文档库 最新最全的文档下载
当前位置:文档库 › 幂指函数的极限与导数问题_朱美玉

幂指函数的极限与导数问题_朱美玉

幂指函数的极限与导数问题_朱美玉
幂指函数的极限与导数问题_朱美玉

用等价无穷小代换求幂指函数的极限

用等价无穷小代换求幂指函数的极限 【摘要】本文讨论了幂指函数求极限的方法,重点探讨了00,∞0,1∞型幂指函数在求极限的过程中利用等价无穷小代换的问题,并提出了相应的定理,给出了证明以及实例。 【关键词】幂指函数;等价无穷小;极限 Research on the Limit of Power-Exponential Function by Equivalent Infinitesimal YANG Feng (Hubei University of Arts and Science,College of Mathematical and Computer Science,Xiangyang Hubei 441050) 【Abstract】How to solve the limit of the power-exponential function has been discussed. The methods and examples are showed as to how to apply the methods to calculate limit,especially by the replacement of equivalent infinitesimal. The theorems have been provided and proofed. 【Key words】The power-exponential function;Equivalent infinitesimal;Limit 1 问题提出 在大学高等数学中,对于幂指函数求极限的问题,共有两处提到,包括重要极限和洛必达法则。但是,关于等价无穷小代换求幂指函数极限的问题大多都没有特别讲解。一般得,只针对于分式型的函数如何用等价无穷小代换求极限做了讲解。在教学过程中,有学生在一开始的学习中就遇到较为复杂的幂指函数求极限的问题,就不知道如何计算了。课本中有一道极限求解题目,具体如下: ■(■)■ 这是一个典型的1∞型的幂指函数求极限问题。大多数学生在这里第一反应就是用重要极限来求解,但此题用重要极限不太容易看出来。如果了解等价无穷小的相关定理,那么这道题就迎刃而解了。鉴于此种情况,本文在前人研究的基础上,总结了幂指函数的求极限的方法,着重提出了等价无穷小求解幂指函数极限的看法。 2 幂指函数求极限的其他方法 幂指函数的极限类型很多,有确定型和不定式之分。对于确定型的幂指函数可以直接底数与指数求极限。而对于不定式型的幂指函数,通常采用重要极限和

专题8极限与函数的导数的题型与方法

专题八 极限与函数的导数的题型与方法 【考点审视】 极限与导数作为初等数学与高等数学的衔接点,新课程卷每年必考,主要考查极限与导数的求法及简单应用。纵观近年来的全国卷与各省市的试卷,试题呈“一小一大”的布局,“小题”在选择、填空题中出现时,都属容易题;“大题”在解答题中出现时,极限通常与其它数学内容联系而构成组合题,主要考查极限思想与方法的灵活应用能力;导数的考查常给出一个含参的函数或应用建模,通过求导、分析函数的单调性与最值,考查“数形结合”、“分类讨论”等数学思想方法的综合运用能力。从2004年各地的高考试卷看,考生在备考时,应从下列考点夯实基础,做到以不变应万变: (1)从数列或函数的变化趋势了解极限概念,理解三个基本极限: 1)c c c n (lim =∞ →是常数),2)01 lim =∞→n n ,3)∞→n lim )1|(|0<=q q n . (2)明确极限四则运算法则的适用条件与范围,会求某些数列和函数的极限。 (3)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值。 (4)了解导数的概念,掌握函数在一点处的导数定义,理解导函数的概念。 (5)熟记八个基本导数公式,掌握求导的四则运算法则,理解复合函数的求导法则,会求简单函数的导数。 (6)掌握导数的几何意义与物理意义,理解可导函数的单调性、极值与导数的关系,强化用导数解决实际问题的能力。 【疑难点拨】:1,极限的四则运算法则,只有当两数列或两函数各自都有极限时才能适用。对 00、∞ ∞ 、∞-∞、∞?0型的函数或数列的极限,一般要先变形或化简再运用法则求极限。例如(2004年辽宁,14)π ππ --→x x x x cos )(lim = 【分析】这是 00 型,需因式分解将分母中的零因子消去,故π ππ--→x x x x cos )(lim =x x x cos )(lim ππ +→=π2-。 2,极限的运算法则仅可以推广到有限个数列或函数,对于无穷项的和或积必须 先求和或积再求极限;商的极限法则,必须分母的极限不为零时才适用。例如: (2004年广东,4)-+++-+∞→131211( lim n n n n …+1 2112+-++n n n n )的值为…( ) (A )-1 (B )0 (C )2 1 (D )1 【分析】这是求无穷项的和,应先求前n 2项的和再求极限

