文档库 最新最全的文档下载
当前位置:文档库 › 2014高三文科数学数列不等式学案(7)

2014高三文科数学数列不等式学案(7)

2014高三文科数学学案(7) 数列、不等式

班级: 姓名:

基础回扣训练(限时30分钟)

1.公差不为零的等差数列第2,3,6项构成等比数列,则公比为( ). A .1 B .2 C .3 D .4 2.若1a <1

b <0,则下列不等式:①a +b |b |;③a

4.已知实数x ,y 满足约束条件???

x ≥0,

y ≤x ,

2x +y -9≤0,

则z =x +3y 的最大值等于

A .9

B .12

C .27

D .36 5.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( ) A .-110 B .-90 C .90 D .110

6.已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 4a 5a 6=52,则a 7a 8a 9=( ). A .10 B .2 2 C .8 D. 2 7.设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点列{P n (n ,a n )}恒满足P n P n

+1

=(1,2),则数列{a n }的前n 项和S n 为

( ).

A .n ? ????n -43

B .n ? ????n -34

C .n ? ?

???n -23

D .n ? ?

???n -12

8.如果数列a 1,a 2a 1,a 3a 2

,…,a n

a n -1,…是首项为1,公比为-2的等比数列,则

a 5等于

A .32

B .64

C .-32

D .-64

9.若a ,b ∈(0,+∞),且a ,b 的等差中项为12,α=a +1b ,β=b +1

a ,则α+β的最小值为

A .3

B .4

C .5

D .6

10.已知平面直角坐标系xOy 上的区域D 由不等式组???

0≤x ≤

2,

y ≤2,

x ≤2y

给定,若

M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =·的最大值为( ).

A .3

B .4

C .3 2

D .4 2

11.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 12.在等差数列{a n }中,a 5=1,a 3=a 2+2,则S 11=________.

13.正项数列{a n }满足a 1=2,(a n -2)2=8S n -1(n ≥2),则{a n }的通项公式a n =________.

14.已知点A (m ,n )在直线x +2y -1=0上,则2m +4n 的最小值为________. 15.已知点? ?

???1,13是函数f (x )=a x (a >0且a ≠1)图象上的一点,等比数列{a n }的前

n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +

S n -1(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若数列?

????????

?1b n b n +1的前

n 项和为

T n ,问使T n >1 0002 011的最小正整数n 是多少?(3)若c n =-1

2a n ·b n ,求数列{c n }的前n 项和.

2014高三文科数学学案(7) 数列、不等式参考答案

临考易错提醒

1.易忽视数列通项公式中n 的取值范围导致数列中的单调性与函数的单调性混淆,如数列{a n }的通项公式是a n =n +2

n ,求其最小项,则不能直接利用均值不等式求解最值,因为n 不能取2,所以既要考虑函数的单调性,又要注意n 的取值限制.

2.已知数列的前n 项和求a n 时,易忽视n =1的情况,直接用S n -S n -1表示a n ;应注意a n ,S n 的关系中是分段的,即a n =???

S 1,n =1,

S n -S n -1,n ≥2.

3.等差数列中不能熟练利用数列的性质转化已知条件,灵活利用整体代换等方法进行基本运算,如等差数列{a n }与{b n }的前n 项和分别为S n ,T n ,已知S n

T n

n +12n +3,求a n

b n

时,无法正确赋值求解结果. 4.易忽视等比数列的性质,导致增解、漏解现象,如忽视等比数列的奇数项或偶数项符号相同而造成增解;在等比数列求和问题中忽视公比为1的情况导致漏解,在等比数列中S n =??

?

a 1(1-q n )1-q =a 1-a n q

1-q ,q ≠1,

na 1,q =1.

5.不能正确利用不等式的性质进行同解变形,导致利用已知条件求解取值范围时范围扩大或缩小,如同向不等式相加、异向不等式相减、不等式两边同乘一个数时忽视该数的符号变化导致出错等.

6.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.

7.应注意求解分式不等式时正确进行同解变形,不能把f (x )

g (x )

≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.

