文档库 最新最全的文档下载
当前位置:文档库 › 厄米算符的本征值与本征函数

厄米算符的本征值与本征函数

厄米算符的本征值与本征函数
厄米算符的本征值与本征函数

一维谐振子的本征值问题

摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一般的教材只给定了波动力学的解法]3[.自1963年,Glauber]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光5[-。 学等领域]13 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 取自然平衡位置为坐标原点,并选原点为势能零点,则一维谐振子势V可表成

一维谐振子的本征值问题

一维谐振子的本征值问题 姜罗罗 赣南师范学院物理与电子信息科学系物理学专业2000级(2)班 摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一

般的教材只给定了波动力学的解法]3[.自1963年,Glauber ]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光学等领域]135[-。 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac 算子代数解法和Schr ?dinger 波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研 究前沿课题之一。最后从Dirac 算子代数中求解出a ?的本征态即谐振子的相干态,并由降算符a ?与升算符+a ?、光子数n 与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 V 可 表成 2 2 1kx V x = (1) k 为刻画简谐作用力强度的参数.设谐振子质量为μ,令 μ ωk = (2) 它是经典谐振子的自然频率,则一维谐振子的Hamilton 量可表为 图1.一维谐振子势 222?2 12??x p H μωμ+= (3) 在能量H ?表象中,由于

第五章思考题

第五章思考题 1.简述定态微扰论的基本思想。 解答:量子力学体系的哈密顿算符∧H 不是时间的显函数时,通过求解定态薛定谔方程,讨论定态波函数。除少数特例外,定态薛定谔方程一般很难严格求解。求解定态薛定谔方程 ψψE H =∧时,若可以把不显函时间的∧H 分为大、小两部分∧ ∧∧'+=H H H )0( ||||)0(∧∧'>>H H ,其中 )0() 0() 0()0(n n n E H ψψ=∧,即∧)0(H 的本征值)0(n E 和本征函数 )0(n ψ是可以精确求解的,或已有确定的结果。 满足上述条件的基础上,常引入一个很小参数λ(10<<λ),将微扰写成 ∧ 'H λ,以逐步近似的精神求解薛定谔方程。将能级和波函数以λ的幂级数展开 ???+++=+++= )2(2)1()0()2(2)1()0(n n n n n n n n E E E E ψλλψψψλλ ) 0(n E 与)0(n ψ称为零级近似能量和零级近似波函数,是未受微扰时∧)0(H 的本征能量和本征函数,也是我们求解微扰问题的必备基本条件,后面各项按λ的幂次称为一级修正、二级修正、…。 2.非简并定态微扰论的适用条件是什么? 解答:非简并定态微扰论的适用条件为||||)0()0(m n m n E E H -<<',一是要求 微扰本身应很小,二是要求能级间隔||)0()0(m n E E -较大。 3.证明:非简并定态微扰中,基态能量的二级修正永为负值。

解答:能量的二级修正)0()0(2) 2(||m n nm m n E E H E -''=∑,若)0(n E 为基态能量,当然其数值为最小,因而在求和中n m ≠的任一项0)0()0(<-m n E E ,故)2(n E 永为负值。 4.简并态微扰与非简并态微扰的主要区别是什么?什么条件下,简 并能级情况可用非简并态微扰处理? 解答:简并态微扰与非简并态微扰的主要区别是零级近似能量给定后,对应的零级近似波函数一般说来是不能完全确定的。对于f 度简 并能级,)0(k E 如选择的f 个独立的)0(αψk 已使H '对角化,即 αβαββαδψψH H k k '>='<)0()0(||, 此时αααH E k '=)1(,对应的零级近似波函数为)0(αψk ,虽然能级)0(k E 是简并的,仍可用非简并定态微扰论处理一级近似问题。 5.量子跃迁问题与定态微扰在研究目标和处理方法上有何不同? 解答:定态微扰和量子跃迁是量子力学中两个不同类型的问题,在研究目标和处理方法上都不一样。定态微扰处理定态问题,考虑加入微扰后如何求出体系总哈密顿量的本征值和本征函数的修正项,其出发点是定态薛定谔方程。量子跃迁是考虑体系在微扰作用下,波函数随时间的变化问题,是依据含时薛定谔方程),(),(t x H t t x i ψψ=?? 具体计算量子态之间的跃迁几率问题。一般说来,这两类问题都需要运用近似方法求解。 6.非简并态微扰为什么不适用于所谓近简并情况?