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

导数和极限精辟总结(全)

导数和导数的极限 函数 )(x f 在 0x 点的左导数定义为 )(0x f -'x x f x x f x ?-?+=-→?)()(lim 000 。 函数 )(x f 在 0x 点的右导数定义为 )(0x f +'x x f x x f x ?-?+=+→?)()(lim 000 。 函数 )(x f 在 0x 点导数的左极限定义为 )0(0-'x f )(lim 0 0x f x x '=-→ 。 函数 )(x f 在 0x 点导数的右极限定义为 )0(0+'x f )(lim 0 0x f x x '=+→ 。 在很多情况下,导数的左极限 )(lim 0 0x f x x '-→ 往往就是左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 往往就是右导数 )(0x f +' 。 例如,函数 ?????≥<=1 11)(2x x x x x f 。 在 1=x 点的左导数为 )1(-'f 1111lim )1()1(lim 00-=?-?+=?-?+=-→?-→?x x x f x f x x ;导数的左极限为 )(lim 01x f x '-→1)1(lim )1(lim 20101-=-='=-→-→x x x x ,两者是一样的。 在 1=x 点的右导数为 21)1(lim )1()1(lim )1(200=?-?+=?-?+='+→?+→?+x x x f x f f x x ;导数的右极限为 )(lim 01x f x '+→2)2(lim )(lim 0 1201=='=+→+→x x x x ,两者也是一样的。 但有时候,导数的左极限 )(lim 0 0x f x x '-→ 并不等于左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 并不等于右导数 )(0x f +' 。

利用导数求函数值域

利用导数求函数最值 高二苏庭 导数是对函数的图像与性质的总结与拓展,导数是研究函数单调性极佳、最佳的重要工具,在掌握求函数的极值和最值的基础上学习用导数解决生产生活中的有关最大最小最有效等类似的应用问题广泛运用在讨论函数图像的变化趋势及证明不等式等方面。 导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问题等,考题不难,侧重知识之意。 导数应用主要有以下三个方面: ①运用导数的有关知识研究函数的单调性和最值问题, ②利用导数的几何意义,研究曲线的切线斜率。函数y=f(x)在x=x0处的导数,表示曲线在点P(x0 , y0)处的切线斜率。 由导数来求最值问题的方法可知,解这类实际问题需先建立函数关系,再求极值点,确定最值点及最值.在设变量时可采用直接法也可采用间接法.

求函数极值时,导数值为0的点是该点为极值点的必要条件,但不是充分条件。 运用导数确定函数单调区间的一般步骤为: (1)求出函数y=f(x)的导函数; (2)在函数定义域内解不等式得函数y=f(x)的单调增区间;解不等式得函数y=f(x)的单调减区间。 例题剖析 例1、求函数的值域. 分析: 求函数的值域以前学过一些方法,也可利用求导的方法,根据函数的单调性求解. 解答: 函数的定义域由求得,即x≥-2.

当x>-2时,y′>0,即函数,在(-2,+∞)上是增函数,又f(-2)=-1,∴所求函数的值域为[-1,+∞). 点评: (1)从本题的解答过程可以看到,当单调区间与函数的值域相同时,才可使用此法,否则会产生错误. (2)求值域时,当x=-2,函数不可导,但函数 在[-2,+∞)上是连续的,函数图象是连续变化的,因此在x=-2时,取得最小值. 例2、把长度为16cm的线段分成两段,各围成一个正方形,它们的面积之和的最小值为多少? 分析:建立面积和与一正方形的周长的函数关系,再求最小值. 解答:设一段长为xcm,则另一段长(16-x)cm. ∴面积和 ∴S′=-2,令S′=0有x=8. 列表:

极限与导数

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右 极限。类似地)(lim 0 x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0 处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy , 即0 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。 若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) )()(']')(1[2x u x u x u -=;(5)) () ()(')(')(]')()([2x u x v x u x v x u x u x u -=。