8.易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f (x )=x 2

+2+1

x 2+2

的最值,就不能利用基本不等式求解最值;

求解函数y =x +3

x (x <0)时应先转化为正数再求解.

9.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如

y -2

x +2

是指已知区域内的点与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点到点(1,1)的距离的平方等.

10.解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要技巧有数形结合法、变量分离法、主元法,通过最值产生结论.应注意恒成立与存在性问题的区别,如对?x ∈[a ,b ],都有f (x )≤g (x )成立,即f (x )-g (x )≤0的恒成立问题,但对?x ∈[a ,b ],使f (x )≤g (x )成立,则为存在性问题,即f (x )min ≤g (x )max ,应特别注意两函数中的最大值与最小值的关系. 参考答案

1.C [设公差为d ,由题意知:a 23=a 2a 6,即(a 1+2d )2

=(a 1+d )(a 1+5d ),解

得d =-2a 1,所以公比为a 3a 2

=a 1+2d

a 1+d =3,选C.]

2.B [由1a <1

b <0,得a <0,b <0,故a +b <0且ab >0,所以a +b

确;由1a <1b <0,得??????1a >????

??1b ,两边同乘|ab |,得|b |>|a |,故②错误;由①②知|b |>|a |,

a <0,

b <0,所以a >b ,即③错误,选B.]

3.A [∵{a n }是等比数列,∴S 5,S 10-S 5,S 15-S 10也构成等比数列,记S 5

=2k (k ≠0),则S 10=k ,可得S 10-S 5=-k ,进而得S 15-S 10=1

2k ,于是S 15=32k ,故S 15∶S 5=32k ∶2k =3∶4.]

4.B [作出实数x 、y 满足的可行域,结合图形可知,当直线y =z 3-x

3过点(3,3)时,目标函数z =x +3y 取得最大值12.]

5.D [a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9,所以a 2

7=(a 7

+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10=10×20+10×9

2×(-2)=110.] 6.A [因为a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,公比为2,所以a 7a 8a 9=10,选A.]

7.A [设P n +1(n +1,a n +1),则

=(1,a n +1-a n )=(1,2),即a n +1-a n

=2,所以数列{a n }是以2为公差的等差数列.又a 1+2a 2=3,所以a 1=-1

3,

所以S n =n ? ?

?

??n -43,选A.]

8.A [a 5=a 1×a 2a 1×a 3a 2×a 4a 3×a 5a 4

=a 51q

1+2+3+4

=(-2)10=32.]

9.C [由题意知a +b =1,α+β=a +1b +b +1a =1+1a +1b =1+1

ab ,由a ,b

∈(0,+∞),得a +b ≥2ab ,又a +b =1,因而ab ≤1

4,则α+β的最小值为5.]

10.B [画出区域D ,如图中阴影部分所示, 而z =·=2x +y ,∴y =-2x +z ,

令l 0:y =-2x ,将l 0平移到过点(2,2)时, 截距z 有最大值,故z max =2×2+2=4.] 11.解析 依题意得(x +1)(2y +1)=9,(x +1)+(2y +1)≥2(x +1)(2y +1)=6,x +2y ≥4,即x +2y 的最小值是4. 答案 4

12.解析 d =2,a 6=3,S 11=11(a 1+a 11)

2

=11a 6=33.

答案 33

13.解析 因为(a n -2)2=8S n -1(n ≥2),所以(a n +1-2)2=8S n ,两式相减得:

8a n =a 2n +1-a 2

n +4a n -4a n +1,整理得: 4(a n +1+a n )=(a n +1-a n )(a n +1+a n ),

因为{a n }是正项数列,所以a n +1-a n =4,所以{a n }是以4为公差,2为首项的等差数列,所以a n =2+4(n -1)=4n -2. 答案 4n -2

14.解析 点A (m ,n )在直线x +2y -1=0上,则m +2n =1; 2m +4n =2m +22n ≥22m ·22n =22m +2n =2 2. 答案 2 2

15.解 (1)∵f (1)=a =13,∴f (x )=? ??

??

13x .