量子力学典型例题分析解答1

浅谈多媒体课件制作与中学物理教学 计算机技术的普及和发展,冲击着教育观念的改变和教学手段的提高。也成为新贯彻新课改的有力工具。为教育的现代化改革开拓了一个广阔的前景与空间,给优化课堂教学,构建新型的教学模式,提供了丰富的土壤。多媒体集文字、图形、图象、声音、动画、影视等各种信息传输手段为一体,具有很强的真实感和表现力,可以激发学生学习兴趣,可以动态地、对比地演示一些物理现象,极大地提高教与学的效率,达到最佳的教学效果。 随着计算机技术的迅猛发展及计算机的大量普及,很多中学配备了微机室、专用多媒体教室,建立电教中心,为计算机辅助教学(CAI)打下了硬件基础。CAI在现代教学中有着重要的地位,如何充分发挥CAI在中学教学中的作用,是摆在广大中学教育工作者面前的一个重要课题。笔者就CAI在中学物理教学中的应用以及对中学物理教学中的影响谈几点拙见。 一个优秀的CAI课件应充分地发挥计算机多媒体的特点,在制作过程中应注重视听教学的特征,突出启发教学,还应注重教学过程的科学性和合理性,应做到构图合理、美观,画面清晰、稳定,色彩分明、色调悦目,动画流畅,真实感强,解说清晰动听,功能丰富,演播运行安全可靠。 一.在制作多媒体CAI课件时应具备以下几点: ⒈加强课前研究,建立素材资源库 课前研究是教学的准备,只有课前进行充分的研究,才能取得理想的教学效果。在备课过程中,走素材资源库和制作平台相结合的思路。物理教师应根据教学实际,充分利用现有条件下的网络信息资源素材库和教学软件,以及相关的CD、VCD资源,选取适合教学需要的内容来制作自己的课件,从而适应不同教学情境的需要。同时,教师可在Internet上建立自己的网站,把以网页浏览形式制作的CAI课件、教案、论文等放在该网站中,并把在教学过程中制作的每一个课件链接起来,从而逐步建立一个完整的教学课件体系。 2.选择合适的制作工具 为了创作出一个成功的多媒体CAI课件,工具选择得好可以大大地加快开发进程,节省开发人力和资金,有利于将主要精力投入到脚本和软件的设计中去。选择多媒体制作工具,主要应从以下几个方面综合考虑:编程环境、超级链接能力、媒体集成能力、动画创作能力、易学习性、易使用性、文档是否丰富等 3.应充分发挥交互作用

共同本征函数解读

§4.3 共同本征函数 1、测不准关系的严格证明 在算符A ?的本征态中测量力学量A ,可以得到确定值,并不出现涨落。如果测量B ,则不一定能得到确定值。 例如,由于粒子的波粒二象性,其位置与动量不能够同时完全确定,而其不确定度由下式确定 ≥???p x 对于比较普遍的情况,设有A ?,B ?两个力学量,令A A A -=???,B B B -=???, (注意在经典力学中A A A -=?) 因为A ?,B ?是厄米算符,所以A ??,B ??也是厄米算符。 考虑积分? ≥?-?=0d |)??(|)(2τψξξB i A I ,ξ为实数,积分区间取为整个空间。 展开上式,有 ??????+??-??-??=?-??-?=τψψτψψψψξτψψξτ ψψξψψξξd )?(?d ]?)?()?(?[d ?(?(d ]??[??()(****2**B B B A A B i A A B i A B i A I )()()()))()() 因为A ??,B ??均是厄米算符,所以有 ? ???+??-??-?=τψψτψψξτψψξξd ?d )????(d )?()(2**2*2)(B A B B A i A I (利用了厄米性) 而A B B A A A B B B B A A A B B A ????)?)(?()?)(?(????-=-----=??-?? 对? ???+??-??-?=τψψτψψξτψψξ ξd ?d )????(d )?()(2**2*2 )(B A B B A i A I ,则 0?)????()?()(222≥?+--?=)(B A B B A i A I ξξξ 令K i A B B A ?????=-,则 0??)?(222≥?++?)(B K A ξξ 这是有关实参数的一元二次方程。 其有解的条件可由判别式给出,即

