物车的质量是20kg,购物车与地面间的动摩擦因数,g取,下列说法正确的是() A.购物车受到地面的支持力是40N B.购物车受到地面的摩擦力大小是40N C.购物车沿地面将做匀速直线运动 D.购物车将做加速度为的匀加速直线运动 2.如图所示,质量为m的小物块以初速度v0冲上足够长的固定斜面,斜面倾角为θ,物块与该斜面间的动摩擦因数μ>tanθ,(规定沿斜面向上方向为速度v和摩擦力f的正方向)则图中表示该物块的速度v和摩擦力f随时间t变化的图象正确的是() A.B. C.D. 3.如图A、B、C为三个完全相同的物体。当水平力F作用于B上,三物体可一起匀速运动,撤去力F后,三物体仍可一起向前运动,设此时A、B间作用力为f1,B、C间作用力为f2,则f1和f2的大小为()

A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f ,f 2=2 3F D .f 1=F ,f 2=0 4.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v?t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( ) A .甲球质量大于乙球 B .m 1/m 2=v 2/v 1 C .释放瞬间甲球的加速度较大 D .t 0时间内,两球下落的高度相等 5.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( ) A .0 B .2m/s 2,水平向右 C .4m/s 2,水平向右 D .2m/s 2,水平向左 6.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )

牛顿运动定律知识点总结归纳

牛顿运动定律 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。(1 )运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速 度定义:a ,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说“力是产 A t 生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); WKJV (3)定律说明了任何物体都有一个极其重要的属性一一惯性;一切物体都有保持原有运动状态的性质,这就是 惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的 量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律 (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿 - rr—.r” - r—―― —- - j- ■ ■ ■ —. ■ ■1—r?_— 第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量 地给出力与运动的关系。 f ~1 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的 运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x,F y=ma y, 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不 是物体的实际加速度。 (4)牛顿第二定律F=ma定义了力的基本单位一一牛顿(使质量为1kg的物体产生1m/s2的加速度的作用力为 2 1N,即1N=1kg.m/s . (5 )应用牛顿第二定律解题的步骤: ①明确研究对象。 ②对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的

高考物理新力学知识点之牛顿运动定律单元汇编附答案(3)

高考物理新力学知识点之牛顿运动定律单元汇编附答案(3) 一、选择题 1.跳水运动员从10m 高的跳台上腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中的上升过程和下落过程,以下说法正确的有( ) A .上升过程处于超重状态,下落过程处于失重状态 B .上升过程处于失重状态,下落过程处于超重状态 C .上升过程和下落过程均处于超重状态 D .上升过程和下落过程均处于完全失重状态 2.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( ) A .可能落在A 处 B .一定落在B 处 C .可能落在C 处 D .以上都有可能 3.如图所示,质量为2 kg 的物体A 静止在竖直的轻弹簧上面。质量为3 kg 的物体B 用轻质细线悬挂,A 、B 接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B 对A 的压力大小为(g =10 m/s 2) A .12 N B .22 N C .25 N D .30N 4.如图所示,弹簧测力计外壳质量为0m ,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一竖直向上的拉力F 拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F ,则拉力F 大小为( ) A . 0m m mg m + B . 00m m F m +

C . m m mg m + D . 000 m m F m + 5.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图所示.取g =10m/s 2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为( ) A .0.2,6N B .0.1,6N C .0.2,8N D .0.1,8N 6.如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( ) A .小球受木板的摩擦力一定沿斜面向上 B .弹簧弹力不可能为 3 4 mg C .小球可能受三个力作用 D .木板对小球的作用力有可能小于小球的重力mg 7.如图,物块a 、b 和c 的质量相同,a 和b 、b 和c 之间用完全相同的轻弹簧S 1和S 2相连,通过系在a 上的细线悬挂于固定点O ;整个系统处于静止状态;现将细绳剪断,将物块a 的加速度记为a 1,S 1和S 2相对原长的伸长分别为?x 1和?x 2,重力加速度大小为g ,在剪断瞬间( ) A .a 1=g B .a 1=3g C .?x 1=3?x 2 D . ?x 1=?x 2 8.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )

高一物理-牛顿运动定律知识点归纳

高一物理:牛顿运动定律知识点归纳 ; 1.牛顿第一定律 (1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。一切物体都有惯性,惯性是物体的固有性质。质量是物体惯性大小的唯一量度。 (3)牛顿第一定律说明了物体不受外力时的运动状态是匀速直线运动或静止,所以说力不是维持物体运动状态的原因,而是使物体改变运动状态的原因,即产生加速度的原因。 2、牛顿第二定律 (1)内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。表达式为。 (2)牛顿第二定律的瞬时性与矢量性 对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定。当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义。 (3)运动和力的关系

牛顿运动定律指明了物体运动的加速度与物体所受外力的合力的关系,即物体运动的加速度是由合外力决定的。但是物体究竟做什么运动,不仅与物体的加速度有关还与物体的初始运动状态有关。比如一个正在向东运动的物体,若受到向西方向的外力,物体即具有向西方向的加速度,则物体向东做减速运动,直至速度减为零后,物体再在向西方向的力的作用下,向西做加速运动。由此说明,物体受到的外力决定了物体运动的加速度,而不是决定了物体运动的速度,物体的运动情况是由所受的合外力以及物体的初始运动状态共同决定的。 3、牛顿第三定律 (1)内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。 (2)作用力和反作用力与一对平衡力的区别与联系 关系类别作用力和反作用力一对平衡力相同大小相等相等方向相反、作用在同一条直线上相反、作用在同一条直线上不同作用点作用在两个不同的物体上作用在同一个物体上性质相同不一定相同作用时间同时产生同时消失一个力的变化,不影响另一个力的变化 本文链接: ://..//xuexizongjie/2800716

高考物理力学知识点之牛顿运动定律单元检测(4)

高考物理力学知识点之牛顿运动定律单元检测(4) 一、选择题 1.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。球A 用轻绳悬挂于右侧面细线与竖直方向的夹角为37°,小车左下角放置球B,并与左侧面接触。小车在沿水平面向右运动过程中,A与右侧面的弹力恰好为零。设小车的质量为M,两球的质量均为m,则() A.球A和球B受到的合力不相等 B.小车的加速度大小为6m/s2 C.地面对小车的支持力大小为(M+m)g D.小车对球B的作用力大小为1.25mg 2.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2) A.12 N B.22 N C.25 N D.30N 3.如图所示,质量为m的小物块以初速度v0冲上足够长的固定斜面,斜面倾角为θ,物块与该斜面间的动摩擦因数μ>tanθ,(规定沿斜面向上方向为速度v和摩擦力f的正方向)则图中表示该物块的速度v和摩擦力f随时间t变化的图象正确的是() A.B.

C . D . 4.如图A 、B 、C 为三个完全相同的物体。当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( ) A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f = ,f 2=2 3F D .f 1=F ,f 2=0 5.下列单位中,不能.. 表示磁感应强度单位符号的是( ) A .T B . N A m ? C . 2 kg A s ? D . 2 N s C m ?? 6.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A .伸长量为 1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为 1m g k tan θ D .压缩量为 1m g k tan θ 7.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( ) A .0 B .2m/s 2,水平向右 C .4m/s 2,水平向右 D .2m/s 2,水平向左 8.下列对教材中的四幅图分析正确的是

专题三牛顿运动定律知识点总结归纳

精心整理 专题三牛顿三定律 1.牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1 (2 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量 2/严格相等。 m Fr GM ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。力是物体对物体的作用,惯性和力是两个不同的概念。 2.牛顿第二定律

(1)定律内容 成正比,跟物体的质量m成反比。 物体的加速度a跟物体所受的合外力F 合 (2)公式:F ma = 合 理解要点: 是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时①因果性:F 合 3. (1 4. 分析物体受力情况,应用牛顿第二定律列方程。(隔离法) 一般两种方法配合交替应用,可有效解决连接体问题。 5.超重与失重 视重:物体对竖直悬绳(测力计)的拉力或对水平支持物(台秤)的压力。(测力计或台秤示数)