∴a 1=f (1)-c =1

3-c ,

a 2=[f (2)-c ]-[f (1)-c ]=-2

9,

a 3=[f (3)-c ]-[f (2)-c ]=-2

27

.

又数列{a n }成等比数列,

a 1=a 22

a 3

=481-227=-23=13-c ,∴c =1.

又公比q =a 2a 1=1

3,

∴a n =-23? ??

??13n -1=-2

3n ,n ∈N *.

S n -S n -1=(S n -S n -1)(S n +S n -1) =S n +S n -1(n ≥2).

又∵b n >0,S n >0,∴S n -S n -1=1.

数列{S n }构成一个首项为1,公差为1的等差数列, S n =1+(n -1)×1=n ,S n =n 2.

当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时,b 1=1也适合该通项公式,∴b n =2n -1(n ∈N *).

(2)T n =1b 1b 2+1b 2b 3+1b 3b 4

+…+1

b n b n +1

=11×3+13×5+15×7+…+1(2n -1)×(2n +1)

=12? ????1-13+12? ????13-15+12? ????15-17+…+12? ??

??1

2n -1-12n +1 =12? ????1-12n +1=n

2n +1

. 由T n =n 2n +1>1 0002 011,得n >1 00011,满足T n >1 000

2 011的最小正整数为91.

(3)c n =-12a n ·b n =-12·-23n ·(2n -1)=1

3n ·(2n -1),设数列{c n }的前n 项和为P n ,则

P n =c 1+c 2+…+c n =1·13+3·132+5·133+…+(2n -3)·13

n -1+(2n -1)·1

3n ,

则3P n =1+3·13+5·132+…+(2n -1)·1

3

n -1,②

②-①得:

2P n =1+2·13+2·132+…+2·13

n -1-(2n -1)·1

3n

=1+2?

????13+1

32+…+13n -1-(2n -1)·13n =1+2·13? ?

?

??1-13n -11-13-(2n -1)·

13n =2-2(n +1)3n

.

∴P n =1-n +1

3n ,

即{c n }的前n 项和为1-n +1

3n .

2019高考试题文科数学汇编:不等式

2019高考试题文科数学汇编:不等式 1.【2018高考山东文6】设变量,x y 满足约束条件22,24,41,x y x y x y +≥?? +≤??-≥-? 那么目标函数3z x y =-的取 值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3 [6,]2 - 【答案】A 2.【2018高考安徽文8】假设x ,y 满足约束条件 02323x x y x y ≥?? +≥??+≤? ,那么y x z -=的最 小值是 〔A 〕-3 〔B 〕0 〔C 〕 3 2 〔D 〕3 【答案】A 3.【2018高考新课标文5】正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 〔A 〕(1-3,2) 〔B 〕(0,2) 〔C 〕(3-1,2) 〔D 〕(0,1+3) 【答案】A 4.【2018高考重庆文2】不等式 1 02 x x -<+ 的解集是为 〔A 〕(1,)+∞ 〔B 〕 (,2)-∞- 〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 5.【2018高考浙江文9】假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A. 245 B. 285 C.5 D.6 【答案】C 6.【2018高考四川文8】假设变量,x y 满足约束条件3, 212,21200 x y x y x y x y -≥-??+≤?? +≤??≥?≥??,那么34z x y =+的最 大值是〔 〕 A 、12 B 、26 C 、28 D 、33 【答案】C 7.【2018高考天津文科2】设变量x,y 满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,那么目标函数z=3x-2y 的最小值为

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

2016年高考文科数学真题分类汇编:不等式

2016年高考数学文试题分类汇编 不等式 一、选择题 1、(2016年山东高考)若变量x ,y 满足2,239,0,x y x y x +≤??-≤??≥? 则x 2+y 2的最大值是 (A )4(B )9(C )10(D )12 【答案】C 2、(2016年浙江高考)若平面区域30,230,230x y x y x y +-≥??--≤??-+≥? 夹在两条斜率为1的平行直线之间,则这 两条平行直线间的距离的最小值是( ) 【答案】B 3、(2016年浙江高考)已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --< D. (1)()0b b a --> 【答案】D 二、填空题 1、(2016年北京高考)函数()(2)1 x f x x x = ≥-的最大值为_________. 【答案】2 2、(2016江苏省高考) 已知实数x ,y 满足240220330x y x y x y -+≥??+-≥??--≤? ,则x 2+y 2的取值范围是 ▲ . 【答案】4[,13]5 3、(2016年上海高考)设x ∈R ,则不等式31x -<的解集为_______. 【答案】)4,2(