43多项式方法求特征值问题

4.3多项式方法求特征值问题 4.3.1 F-L 方法求多项式系数 我们知道,求n 阶方阵A 的特征值就是求代数方程 0||)(=-=I A λλ? (4.3.1) 的根。)(λ?称为A 的特征多项式。上式展开为 n n n n p p p ++++=--.....)(2211λλλλ? (4.3.2) 其中n p p p ,...,21为多项式)(λ?的系数。 从理论上讲,求A 的特征值可分为两步: 第一步 直接展开行列式|I A λ-|求出多项式)(λ?; 第二步 求代数方程0)(=x ?的根,即特征值。 《 对于低阶矩阵,这种方法是可行的。但对于高阶矩阵,计算量则很大,这种方法是不适用的。这里我们介绍用F-L (Faddeev-Leverrier )方法求特征方程(4.3.2)中多项式)(λ?的系数。由于代数方程求根问题在第2章中已经介绍,所以本节中解决特征值问题的关键是确定矩阵A 的特征多项式)(λ?,所以称这种方法为多项式方法求特征值问题。 记矩阵A=n n ij a ?)(的对角线元素之和为 nn a a a trA +++=...2211 (4.3.3) 利用递归的概念定义以下n 个矩阵:),....,2,1(n k B k = ???????????????-=-=-=-==----),(................),(...............),(),(,11112231121I p B A B I p B A B I p B A B I p B A B A B n n n k k k n n k k trB n p trB k p trB p trB p trB p 11312133221 1===== (4.3.4) 可以证明,(4.3.4)式中,,...,2,1,n k p k =即是所求A 的特征多项式)(λ?的各系数。用()式求矩阵的特征多项式系数的方法称为F-L 方法。相应特征方程为: 0).....()1(2211=-------n n n n n p p p λλλ (4.3.5) 而且可证矩阵A 的逆矩阵可表示为 )(1111I p B p A n n n ----= (4.3.6) ? 例1 求矩阵 ??????????=324202423A

§4.9厄密算符的基本性质

§4.9厄密算符的基本性质 一、厄密算符 设u 和v 是任意两个函数,如果算符F ∧ 满足* *()u F vdx F u vdx ∧ ∧ =? ? ,式中x 代表u 和v 的所有变数,积分是在所有变数的全部区域进行的,则称算符F ∧ 为厄密算符或自轭算符。 我们前面已讨论过的坐标算符、动量算符和 能量算符都是厄密算符 例:证明动量算符x p i x ? =-?是厄密算符 证明: * ** ()x u p vdx u i vdx i u vdx x x ∧ +∞ +∞ +∞ -∞ -∞ -∞ ? ? =-=-??? ?? * *** =[()] =|i u v dx u vdx x x i u v i u vdx x +∞ +∞-∞-∞+∞+∞-∞-∞ ??--??? -+???? 因为u 和v 都是满足波函数标准条件的波函数,它们在无穷远处的边界应为0,上式右边 第一项为0,而第二项可写为 * *()()x i u vdx p u vdx x +∞ +∞-∞ -∞?-=?? ?,所以有 * *()x x u p vdx p u vdx ∧ +∞ +∞ -∞ -∞ =? ? 故动量算符x p 是厄密算符 二. 厄密算符的性质 1. 厄密算符的本征值都是实数,表示为*λλ= 证明:设F 为厄密算符,λ表示它的的本征值,u 表示对应的本征函数,即: Fu u λ= 由厄密算符的定义式可得:**()u F udx F u udx ∧ ∧ =???**()u udx u udx λλ=??,即 ***u udx u udx λλ=??

由此得:*λλ=即λ是实数。 2. 厄密算符的本征值代表力学量的确定值 表示力学量的算符的本征值是测量该力学量可能得到的数值,这些数值必须是实数,因此表示力学量的算符必须是厄密算符。根据波函数应满足态叠加原理的要求,表示力学量的算符还必须是线性的,因此表示力学量的算符应是线性厄密算符。 那么体系处于什么状态时,力学量具有确定的数值呢? 设体系处于波函数(,)r t ψ所描写的状态。测量力学量为F ,它是一个线性厄密算符。一般说,可能出现不同结果,各有一定的几率,多次测量结果的平均值F 趋于一确定值,每次具体测量的结果围绕平均值有一个涨落,定义为 22*2*()()()()F F F F d F F d ττ?=-=ψ?ψ=ψ??ψ?? 因为F 是一个厄密算符,F 是一个实数,因此F ?也是一个厄密算符。因此 2*2**2 ()()()()() =()0 F F d F F d F F d F F d ττττ?=ψ?ψ=ψ??ψ=?ψ?ψ-ψ≥???? 当每次测量结果都相同,测量力学量F 所得结果完全确定时,涨落2()F ?=0。 这种状态称为力学量算符F 的本征态。在这种状态下()0F F F λ-ψ=?ψ=ψ