物体处于平衡状态时,N=G,视重等于重力,不超重,也不失重,a=0 当N>G,超重,竖直向上的加速度,a↑ 当N<G,失重,竖直向下的加速度,a↓ 注:①无论物体处于何状态,重力永远存在且不变,变化的是视重。 ②超、失重状态只与加速度方向有关,与速度方向无关。(超重可能:a↑,v↑,向 例 度为 f1- h1= 在t1到t=t2=5s的时间内,体重计的示数等于mg,故电梯应做匀速上升运动,速度为t1时刻电梯的速度,即 v1=a1t1,③ 在这段时间内电梯上升的高度 h2=v2(t2-t1)。④

在t2到t=t3=6s的时间内,体重计的示数小于mg,故电梯应做向上的减速运动。设这段时间内体重计作用于小孩的力为f1,电梯及小孩的加速度为a2,由牛顿第二定律,得 mg-f2=ma2,⑤ 在这段时间内电梯上升的高度 h3=2 h=h h= 例B。它 A m A 令x2 定律可知 kx2=m B gsinθ② F-m A gsinθ-kx2=m A a ③ 由②③式可得a=④ 由题意d=x1+x2⑤

第三章牛顿运动定律

第三章牛顿运动定律 第三章第1节牛顿第一定律牛顿第三定律 【重要知识梳理】 一、牛顿第一定律 1.内容 一切物体总保持状态或状态,除非有作用在它上面的外力迫使它改变这种状态. 2.意义 (1)揭示了物体在不受外力或受合外力为零时的运动规律. (2)指出了一切物体都具有惯性,即保持原来的特性.因此牛顿第一定律又叫惯性定律. (3)揭示了力与运动的关系,说明力不是物体运动状态的原因,而是物体运动状态的原因. 二、惯性 1.定义 物体具有保持原来状态或状态的性质. 2.惯性大小的量度 (1) 是物体惯性大小的唯一量度,大的物体惯性大,小的物体惯性小. (2)惯性与物体是否受力、怎样受力无关,与物体是否运动、怎样运动无关,与物体所处的地理位置无关,一切有质量的物体都有惯性.充分体现了“唯一”与质量有关. 三、牛顿第三定律 1.作用力和反作用力 两个物体之间的作用总是的,一个物体对另一个物体施加了力,另一个物体一定同时对这一个物体也施加了力. 2.定律内容 两个物体之间的作用力和反作用力总是大小,方向,作用在. 3.意义 建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系. 【高频考点突破】 考点一牛顿第一定律 例1、关于物体的惯性,下列说法正确的是( ) A.质量相同的两个物体,在阻力相同的情况下,速度大的不易停下来,所以速度大的物体惯性大 B.质量相同的物体,惯性相同 C.推动地面上静止的物体比保持这个物体匀速运动时所需的力大,所以静止的物体惯性大 D.在月球上举重比在地球上容易,所以同一物体在月球上比在地球上惯性小 考点二作用力和反作用力 例2、下列说法正确的是() A.凡是大小相等、方向相反、分别作用在两个物体上的两个力,必定是一对作用力和反作用力

5.牛顿运动定律的应用

牛顿运动定律的应用 1. 力和运动的关系 例1. 如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高 度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。 在小球下落的这一全过程中,下列说法中正确的是() A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止 开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 例3、如图所示,电梯与水平面夹角为300,当电梯加速向上 运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩 擦力是其重力的多少倍? 2. 力和加速度的瞬时对应关系 例4. 如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各 与小球相连,另一端分别用销钉M、N固定于杆上,小球处于静止状态,设 拔去销钉M瞬间,小球加速度的大小为12m/s2。若不拔去销钉M而拔去 销钉N瞬间,小球的加速度可能是() A.22m/s2,竖直向上 B . 22m/s2,竖直向下 C . 2m/s2,竖直向上 D. 2m/s2,竖直向下 例5. 某型航空导弹质量为M,从离地面H高处水平飞行的战斗机上水平发 射,初速度为v0,发射之后助推火箭便给导弹以恒定的水平推力F作用使其加速,不计空气阻力和导弹质量的改变,下列说法正确的有() A. 推力F越大,导弹在空中飞行的时间越长 B . 不论推力F多大,导弹在空中飞行的时间一定 C . 推力F越大,导弹的射程越大 D. 不论推力F多大,导弹的射程一定