4、(2016上海高考)若,x y 满足0,0,1,x y y x ≥??≥??≥+? 则2x y -的最大值为_______. 【答案】2- 5、(2016全国I 卷高考)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000 6、(2016全国II 卷高考)若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则2z x y =-的最小值为 __________ 【答案】5- 7、(2016全国III 卷高考)若,x y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则235z x y =+-的最大 值为_____________. 【答案】10- 11、(2016江苏省高考)函数y 的定义域是 ▲ . 【答案】[]3,1- 三、解答题 1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1 车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2021年高考文科数学总复习(第七章 第3节)不等式讲义

第3节二元一次不等式(组)与简单的线性规划问题 最新考纲 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决 . 知识梳理 1.二元一次不等式(组)表示的平面区域 不等式表示区域 Ax+By+C>0 直线Ax+By+C=0某一侧的所有点 组成的平面区域不包括边界直线 Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分 2.点P1(x1,y1)和P2(x2,y2)位于直线Ax+By+C=0的两侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0;位于直线Ax+By+C=0同侧的充要条件是(Ax1+By1+ C)(Ax2+By2+C)>0. 3.线性规划的有关概念 名称意义 线性约束条件由x,y的一次不等式(或方程)组成的不等式组,是对x,y的约束条件 目标函数关于x,y的解析式 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解(x,y) 可行域所有可行解组成的集合 最优解使目标函数达到最大值或最小值的可行解 线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题[微点提醒] 1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:

(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线; (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 2.判定二元一次不等式表示的区域 (1)若B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方. (2)若B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. 基 础 自 测 1.判断下列结论正误(在括号内打“√”或“×”) (1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( ) (3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( ) 解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b . 答案 (1)× (2)√ (3)√ (4)× 2.(必修5P98例3改编)不等式组???x -3y +6≥0, x -y +2<0 表示的平面区域是( )

高考数学压轴专题最新备战高考《数列》难题汇编附答案

新数学《数列》期末复习知识要点 一、选择题 1.在数列{}n a 中,若10a =,12n n a a n +-=,则23111 n a a a +++L 的值 A . 1 n n - B . 1 n n + C . 1 1n n -+ D . 1 n n + 【答案】A 【解析】 分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111 n a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以 1111 (1)1n a n n n n ==--- 所以 231111111111(1)()()12231n n a a a n n n n -+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力. 2.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84 【答案】B 【解析】 由a 1+a 3+a 5=21得24242 1(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2 135()22142q a a a ++=?=,选B. 3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21 C .24 D .36 【答案】B 【解析】 【分析】 根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】 因为数列{}n a 是等差数列,1356a a a ++=,

等差数列(高三文科数学第一轮复习)