量子体系本征值问题的解法

量子体系本征值问题的解法 关键词:本征值;分析解法;矩阵解法;代数解法;线性谐振子 摘要:处理量子体系的本征值和本征态是量子理论的中心问题,对其求解方法进行研究具有一定的实际意义。本文对量子体系本征值问题的求解进行归纳与总结。对于处理本征值问题的常见方法(解析法、矩阵法),给出例证说明。另外,基于代数的方法,采用升降算符处理一维线性谐振子的本征值和本征态,进而推广到利用升降算符处理二维以及三维线性谐振子问题,得到二维以及三维线性谐振子的本征值;进一步基于代数方法对角动量的本征值问题进行研究。 Solution methods of the eigenvalues for Quantum System Keywords:Eigenvalue; Analytical method; Matrix method; Algebraic method; Linear harmonic oscillator Abstract:Solving eigenvalues and eigenfunctions for the quantum systems is mainly contents in the quantum theory. There are a lot of processing methods such as analytical method, matrix method and factorization method, and so on. In this paper, several kinds of different methods on solving eigenvalues for the quantum systems are given and compared, and further summarized. Furthermore, on the basis of algebraic solution, the expanding resolutions were obtained for one-dimensional linear harmonic oscillator, the two-dimensional linear harmonic oscillator, three-dimensional linear harmonic oscillator, and even n-dimensional linear harmonic oscillator. Moreover, the eigenvalues and eigenstates of the angular momentum were shown by algebraic solution. . 引言

372-关于力学量算符本征函数的正交归一性

关于力学量算符本征函数的正交归一性 一、余雷,力学量算符本征函数的正交归一性,贵州师范大学学报(自然科学版),1998年第16卷第1期 量子力学中关于力学量的基本假设要求: 设某力学量用算符A ?表示,则 n n n a A ??=?(分立谱) (1) a a a A ??=?(连续谱) (2) 1 力学量用线性厄米算符表示; 2 表示力学量算符的本征函数构成完全集,即任一波函数ψ可用力学量算符A ?的本征函数n ?或a ?展开: n n n c ?ψ∑= (3) da a c a ?=?ψ)( (4) 3 几率描述: 在(3)或(4)的ψ态中测力学量A 所得的值必在(1)的n a 或(2)的a 之内。若ψ、n ?、a ?均是归一化的,则在(1)中测得A 的值为n a 的几率为2n c ;在(4)中测A 得的值在da a a +→内的几率为da a c 2)( 同一力学量算符的线性无关的本征函数的归一化系数一般不同。 例如,一维线性谐振子的能量算符的本征函数的归一化系数n N 与量子数n 有关;轨道角动量平方算符、轨道角动量第三个分量算符的共同本征函数的归一化系数与量子数 和m 有关;当然,也有例外,如一维无限深势阱能量算符的本征函数 其归一化系数a A n 1=,所有线性无关的本征函数的归一化系数相同。 又如,轨道角动量第三个分量算符的本征函数??ψim m m e A =)(的归一化系数为 π 21=m A ,也是所有线性无关的本征函数的归一化系数相同;再有,动量分量算符的所

有线性无关的本征函数的归一化系数相同。 ●力学量算符线性无关的本征函数并不全部正交 力学量算符是厄米算符,厄米算符具有属于不同本征值的本征函数正交的重要性质,而对于同一本征值的多个线性无关的本征函数(有简并情况)并不一定正交。此时,对属于同一本征值的多个线性无关的本征函数,可以把它们线性叠加为个数相同的线性无关且相互正交的本征函数。正交化方法很多,常用的方法是选择一组力学量,这组力学量算符间两两对易,它们的本征值能对简并的本征函数分类,此时,正交性问题自动得到解决。 ●力学量算符本征函数的正交归一性是力学量几率描述假设的要求 几率描述假设要求力学量算符的本征函数正交 几率描述假设要求力学量算符的本征函数是归一化的