主题单元设计——牛顿运动定律

主题单元设计——牛顿运动定律 适用年级高一年级 所需时间4课时(每周 2 课时,共 4 课时) 主题单元概述 (简述单元在课程中的地位和作用、单元的组成情况,解释专题的划分和专题之间的关系,主要的学习方式和预期的学习成果,字数300-500) 本章是在前面对运动和力分别研究的基础上的延伸——研究力和运动的关系,建立起牛顿运动定律。牛顿运动定律是动力学的基础,是力学中也是整个物理学的基本规律。 本章在牛顿第一定律的研究中采用的理想实验法;牛顿第二定律中的控制变量法;运用牛顿第二定律处理问题时常用的整体法与隔离法,以及单位的规定方法,单位制的创建等。对这些方法要认真体会、理解,以提高认知的境界。 为了更扎实地理解牛顿第二定律,本章第二节安排了实验:探究加速度与力、质量的关系,并提供了参考案例,实验操作方便,规律性强,结论容易获得,控制变量法在此得到了实践。第五节牛顿第三定律的研究引入了传感器――计算机的组合,现代气息浓厚,实验效果很好。 主题学习目标 (描述该主题学习所要达到的主要目标) 知识与技能: 1、认识运动状态的改变是指速度的改变,速度的改变包括速度大小和速度方向的改变 2、理解力是产生加速度的原因 3、理解质量是惯性大小的量度 4、通过演示实验认识加速度与质量和和合外力的定量关系 5、会用准确的文字叙述牛顿第二定律并掌握其数学表达式 6、通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律 7、认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系 8、能初步运用运动学和牛顿第二定律的知识解决有关动力学问题 9、会用准确的文字叙述牛顿第三定律 10、能区分相互平衡的两个力与一对作用力、反作用力 11、掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题 过程与方法: 1、培养学生严谨的逻辑推理能力;通过对大量实例的分析,培养学生归纳、综合能力 2、通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力 3、培养学生审题能力、分析能力、利用数学解决问题能力、表述能力 情感态度与价值观: 1、善于思考、善于总结,把物理与实际生活紧密结合 2、培养认真的科学态度,严谨、有序的思维习惯 3、与实际问题相结合,培养学习兴趣 4、培养严谨的科学态度,养成良好的思维习惯

高考物理力学知识点之牛顿运动定律单元检测(7)

高考物理力学知识点之牛顿运动定律单元检测(7) 一、选择题 1.质量为m的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为f,加速度为 a=1 3 g,则f的大小是() A.f=1 3 mg B.f= 2 3 mg C.f=mg D.f=4 3 mg 2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图所示.取g=10m/s2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为() A.0.2,6N B.0.1,6N C.0.2,8N D.0.1,8N 3.下列关于超重和失重的说法中,正确的是() A.物体处于超重状态时,其重力增加了 B.物体处于完全失重状态时,其重力为零 C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D.物体处于超重或失重状态时,其质量及受到的重力都没有变化 4.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与一只小球相连接 .当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方向成30角.下列说法中正确的 A.圆环不一定加速下滑 B.圆环可能匀速下滑 C.圆环与杆之间一定没有摩擦 D.圆环与杆之间一定存在摩擦

5.如图A 、B 、C 为三个完全相同的物体。当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( ) A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f = ,f 2=2 3F D .f 1=F ,f 2=0 6.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( ) A .3s t =时,部件属于失重状态 B .4s t =至 4.5s t =时,部件的速度在减小 C .5s t =至11s t =时,部件的机械能守恒 D .13s t =时,部件所受拉力小于重力 7.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A .伸长量为 1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为 1m g k tan θ D .压缩量为 1m g k tan θ 8.下列对教材中的四幅图分析正确的是

牛顿运动定律知识点总结

专题三牛顿三定律 1. 牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM 2/严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。力是物体对物体的作用,惯性和力是两个不同的概念。