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.1312 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=512,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A. 3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3或x =-1

当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为3 4 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1, 令y ′=0,∴x =1 2,f (-3)=13,f ? ?? ??12=34,f (0)=1. 5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0 D .不存在 [答案] A [解析] y ′=1 2x -121-x =12·1-x -x x ·1-x 由y ′=0得x =1 2,在? ????0,12上y ′>0,在? ????12,1上 y ′<0.∴x =1 2时y 极大=2, 又x ∈(0,1),∴y max = 2. 6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值

关于幂指函数的极限与导数的求法

目 录 目 录............................................................................................................................................... 0 摘 要............................................................................................................................................... 1 Abstract ........................................................................................................................................... 2 1.幂指函数的概念 ........................................................................................................................... 3 2.幂指函数的求极限 .. (3) 2.1 )(x f ,)(x g 的极限均为有限常数,即B A 型的极限求法 ...................................... 3 2.2 利用重要极限 .. (4) 2.3 应用洛必达法则求极限 ................................................................................................ 6 2.4 用等价无穷小 .. (7) 2.4.1 0 0中的等价无穷小代换 .................................................................................... 7 2.4.2 0 ∞中的等价无穷小代换 ................................................................................... 8 2.4.3 ∞1中的等价无穷小代换. . (9) 2.5 利用微分中值定理 ....................................................................................................... 10 3.幂指函数的求导 . (11) 3.1 复合函数求导法 ........................................................................................................... 11 3.2 对数求导法 ................................................................................................................... 12 3.3 多元函数求导法 ........................................................................................................... 13 总 结............................................................................................................................................. 16 参考文献 .. (17)

经济数学基础微分学之第2章 极限、导数与微分

第一单元 极限的概念及其运算 第一节 极限的概念 一、学习目标 极限是微积分学中的重要概念,微积分中的许多重要概念都是由极限定义的.学习了这一节课,要使我们了解极限、左、右极限和无穷小量的概念. 并且能够利用函数图形和极限定义去求简单函数的极限. 二、内容讲解 1.极限的概念1 数列的极限: ①数列:一般地,按一定规律排列的一串数1x ,2x ,…,n x ,…称为数列,简记为{}n x 。其中的第n 项n x 称为该数列的通项。 ②数列的极限:给定数列{}n x ,如果当n 无限增大时,n x 无限地趋近某个固定的常数A ,则称当n 趋于无穷时,数列{}n x 以A 为极限。记为A x n n =∞ →lim 2.极限的概念2 研究函数是利用极限的方法来进行;极限是一个变量在变化过程中的变化趋势。 例1 圆的周长的求法.早在公元263年,古代数学家刘徽用圆内接正四边形、正五边形、正八边形、正十六边形……等的边长近似圆的周长,显然随着边数的增加,正多边形的边长将无限趋近圆的周长. 例2 讨论当+∞→x 时,x 1 的变化趋势. 例3 讨论一个定长的棒,每天截去一半,随着天数的增加,棒长的变化趋势.“一尺之棰,日截其半,万世不竭”——庄子?天下 定义2.1——函数的极限

设函数)(x f 在点0x 的邻域(点0x 可以除外)内有定义,如果当x 无限趋于0x (但0x x ≠) 时,)(x f 无限趋近于某个常数A ,则称x 趋于0x 时,)(x f 以A 为极限,记为A x f x x =→)(lim 0或 A x f →)()(0x x →;若自变量x 趋于0x 时,函数)(x f 没有一个固定的变化趋势,则称函数) (x f 在 x 处没有极限. 在理解极限定义时要注意两个细节: 1.0x x →时(0x x ≠), 2. ?? ?→<→>→000 00)()(x x x x x x x x (包括这两种情况) 考虑函数x y =,依照极限的定义,不能考虑0→x 的极限.因为x y =在0≤=010 )(x x x x f ,如果讨论0→x 是的极限,则函数分别在0x 时不是同一个表达式,必须分别考虑.由此引出左右极限的概念: 定义2.2——左右极限 设函数f x ()在点x 0的邻域(x 0点可以除外)内有定义,如果当x x <0且x 无限于x 0(即 x 从x 0的左侧趋于x 0,记为x x →- 0)时,函数f x ()无限地趋近于常数L ,则称当x 趋于x 0时, f x ()以L 为左极限,记作lim ()x x f x L →- =0 或f x -()0= L ;如果当x x >0且x 无限趋于x 0(即 x 从x 0的右侧趋于x 0,记为x x →+ 0)时,函数f x ()无限地趋近于常数R ,则称当x 趋于x 0时, f x ()以R 为右极限,记作lim ()() x x f x R f x →++ =00或=R 。