372-关于力学量算符本征函数的正交归一性

关于力学量算符本征函数的正交归一性 一、余雷,力学量算符本征函数的正交归一性,贵州师范大学学报(自然科学版),1998年第16卷第1期 量子力学中关于力学量的基本假设要求: 设某力学量用算符A ?表示,则 n n n a A ??=?(分立谱) (1) a a a A ??=?(连续谱) (2) 1 力学量用线性厄米算符表示; 2 表示力学量算符的本征函数构成完全集,即任一波函数ψ可用力学量算符A ?的本征函数n ?或a ?展开: n n n c ?ψ∑= (3) da a c a ?=?ψ)( (4) 3 几率描述: 在(3)或(4)的ψ态中测力学量A 所得的值必在(1)的n a 或(2)的a 之内。若ψ、n ?、a ?均是归一化的,则在(1)中测得A 的值为n a 的几率为2 n c ;在(4)中测A 得的值在da a a +→内的几率为da a c 2)( 同一力学量算符的线性无关的本征函数的归一化系数一般不同。 例如,一维线性谐振子的能量算符的本征函数的归一化系数n N 与量子数n 有关;轨道角动量平方算符、轨道角动量第三个分量算符的共同本征函数的归一化系数与量子数 和m 有关;当然,也有例外,如一维无限深势阱能量算符的本征函数 ?????<+>=a x a x a n A a x x n n )(2sin 0)(πψ

其归一化系数a A n 1=,所有线性无关的本征函数的归一化系数相同。 又如,轨道角动量第三个分量算符的本征函数??ψim m m e A =)(的归一化系数为π 21=m A ,也是所有线性无关的本征函数的归一化系数相同;再有,动量分量算符的所有线性无关的本征函数的归一化系数相同。 ● 力学量算符线性无关的本征函数并不全部正交 力学量算符是厄米算符,厄米算符具有属于不同本征值的本征函数正交的重要性质,而对于同一本征值的多个线性无关的本征函数(有简并情况)并不一定正交。此时,对属于同一本征值的多个线性无关的本征函数,可以把它们线性叠加为个数相同的线性无关且相互正交的本征函数。正交化方法很多,常用的方法是选择一组力学量,这组力学量算符间两两对易,它们的本征值能对简并的本征函数分类,此时,正交性问题自动得到解决。 ● 力学量算符本征函数的正交归一性是力学量几率描述假设的要求 几率描述假设要求力学量算符的本征函数正交 几率描述假设要求力学量算符的本征函数是归一化的

本征值问题

微分方程的本征值问题 电子科技大学 物理电子学院 喻志远2009-11-12 Equation 0222=+f k dx f d 的边界是 10≤≤x Boundary Condition: f (0) =0, f (1)=0 General Solution: f (x) = Acoskx+Bsinkx From boundary Condition A=0, k=n π,所以最小本征值为π 由差分公式: 022211=++?+?i i i i f k h f f f 2 21120 k h where f f f i i i ?==?+?+?αα 当网格点取为3,如左图: 有矩阵方程: 010*******=???? ????????????????????f f f ααα 由对应的行列式为零 ( ) 0)2(2=?αα222k h ?=α解出 k=3.0615, 5.6569, 7.391,为方程的本征值,f1,f2,f3 为本征向量。 本征向量定义:设L 是数域K 上的线性空间X 中的线性变换,如果对于λ∈K 存在一个非零向量ξ,使得L(ξ)=λξ,则称λ为L 的一个本征值或特征值,ξ为L 的属于λ的本征向量或特征向量。 设A 是数域K 上的n 阶方阵,λ是一个复数,则 A I ?λ 称为A 的特征矩阵,其中I 是单位矩阵,行列式0)det(=?A I λ,为特征方程,其根为A 的特征值。

将网格点由3逐步扩大到9, 用MatLab计算可以得到如下的数据: 网格数=网格点数+1 最小本征值 4 3.0615 5 3.0902 6 3.1055 7 3.1153 8 3.1257 9 3.1287 注:网格点数与矩阵的阶数相等。 可以绘出以下曲线 可以看出当矩阵的阶数增加,本征值与理论值之间的误差逐渐减小。其中兰色线为数据拟合后得到的数据。 Origin 曲线拟合 [2009-11-12 09:56 "/Graph1" (2455147)] Polynomial Regression for Data1_B: Y = A + B1*X + B2*X^2 + B3*X^3 + B4*X^4 + B5*X^5 Parameter Value Error ------------------------------------------------------------ A 3.2805 0 B1 -0.37498 0 B2 0.1723 0