2. 牛顿第二定律 (1)定律内容 成正比,跟物体的质量m 物体的加速度a跟物体所受的合外力F 合 成反比。 (2)公式:F ma = 合 理解要点: ①因果性:F 是产生加速度a的原因,它们同时产生,同时变 合 化,同时存在,同时消失; ②方向性:a与F 都是矢量,方向严格相同; 合 是该时刻作 ③瞬时性和对应性:a为某时刻某物体的加速度,F 合 用在该物体上的合外力。 3. 牛顿第三定律 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为F F =-'。 (1)作用力和反作用力与二力平衡的区别 4. 牛顿定律在连接体中的应用

2020年高考物理高三冲刺复习讲义及练习:3 牛顿运动定律

核心考点 考纲要求 牛顿运动定律及其应用超重和失重ⅡⅠ 网络知识

解密考点 考点1 动力学中的图象问题 必备知识 物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点。 1.常见的图象有:v –t 图象,a –t 图象,F –t 图象,F –x 图象,F –a 图象等。 2.图象间的联系:加速度是联系v –t 图象与F –t 图象的桥梁。 3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况。 (2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况。 (3)通过图象对物体的受力与运动情况进行分析。 4.解题策略 (1)弄清图象斜率、截距、交点、拐点的物理意义。 (2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断。 5.分析图象问题时常见的误区 (1)没有看清纵、横坐标所表示的物理量及单位。 (2)不注意坐标原点是否从零开始。 (3)不清楚图线的点、斜率、面积等的物理意义。 (4)忽视对物体的受力情况和运动情况的分析。 典例分析 (2019·四川绵阳中学)水平地面上质量为m =6 kg 的物体,在大小为12 N 的水平拉力F 的作用下做匀速直线运动,从x =2.5 m 位置处拉力逐渐减小,力F 随位移x 变化规律如图所示,当x =7 m 时拉力减为零, 物体也恰好停下,取,下列结论正确的是 2 10m/s g

A .物体与水平面间的动摩擦因数为0.5 B .合外力对物体所做的功为57 J C .物体在减速阶段所受合外力的冲量为12 N?S D .物体匀速运动时的速度为3 m/s 【参考答案】D 【试题解析】匀速时应有:F=f=μmg ,解得动摩擦因数μ=0.2,故A 错误;根据W=Fs 可知,F –s 图象与s 轴所夹图形的面积即为F 做的功,可求出力F 对物体所做的功为 ,摩擦 力做功为,所以合外力做的功为:,故B 错误;对全 过程由动能定理应有: ,解得:,故D 正确;根据动量定理可得物体在减速阶 段所受合外力的冲量为,故C 错误。 跟踪练习 1.如图1所示,一个静止在光滑水平面上的物块,在t =0时给它施加一个水平向右的作用力F ,F 随时间t 变化的关系如图2所示,则物块速度v 随时间t 变化的图象是 A . B . C . D . 【答案】C 03m/s v

C单元 牛顿运动定律

C单元牛顿运动定律 C1 牛顿第一定律、牛顿第三定律 14.C1[2012·课标全国卷] 伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是() A.物体抵抗运动状态变化的性质是惯性 B.没有力的作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动 14.AD[解析] 惯性是物体抵抗运动状态变化而保持静止或匀速直线运动状态的性质,A正确;没有力的作用,物体将处于静止或匀速直线运动状态,B错误;行星在圆形轨道上保持匀速率运动的原因是行星受到地球的万有引力作用,不是由于惯性,C错误;运动物体如果没有受到力的作用,将一直匀速直线运动下去,D正确. C2 牛顿第二定律单位制 21.C2、D1、E2[2012·福建卷] 如图,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d (1)小船从A点运动到B f (2)小船经过B点时的速度大小v1; (3)小船经过B点时的加速度大小a. 21.[解析] (1)小船从A点运动到B点克服阻力做功 W f=fd① (2)小船从A点运动到B点,电动机牵引绳对小船做功 W=Pt1② 由动能定理有 W-W f=1 2m v21- 1 2m v20③ 由①②③式解得v1=v20+2 m(Pt1-fd)④ (3)设小船经过B点时绳的拉力大小为F,绳与水平方向夹角为θ,电动机牵引绳的速度大小为u,则 P=Fu⑤ u=v1cosθ⑥ 由牛顿第二定律有 F cosθ-f=ma⑦ 由④⑤⑥⑦式解得 a= P m2v20+2m(Pt1-fd) - f m 17.C2[2012·安徽卷] 如图4a沿斜面匀加速下 滑,若在物块上再施加一个竖直向下的恒力F 图4 则()