课题:等差数列(高三文科数学第一轮复习) 开课时间:20XX 年10月 18 日 授课班级:高三(4)班 主讲教师: 张文雅 [教学目标] 1、 知识目标:理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用 等差数列的性质解决有关问题。 2、 能力目标:培养学生观察能力、探究能力、体现用方程的数学思想方法分析问题、解 决问题的能力。 3、 情感目标:通过等差数列公式的应用,激发学生学习数学的兴趣,培养学生勇于思考、善于思考的品质。 [重点]:理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式 [难点]:理解并掌握等差数列的有关性质及应用。 [教学方法]:类比式、 探究式、讨论式、合作式。 [教学过程]: 知识梳理: 一、等差数列的定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则该数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。 用式子可表示为 二、等差数列的公式: 2、等差数列的前n 项和公式: 三、等差中项: 巩固练习: {}17611,35)5(S S S n a S n n 求项和,且的前是等差数列已知+= 四、判定与证明方法: ) ,2(1*-∈≥=-N n n d a a n n d m n a a m n )(-+=推广:d n n na a a n S n n 2)1(2)(11-+=+=,的等差中项与叫做成等差数列,那么、、如果b a A b A a b a A +=2且为同一常数;的任意自然数,证明定义法:对于12)1(--≥n n a a n )2,(1 ≥∈=-*-n N n d a a n n 即:d n a a n )1(11-+=:、等差数列的通项公式)(*∈N m n 、{}670669668667,20053,1)1(1、、、、)等于(则序号的等差数列,如果公差为是首项D C B A n a d a a n n ==={}614515,70,102a a a a n 求中)等差数列(=={}11128,168,48,)3(a S S S n a n n 求若项和为的前等差数列=={}725,32554a a S a n 求且项和的前)若等差数列(==的思想解决问题。 外两个,体现了用方程,知其中三个就能求另、、、、共涉及五个量及注:n n n n n S a n d a d n n na a a n S d n a a 11112)1(2)()1(-+=+=-+=

高中文科数学 不等式

第五讲、不等式 十三、 不等式 (一)不等关系 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 (二)一元二次不等式 1.会从实际情境中抽象出一元二次不等式模型。 2.通过函数图象了解一元二次不等式与相应函数、一元二次方程的联系。 3.会解一元二次不等式。 (三)二元一次不等式组与简单线性规划问题 1.会从实际情境中抽象出二元一次不等式组。 2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 (四)基本不等式: ,0)2 a b a b +≥> 会用基本不等式解决简单的最大(小)值问题。 不等式的概念与性质 1.实数的大小顺序与运算性质之间的关系: 0>-?>b a b a 0<-? , a b b a >?< (反对称性) (2)c a c b b a >?>>, ,c a c b b a +?>,故b c a c b a ->?>+ (移项法则) 推论:d b c a d c b a +>+?>>, (同向不等式相加) (4)bc ac c b a >?>>0,,bc ac c b a 0, 推论1:bd ac d c b a >?>>>>0,0 推论2:n n b a b a >?>>0 推论3:n n b a b a > ? >>0 算术平均数与几何平均数 1.常用的基本不等式和重要的不等式 (1)0,0,2 ≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+ ∈R b a ,,则ab b a 2≥+ (4) 2 2 2)2 ( 2 b a b a +≤+

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

2013年全国各地高考文科数学试题分类汇编:不等式 学生版

4 2013年全国各地高考文科数学试题分类汇编6:不等式 一、选择题 1 .(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0, x y y x x y +≤??-≤? ?≥??≥?且5z y x =-的最大值为a , 最小值为b ,则a b -的值是 ( ) A .48 B .30 C .24 D .16 2 .(2013年高考福建卷(文))若变量y x ,满足约束条件?? ? ??≥≥≤+012 y x y x ,则y x z +=2的最大值和最小值 分别为 ( ) A .4和3 B .4和2 C .3和2 D .2和0 3 .(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件 ,则z=2x-3y 的最小值是 ( ) A . B .-6 C . D .-3 4 .(2013年高考福建卷(文))若122 =+y x ,则y x +的取值范围是 ( ) A .]2,0[ B .]0,2[- C .),2[+∞- D .]2,(--∞ 5 .(2013年高考江西卷(文))下列选项中,使不等式x

天津市高三数学总复习 综合专题 数列 理 (学生版)