力学量本征值问题的代数解法

第九章 力学量本征值问题的代数解法 本征值问题的解法: 分析解法,代数解法 §9.1 一维谐振子的Schr?dinger 因式分解法 升、降算符 一、Hamilton 量的代数表示 一维谐振子的Hamilton 量可表为 2 22 2 121x p H μωμ + = 采用自然单位(1===ωμ ), (此时能量以ω 为单位,长度以μω/ 为单位,动量以ωμ 为单位) 则 2 2 2 121x p H + = 而基本对易式是[]i p x =,。 令)(2 1ip x a +=,)(2 1ip x a -= + 其逆为)(2 1a a x += + ,)(2 a a i p -= + 。 利用上述对易式,容易证明(请课后证明) 1],[=+ a a 将两类算符的关系式)(2 1a a x += + ,)(2 a a i p -= + 代入一维谐振子的Hamilton 量2 2 2 12 1x p H + =,有 ??? ??+=??? ? ?+=+ 21?21N a a H 上式就是Hamilton 量的因式分解法,其中a a N +=?。 由于N N ??=+,而且在任何量子态ψ下 0),(),(≥==+ ψψψψa a a a N

所以N ?为正定厄米算符 二、Hamilton 量的本征值 下面证明,若N ?的本征值为n , ,2,1,0=n ,则H 的本征值n E 为(自然单位,ω ) ??? ? ? +=21n E n , ,2,1,0=n 证明:设|n >为N ?的本征态( n 为正实数),即 n n n N =? 利用1],[=+a a 及a a N +=?容易算出 ++=a a N ],?[,a a N -=],?[ 因此n a n a N -=],?[。 但上式 左边n na n a N n N a n a N -=-=??? 由此可得n a n n a N )1(?-=。 这说明,>n a |也是N ?的本征态,相应本征值为)1(-n 。 如此类推,从N ?的本征态>n |出发,逐次用a 运算,可得出N ?的一系列本征态 >n |,>n a |,>n a |2 ,… 相应的本征值为 n ,1-n ,2-n ,… 因为N ?为正定厄米算子,其本征值为非负实数。 若设最小本征值为0n ,相应的本征态为0n ,则 00=n a 此时 0000?n n a a n N ===+ 即0n 是N ?的本征值为0的本征态,或00 =n 。此态记为>0|,又称为真空态,亦即谐振子的最低能态(基态),对应的能量本征值 ( 加上自然单位)为2/ω 。

量子力学习题解答-第3章

第三章 形式理论 本章主要内容概要: 1. 力学量算符与其本征函数 量子力学中力学量(可观测量)用厄米算符表示,厄米算符满足 () * *??()()()()f x Qg x dx Qf x g x dx =? ? 或者用狄拉克符号,??f Qg Qf g =,其中(),()f x g x 为任意满足平方可积条件的函数(在x →±∞,(),()f x g x 为零)。 厄米算符具有实本征值的本征函数(系),具有不同本征值的本征函数相互正交,若本征值为分离谱,本征函数可归一化,是物理上可实现的态。若本征值为连续谱,本征函数可归一化为δ函数,这种本征函数不是物理上可实现的态,但是它们的叠加可以是物理上可实现的态。 一组相互对易的厄米算符有共同的本征函数系。而两个不对易的厄米算符没有共同的本 征函数系,它们称为不相容力学量。对任意态测量不相容力学量??,Q F ,不可能同时得到确定值,它们的标准差满足不确定原理 2 2 21??,2Q F Q F i σσ?? ??≥ ????? 2. 广义统计诠释 设力学量?Q 具有分离谱的正交归一本征函数系{}()n f x 本征值为{}n q ,即 ()*?()(), ()(), ,1,2,3,...n n n m n mn Qf x q f x f x f x dx m n δ===? 或 ?, n n n m n mn Q f q f f f δ== 这个本征函数系是完备的,即1n n n f f =∑ (恒等算符,封闭型),任意一个波函数可以 用这个本征函数系展开 (,)(),n n n x t c f x ψ=∑ 或n n n n n n f f c f ψ=ψ=∑∑ 展开系数为 * ()()(,)n n n c t f f x x t dx =ψ= ψ? 若(,)x t ψ是归一化的,n c 也是归一化的, 2 1n n c =∑。广义统计诠释指出,对(,)x t ψ态 测量力学量Q ,得到的可能结果必是Q 本征值中的一个,得到n q 几率为2 n c 。对系综测量力学量Q (具有大量相同ψ态系综中的每一个ψ进行测量)所得的平均值(期待值)为 2 n n n Q q c = ∑ 这与用*?Q Q dx =ψψ? 计算方法等价。 如果力学量?Q 具有连续谱的本征函数系 '*'?()(), ()()(), q q q q Qf x qf x f x f x dx q q δ==-? 任意一个波函数可以用这个本征函数系展开为