第三章_牛顿运动定律

第三章牛顿运动定律 第 1 课时牛顿第一定律牛顿第三定律 基础知识归纳 1.牛顿第一定律 (1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态. (2)牛顿第一定律的意义 ①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律. ②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因. (3)惯性 ①定义:物体具有保持原来匀速直线运动状态或静止状态的性质. ②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小. ③普遍性:惯性是物体的固有属性,一切物体都有惯性. 2.牛顿第三定律 (1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力. (2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上. (3)大小相等方向相反作用在两个物体上同时产生同时消失 典例精析 1.牛顿第一定律的应用 【例1】如图所示,在一辆表面光滑的小车上,有质量分别为m 1、 m2的两个小球(m1>m2)随车一起匀速运动,当车停止时,如不考虑其他 阻力,设车足够长,则两个小球() A.一定相碰 B.一定不相碰 C.不一定相碰 D.难以确定是否相碰,因为不知小车的运动方向 【解析】两个小球放在光滑的小车表面上,又不考虑其他阻力,故水平方向不受外力,由牛顿第一定律可知,两小球仍然以相同的速度做匀速直线运动,永远不相碰,只有B对. 【答案】B 【思维提升】运用牛顿第一定律解决问题时,正确的受力分析是关键,如果物体不受力或所受合外力为零,物体的运动状态将保持不变,同理可知,如果物体在某一方向上不受力或所受合外力为零,则物体在这一方向上的运动状态(即速度)保持不变. 2.对惯性概念的理解 【例2】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动? 【解析】从惯性的角度去考虑瓶内的气泡和水,显然水的质量远大 于气泡的质量,故水的惯性比气泡的惯性大.当小车突然停止时,水保持 向前运动的趋势远大于气泡向前运动的趋势,于是水由于惯性继续向前

人教版高中物理必修一知识框架.doc

学习必备欢迎下载 第一章物理必修一知识点总结运动的描述 第一节质点、参考系质点定义:有质量而不计形状和大小的物质。 和坐标系参考系定义:用来作参考的物体。 坐标系定义:在某一问题中确定坐标的方法,就是该问 题所用的坐标系。 第二节时间和位移时刻和时间间在表示时间的数轴上,时刻用点表示,时间间隔 隔用线段表示。 路程和位移路程物体运动轨迹的长度。 位移表示物体(质点)的位置变化。 从初位置到末位置作一条有向线 段表示位移。 矢量和标量矢量既有大小又有方向。 标量只有大小没有方向。 直线运动的位公式:x=x1- x2 置和位移 第三节运动快慢的描坐标与坐标的公式:t =t 2- t 1 述——速度变化量 速度定义:用位移与发生这个位移所用时间的比值表 示物体运动的快慢。 公式: v= x/ t 单位:米每秒( m/s) 速度是矢量,既有大小,又有方向。 速度的大小在数值上等于单位时间内物体位移的 大小,速度的方向也就是物体运动的方向。 平均速度和瞬平均速度物体在时间间隔内的平均快慢程 时速度度。 瞬时速度时间间隔非常非常小,在这个时间 间隔内的平均速度。 速率瞬时速度的大小。 第四节实验:用打点电磁打点计时器 计时器测速度电火花计时器 练习使用打点计时器 用打点计时器测量瞬时速度 用图象表示速速度—时间图像( v- t 图象):描述速度 v 与时间 度t 关系的图象。 第五节速度变化快慢加速度定义:速度的变化量与发生这一变化所用时间的 的描述——加速度比值。 公式: a= v/ t 单位:米每二次方秒( m/s2) 加速度方向与在直线运动中,如果速度增加,加速度的方向与 速度方向的关速度的方向相同;如果速度减小,加速度的大方 系向与速度的方向相反。 从 v-t 图象看从曲线的倾斜程度就饿能判断加速度的大小。加速 度 第二章匀变速直线运动的研究 第一节实验:探究小进行实验 车速度随时间处理数据