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

1.2.1常数函数与幂函数的导数

1.2.1常数函数与幂函数的导数 预习案 一、自学教材,思考下列问题 1.导数的概念 2.导数的几何意义 二、一试身手 利用导数的定义求下列函数的导数: (1)f(x)=2 (2)f(x)=x (3)f(x)=x+1 (4)f(x)=x2 导学案 一、学习目标 (1)知识与技能 能由定义求导数的三个步骤推导常数函数与幂函数的导数 (2)过程与方法 在教学过程中,注意培养学生桂南、探求规律的能力 (3)情感态度价值观 提高学生的学习兴趣,激发学生的求知欲,培养探索精神 二、学习过程 (1)课内探究 问题1:常数函数的导数是什么? 问题2:运用导数的定义求下列几个幂函数的导数

(1)y=x (2)y=x 2(3)y=x 3(4)1y x =(5)y 问题3:通过以上五个幂函数的求导过程,你有没有发现求幂函数的导数的规律? 问题4:幂函数a y x =的导数是什么? (2) 典型例题 例1 求 (1)(x 3)′ (2)( 2 1x )′ (3)(x )′ 例2质点运动方程是5 1t s = , 求质点在2=t 时的速度. (3) 当堂检测 1.已知语句:p 函数()y f x =的导函数是常数函数;语句:q 函数()y f x =是一次函数,则语句p 是语句q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2.若函数()f x 的导函数为()sin f x x '=-,则函数图象在点(4(4))f ,处的切线的倾斜角

为() A.90°B.0°C.锐角D.钝角3、求下列函数的导数 3 2 1 (1) y2 1 (2)y (3)y x x =+== 2 1 36 3 2 ' )1(x x y= ? =- 解: 3 3 1 2 2 2 2 2 ) (2 )' ( )' 1 ( ' : )2( x x x x x y- = - = - = = =- - - - 解 x x x x x y 2 ) ( 2 1 )' ( )' ( ' )3(2 1 2 1 = = = =- 解: 52 5 2 5 3 53 5 3 ) ( 5 3 )' ( )' ( ' )4( x x x x y= = = =- 解: (4)课堂小结 本节课学习了常数函数与幂函数的导数. 拓展案 一、选择题 1.() f x与() g x是定义在R上的两个可导函数,若()() f x g x ,满足()() f x g x '' =,则() f x与() g x满足() A.()() f x g x =B.()() f x g x -为常数 C.()()0 f x g x ==D.()() f x g x +为常数 二、填空题 2.设32 ()391 f x x x x =--+,则不等式()0 f x '<的解集是. 3.曲线 1 y x =和2 y x =在它们交点处的两条切线与x轴所围成的三角形的面积是.三、解答题 4.求过曲线cos y x =上点 π1 32 P ?? ? ?? ,且与过这点的切线垂直的直线方程.

微积分求极限的方法(完整版)