输运方程的本征值问题

输运方程本征值 无外源时,输运方程可以写成 0'1(,)(,')(;',') (,',',)'' t E v t E f E E E t dE d φφφφ∞Ω?=????Σ?+Σ→→∫∫?r r r ??r ?? (1) (,,,)E t φφ=r ?其中 简记为 1(,) '''''t E f d dE v t φφφφ?=????Σ+Σ?∫∫?r ? (2) 注意:积分中的f 是广义指示函数(或转移函数),散射源和裂变源 都包括在内。 把与时间无关的线性算符记为L ,则无外源输运方程(2) 可以简记为 1v t φφ?=?L (3) 分离变量,令 (,,,)(,,) ()E t E T t φ?=r ?r ? , 代入(2),并用(,,) ()E T t ?r ?除两边,得到: {} ''''' T v f d dE T T ?????????Σ+ΣΩ=∫∫? 左边是时间的函数,右边是位置,能量,方向的函数,两者怎能相等?只有两者都等于一个常数时才可能.故 {} ''''' T v f d dE T T ???λ? ?????Σ+ΣΩ==∫∫? 这就把原方程分离成了两个方程 T T λ?= (4) ) v λ ??=L (5a) (4)的解是 0 t T T e λ= (6)

其中的λ是方程(5)的本征值。这样我们就把求解与时间 有关输运方程的问题转化为求解定态方程(5)的本征值与 本征函数问题。 容易看出,方程(5)与定态输运方程的差别是其总截面 Σ增加了v λ;当0λ=时,两者没有差别。当0λ>时, 相当于俘获截面增大(因为积分号中的散射与裂变截面未 变,只能是俘获截面增大)。物理上是相应于一个超临界 系统,为了使其变成稳态,可以人为地加大其俘获截面。 由于这虚拟俘获 v λ符合1v 律,必然会造成能谱的吸收硬 化(算出的能谱比实际能谱硬),这是λ本征值的特点。 也可以采用k 本征值,此时方程为 ' 111'''' ()''''4 t s f v t f dE d E dE d k ????χν?π ?+??+Σ?=Σ+Σ∫∫∫∫??? (上式中将散射源和裂变源和分开写出,是因为要对裂 变源进行人为调整) 采用k 本征值,超临界时候,k >1,人为压低了裂变,使得 能谱变软 (算出的能谱比实际能谱软)。 除了λ本征值和k 本征值之外,常用的还有γ本征值。关于各种本征值 与相应的本征函数的讨论,可参考杜书华《输运问题的计算机模拟》一书的 第三章。 注:许多文献中把本文中的λ特征值称为α本征值。