高中物理:第三单元牛顿运动定律

第三单元牛顿运动定律 本单元知识由牛顿的三个运动定律、国际单位制、牛顿对经典力学的贡献以及经典力学的局限性组成。其中牛顿第二定律是本单元的重点。 本单元的核心规律是牛顿第二定律,它揭示了运动和力的关系。在本单元的学习中,应注意与前两个单元知识的联系,在对物体进行运动状态分析和受力分析的基础上,用牛顿第二定律解决涉及运动和力的问题,提高综合运用力学知识的能力。本单元内容与力学、电学等知识联系紧密,在分析、演绎、理论计算等方面有较高的要求。 本单元的学习要特别注重实验研究的方法,在牛顿第一定律的学习中,感悟理想化实验的重要意义;在牛顿第二定律的学习中,运用控制变量的方法设计实验。通过学习牛顿第三定律在火箭原理中的重要作用,以及我国火箭发展史,了解有关神舟六号载人飞船和“嫦娥工程”系列成功发射的事迹。在学习经典力学的适用范围和局限性的同时,领略科学家的科学态度和创新精神。 学习要求 内容 1.牛顿第一定律。 2.牛顿第二定律。 3.牛顿第三定律。 4.国际单位制。 5.牛顿对科学的贡献。 6.经典力学的局限性。 7.爱因斯坦对科学的贡献。 8.学生实验:用DIS研究加速度与力的关系,加速度与质量的关系。 要求 1.理解牛顿第一定律理解惯性,知道惯性是一切物体固有的属性,知道质量是惯性大小的量度;知道伽利略理想实验,通过伽利略斜面理想实验,认识理想实验的科学方法,感悟理想实验的科学方法对人类思想产生了的深远影响;理解牛顿第一定律,能用牛顿第一定律和惯性概念解释一些简单的实际现象。 2.掌握牛顿第二定律在理解力是使物体运动状态变化的原因的基础上,理解牛顿第二定律的内容及其表达式。能根据实验目的,选择合适的实验器材,运用控制变量等方法,设计用DIS探究加速度与物体质量、物体受力的关系的实验方案,并能根据实际情况修正探究方案,完成实验。能按照正确的方法和步骤,用牛顿第二定律解决简单的动力学问题。通过“牛顿定律与交通”等专题的学习,激发社会责任感。 3.理解牛顿第三定律知道力的作用总是相互的,有作用力必定有反作用力;在较简单的相互作用中能分析作用力和反作用力,并画出示意图;理解牛顿第三定律及其表达式,包括作用力与反作用力的大小、方向、作用线、作用点的关系等;知道作用力和反作用力的性质总是相同的;通过观察DIS研究作用力与反作用力的大小、方向等关系的过程,感受从图象中收集有效信息的方法,从DIS动态显示作用力与反作用力关系的图线,感受物理图象的美感。 4.知道国际单位制知道基本单位、导出单位、单位制;能规范地表达物理量的单位,并能正确进行换算。