专题一 求极限的方法 【考点】求极限 1、 近几年来的考试必然会涉及求极限的大题目,一般为2-3题12-18分左右,而用极限的 概念求极限的题目已不会出现。一般来说涉及到的方法主要涉及等价量代换、洛必达法则和利用定积分的概念求极限,使用这些方法时要注意条件,如等价量代换是在几块式子乘积时才可使用,洛必达法则是在0比0,无穷比无穷的情况下才可使用,运用极限的四则运算时要各部分极限存在时才可使用等。 2、 极限收敛的几个准则:归结准则(联系数列和函数)、夹逼准则(常用于数列的连加)、 单调有界准则、子数列收敛定理(可用于讨论某数列极限不存在) 3、 要注意除等价量代换和洛必达法则之外其他辅助方法的运用,比如因式分解,分子有理 化,变量代换等等。 4、 两个重要极限0sin lim 1x x x →= 1 01lim(1)lim(1)x x x x x e x →∞→+=+=,注意变形,如将第二个式 子1 lim(1)x x x e →+=中的x 变成某趋向于0的函数()f x 以构造“1∞ ”的形式的典型求极 限题目。 5、 一些有助于解题的结论或注意事项需要注意总结,如: (1) 利用归结原则将数列极限转化为函数极限 (2) 函数在某点极限存在的充要条件是左右极限存在且相等。有时可以利用这点进行解 题,如 11 1 lim x x e -→因左右极限不相等而在这点极限不存在。(当式子中出现绝对值和e 的无穷次方的结构时可以考虑从这个角度出发) (3) 遇到无限项和式求极限时想三种方法: ①看是否能直接求出这个和式(如等比数列求和)再求极限 ②夹逼定理 ③用定积分的概念求解。 (4)如果f(x)/g(x)当x →x0时的极限存在,而当x →x0时g(x)→0,则当x →x0时f(x)也 →0 (5)一个重要的不等式:sin x x ≤(0x >) *其中方法②③考到的可能性较大。 6、 有关求极限时能不能直接代入数据的问题。 7、 闭区间上连续函数的性质(最值定理、根的存在性定理、介值定理) 8、 此部分题目属于基本题型的题目,需要尽量拿到大部分的分数。 【例题精解·求极限的方法】 方法一:直接通过化简,运用极限的四则运算进行运算。 【例1】求极限 11 lim 1 m n x x x →--

幂指函数的性质及应用

摘要 幂指函数是一类重要的函数,但在教材中涉及幂指函数的内容非常有限,系统的研究幂指函数的性质及应用是非常有必要的。本文先利用微积分的相关知识论述幂指函数的分析性质;再用这些性质研究两个特殊的幂指函数;最后探讨幂指函数的性质在求极限、导数、微分和积分等问题中的应用。 关键词:幂指函数;极限;导数;微分;积分

Abstract Exponential function is a kind of important function, but the content of the exponential function involved in the teaching material is very limited, the exponential function of the nature of the research and application of system is very necessary. This paper, using relevant knowledge of calculus, first analysis the power properties; With these two special properties research of exponential function; Finally discusses the nature of the exponential function limit, derivative, differential and integral application problems. Key words: Power exponent function; Limit; Derivative; Differential; Integral

考研数学极限与导数复习方法

考研数学极限与导数复习方法 我们在进行考研数学的备考复习时,需要掌握好极限与导数的复习方法。小编为大家精心准备了考研数学极限与导数复习秘诀,欢迎大家前来阅读。 考研数学极限与导数复习技巧 极限 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极 限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练

的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行 计算,如果最大的分母和最小的分母相除的极限不等于1,则 凑成定积分的定义的形式进行计算;单调有界收敛定理可用来 证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括:1、连续、间断点以及 间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;3、渐近线(水平、垂直、斜渐近线);4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。 导数 求导与求微分每年直接考查的知识所占分值平均在 10分到13分左右。常考题型:(1)利用定义计算导数或讨论 函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。

导数及极值、最值练习题

. .. . 三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x 0(可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x 0)是 极大值;反之, 那么f(x 0)是极大值 题型一 图像问题 1、函数()f x 的导函数图象如下图所示,则函数()f x 在图示区间上 ( ) (第二题图) A .无极大值点,有四个极小值点 B .有三个极大值点,两个极小值点 C .有两个极大值点,两个极小值点 D .有四个极大值点,无极小值点 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,的图象如图所示,则函数()f x 在 开区间()a b ,有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象可能为( )

D. C. B. A. x y O x y O x y O O y x 4、设() f x '是函数() f x的导函数,() y f x ' =的图象如下图所示,则() y f x =的图象可能是()-1 2 1 O y x D. A. 12 12 1 2 2 1x y O x y O x y O O y x 5、已知函数 () f x的导函数() f x ' 的图象如右图所示,那么函数 () f x的图象最有可能的是() -1 1 f '(x) y x O 6、() f x '是() f x的导函数,() f x '的图象如图所示,则() f x的图象只可能是() 2x O

相关文档
相关文档 最新文档