数列(理) 考查内容:本小题主要考查等差数列与等比数列的通项公式及其前n 项和公式、 不等式证明等基础知识,考查分类讨论的思想方法,考查运算能力、 推理论证能力及综合分析、解决问题的能力。 1、在数列{}n a 中,11a =,122n n n a a +=+。 (1)设1 2 n n n a b -= 。证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S 。 2、设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (1)证明:当2b =时,{} 12n n a n --?是等比数列; (2)求{}n a 的通项公式 3、已知数列{}n a 的首项12 3 a = ,121n n n a a a +=+,1,2,3,n =…。 (1)证明:数列? ?? ?? ?-11n a 是等比数列; (2)数列? ?? ?? ?n a n 的前n 项和n S 。 4、已知数列{}n a 满足:1±≠n a ,2 11=a ,()() 2211213n n a a -=-+,记数列21n n a b -=,221n n n c a a +=-, n N *∈。 (1)证明数列 {}n b 是等比数列; (2)求数列{}n c 的通项公式; (3)是否存在数列{}n c 的不同项k j i c c c ,,,k j i <<,使之成为等差数列?若存在请求出这样的不同项 k j i c c c ,,,k j i <<;若不存在,请说明理由。 5、已知数列{}n a 、{}n b 中,对任何正整数n 都有:

11213212122n n n n n n a b a b a b a b a b n +---+++++=--L 。 (1)若数列{}n a 是首项和公差都是1的等差数列,求证:数列{}n b 是等比数列; (2)若数列{}n b 是等比数列,数列{}n a 是否是等差数列,若是请求出通项公式,若不是请说明理由; (3)若数列{}n a 是等差数列,数列{}n b 是等比数列,求证:1132 n i i i a b =<∑ 。 6、设数列{}n a 满足11a =,22a =,121 (2)3 n n n a a a --= +,(3,4,)n =L 。数列{}n b 满足11,(2,3,)n b b n ==L 是非零整数,且对任意的正整数m 和自然数k ,都有 111m m m k b b b ++-≤+++≤L 。 (1)求数列{}n a 和{}n b 的通项公式; (2)记(1,2,)n n n c na b n ==L ,求数列{}n c 的前n 项和n S 。 7、有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a , (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列。 (1)证明1122m d p d p d =+,n m ≤≤3,12,p p 是m 的多项式,并求12p p +的值; (2)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列),设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m c m d 的前n 项和n S 。 (3)设N 是不超过20的正整数,当n N >时,对于(2)中的n S ,求使得不等式1 (6)50 n n S d ->成立的所有N 的值。 8、数列}{n a 的通项公式为?? ? ? ?-=3sin 3cos 22 2 ππn n n a n ,其前n 项和为n S 。 (1)求n S ; (2)设n n n n S b 4 3?= ,求数列}{n b 的前n 项和n T 。 9、数列}{n a 满足}221221,2,(1cos )sin ,1,2,3,.22 n n n n n a a a a a n ππ+===++=L 满足。

高三文科数学数列测试题(有答案)之欧阳数创编

高三文科数学数列测试题 一、选择题(5分×10=50分) 1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2 2.在等差数列{}n a 中,已知1232,13,a a a =+=则456 a a a ++等于( ) A .40 B .42 C .43 D .45 3.已知等差数列{}n a 的公差为2,若1a 、3a 、4a 成等比数列,则2a 等于( ) A .-4 B .-6 C .-8 D .-10 4.在等差数列 {}n a 中,已知 11253,4,33,n a a a a n =+==则为 ( ) A.48 B.49 C.50 D.51 5.在等比数列{n a }中,2a =8,6a =64,,则公比q 为( ) A .2 B .3 C .4 D .8

6.-1,a,b,c,-9成等比数列,那么( ) A .3,9b ac == B.3,9b ac =-= C.3,9b ac ==- D.3,9b ac =-=- 7.数列{}n a 满足11,(2),n n n a a a n n a -=+≥=则( ) A . (1)2 n n + B. (1)2 n n - C. (2)(1) 2 n n ++ D.(1)(1) 2 n n -+ 8.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( A.3 B.2 C.1 D.2- 9.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) A .122n +- B .3n C .2n D .31n - 10.设 4710310 ()22222()n f n n N +=+++++∈,则()f n 等于( ) A .2(81)7n - B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 二、填空题(5分×4=20分) 11.已知数列的通项52n a n =-+,则其前n 项和 n S = . 12.已知数列{}n a 对于任意 * p q ∈N ,,有 p q p q a a a ++=,若 11 9a = ,则36a = 13.数列{a n }中,若a 1=1,2a n +1=2a n +3 (n ≥1),则该数列的通项a n =.

相关文档 最新文档