牛顿三大定律知识点与例题

牛顿运动定律 牛顿第一定律、牛顿第三定律 知识要点 一、牛顿第一定律 1.牛顿第一定律的内容:一切物体总保持原来的匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止. 2.理解牛顿第一定律,应明确以下几点: (1)牛顿第一定律是一条独立的定律,反映了物体不受外力时的运动规律,它揭示了:运动是物体的固有属性,力是改变物体运动状态的原因. ①牛顿第一定律反映了一切物体都有保持原来匀速直线运动状态或静止状态不变的性质,这种性质称为惯性,所以牛顿第一定律又叫惯性定律. ②它定性揭示了运动与力的关系:力是改变物体运动状态的原因,是产生加速度的原因. (2)牛顿第一定律表述的只是一种理想情况,因为实际不受力的物体是不存在的,因而无法用实验直接验证,理想实验就是把可靠的事实和理论思维结合起来,深刻地揭示自然规律.理想实验方法:也叫假想实验或理想实验.它是在可靠的实验事实基础上采用科学的抽象思维来展开的实验,是人们在思想上塑造的理想过程.也叫头脑中的实验.但是,理想实验并不是脱离实际的主观臆想,首先,理想实验以实践为基础,在真实的实验的基础上,抓住主要矛盾,忽略次要矛盾,对实际过程做出更深一层的抽象分析;其次,理想实验的推理过程,是以一定的逻辑法则作为依据. 3.惯性 (1)惯性是任何物体都具有的固有属性.质量是物体惯性大小的唯一量度,它和物体的受力情况及运动状态无关. (2)改变物体运动状态的难易程度是指:在同样的外力下,产生的加速度的大小;或者,产生同样的加速度所需的外力的大小. (3)惯性不是力,惯性是指物体总具有的保持匀速直线运动或静止状态的性质,力是物体间的相互作用,两者是两个不同的概念. 二、牛顿第三定律 1.牛顿第三定律的内容 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上. 2.理解牛顿第三定律应明确以下几点: (1)作用力与反作用力总是同时出现,同时消失,同时变化; (2)作用力和反作用力是一对同性质力; (3)注意一对作用力和反作用力与一对平衡力的区别 对一对作用力、反作用力和平衡力的理解

《第三章牛顿运动定律(提高测试)》

第三章 牛顿运动定律(提高测试) 一、选择题(以下题目所给出的四个答案中,有一个或多个是正确的. ) 1. A 、B 两物体以相同的初速度滑到同一粗糙水平面上 ,若两物体的质量 m A > m B ,两物 体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离 S A 与S B 相比为 A. S A = SB B. S A S B C. S A .;:■ S B D.不能确定 2. 一物体沿倾角为 a 的斜面下滑时 ,恰好做匀速运动 ,若把斜面的倾角加倍 ,则下滑时 加 速度为 ( ) A. tan :? g r sin 3用 B . g cos :- 小sin 3用 C. g sin :- r sin 2a D. 2 g 2 cos : 3.跳高运动员从地面跳起,这是由于 ( ) A. 运动员给地面的压力等于运动员受的重力 B. 地面给运动员的支持力大于运动员给地面的压力 C. 地面给运动员的支持力大于运动员受的重力 D. 地面给运动员的支持力等于运动员给地面的压力 4?比较航天飞机里的物体受到的重力 G 和支持力N ,下面说法中正确的是 ( ) A ?航天飞机发射离地时,N>G B ?航天飞机返回地面时,N>G C ?航天飞机在发射架上等待发射时, N

高考物理力学知识点之牛顿运动定律单元汇编及解析(7)

高考物理力学知识点之牛顿运动定律单元汇编及解析(7) 一、选择题 1.如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查。其传送装置可简化为如图乙的模型,紧绷的传送带始终保持1m/s v=的恒定速率运行。旅客把行李无初速度地放在A处,设行李与传送带之间的动摩擦因数0.5 μ=,A、B间的距离为2m,g取2 10m/s。则() A.行李从A处到B处的时间为2s B.行李做匀速直线运动的时间为1.9s C.行李做匀加速直线运动的位移为1m D.行李从A处到B处所受摩擦力大小不变 2.如图,倾斜固定直杆与水平方向成60角,直杆上套有一个圆环,圆环通过一根细线与一只小球相连接 .当圆环沿直杆下滑时,小球与圆环保持相对静止,细线伸直,且与竖直方向成30角.下列说法中正确的 A.圆环不一定加速下滑 B.圆环可能匀速下滑 C.圆环与杆之间一定没有摩擦 D.圆环与杆之间一定存在摩擦 3.下列单位中,不能 ..表示磁感应强度单位符号的是() A.T B. N A m ? C. 2 kg A s? D. 2 N s C m ? ? 4.如图是塔式吊车在把建筑部件从地面竖直吊起的a t-图,则在上升过程中()

A .3s t =时,部件属于失重状态 B .4s t =至 4.5s t =时,部件的速度在减小 C .5s t =至11s t =时,部件的机械能守恒 D .13s t =时,部件所受拉力小于重力 5.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A .伸长量为 1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为 1m g k tan θ D .压缩量为 1m g k tan θ 6.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( ) A . B . C . D .

相关文档
相关文档 最新文档