第九章多体问题

第九章多体问题 迄今为止,我们的讨论墓本土局限于单拉子体系。本章将把讨论推广到多拉子休系。自然界实际存在的体来一般都是多杜子体来。因此童子力学多体问题的研究不仅有巨夭的理论意义,而且有极大的实际价值。 但是,应该指出,量子力学的多体问题远比单休问题复杂。这不仅因为,当拉子之问具有相互作用时,多拉子体系的薛定译方程一般无法求解,通常只能借助各种近似方法,按体来的各种不同性质以及和实比较时要求的绮确度,求近似解。而且还因为,多杜子体系,特All 是全同拉子休余,还具有新的单拉子休系所没有的特性。而这些特性又要求发展一些断的处理方法,比方二次量子化方法,等等。 另外还要指出,本章的内容不同于量子统计物理学。本章只限于讨论温度为零的情况,只讨论真空平均值或者纯量子态的平均值,不涉及系综平均值,不涉及温度。 本章将先讨论全同拉子的一般特性,然后讨论两个确单的多拉子休来一一氮分子和氮原子的问题,介绍海特(Heitler 卜伦敦(London)理论,托马斯(Thomas )-费米f Fermi)方法。再进一步讨论研究全同拉子体系最重要的表象一一杠子数表象,介绍二次量子化方法。以及自洽场理论,哈特利(Hart ree)一福克(Fock)近似,巴T (Bardeen)-库柏(Cooper)--许瑞弗(Schriffer )超导理论,玻戈留博夫(Bogoiiubov)-华拉ti (Valatin )u,v 正则变换方法,这是非微扰理论中最重要的方法之一。另外,还将介绍超流理论和近似二次量子化方法。本章的许多理论和方法、即使现在,仍然在许多领域中有重要的实月价值。 9.1全同粒子的性质 我们称质量、电荷、自旋、同位旋以及其他所有内案固有属性完全相同的粒子为全同杜子。例如所有的电子是全同粒子,所有质子是全同粒子,但质子和电子不是全同粒子。 全同粒子的最重要的特点是:在同样的物理条件下,它们的行为完全相同。因而用一个全同粒子代换另一个粒子,不引起物理状态的变化。 在经典力学中,即使是全同粒子,也总是可以区分的。因为我们总可以从粒子运动的不同轨道来区分不同的粒子。在量子力学中,由于波粒二象性,和每个粒子相联系的总有一个波。随着时间的变化,波在传播过程中总会出现重叠。在两个波重叠在一起的区域,无法区分哪个是第一个粒子的波,哪个是第二个粒子的波。也就是说,无法区分哪个是第一个粒子,哪个是第二个粒子。因此,全同粒子在量子力学中是不可区分的。我们不能说哪个是第一个粒子,哪个是第二个粒子。全同粒子的不可区分性,在量子力学中称为全同性原理。 从全同性原理出发,可以推知.由全同粒子组成的体系具有下述性质: (1)全同粒子体系的哈密顿算符具有交换对称性。 讨论一个由N 个全同粒子组成的体系,第i 个粒子的全部变量用i q 表示,i q 包括坐标、 自旋等等,体系的哈密顿算符是),,,,,,,,(?1t q q q q H n j i ,由于全同粒子不可区分性,将两个粒子 i 和]互换,体系的哈密顿算符保持不变: ),,,,,,,,(1t q q q q H n j i =),,,,,,,,(1t q q q q H n i j (9. 1 .1) (9.1.1)式表示哈密顿算符具有交换不变性。全同粒子体系的薛定愕方程是 =??t t q q q q i n j i ) ,,,,,,(1 ? ),,,,,,,,(1t q q q q H n j i ),,,,,,,,(1t q q q q n j i ? (9.1.2)

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

量子力学第四章习题

4-18 如果算符βα ?,?满足下列对易规则:1????=-αββα,求证:1?????-=-n n n n βαββα(n 为正整数)。 4-19 参考矢量情况下的斯密特正交化步骤,试阐述由属于同一本征值而并一定正交的本征函数构成正交函数的方法。 4-20 有两个归一化的但不是正交的波函数1φ及2φ,? =αφφdt 2*1(实数),10<<α,试将1φ及2φ进行叠加组成两个正交归一化的函数1ψ及2ψ。 4-21 证明一维谐振子不管处于哪一个定态,它的动量都没有确定值。 4-22 电子在原子大小范围(数量级为10-10m )内运动,试用测不准关系估计电子的最小能量。 4-23 质量为m ,速度为v ,能量为E=1/2mv 2的粒子沿x 轴方向运动,其位置测量的误差为x ?,设v x t /?=?,试由测不准关系 2 1≥???p x ,导出能量和时间的测不准关系 2 1≥???t E 4-24 求证力学量x 与F( p x )的测不准关系x p F F x ??≥???2))()((2/122 4-25 设),(?p x F 是x ,p 的多项式,证明[]x F i F p ??-=??,? ,[] p F i F x ??=??,? 4-26 计算:[]??????????? ???????r r p r p r p r p ?,?,1,,?,?,1,?2222 。 4-27 设算符B A ?,?不可对易,[]c B A ??,?=,但C ?和A ?及B ?可对易,即[][]0?,?,0?,?==C B C A ,试计算:[][][])?(,?,,?,?,??B f A e A B A B n λ 。其中n 为正整数,λ为参变量, f 为任何可以表示为正幂级数的函数。 4-28 设算符B A ?,?不可对易,[] c B A ??,?=但C ?和A ?及B ?可对易,即[][]0?,?,0?,?==C B C A ,试证Glauber 公式:C A B C B A B A e e e e e e e ? 2/1???2/1????==-+ 。 4-29 证明:[][][][][][] ++++=-A B B B A B B A B A e A e B B ?,?,??!31?,?,?!21?,????? (提示:考虑B B e A e f ???)(λλλ-=按λ展开,然后令=1) 4-30 设B A ?,?与[]B A ?,?对易,证明[][]B A B n B A n n ?,???,?1-= , [][] B A A n B A n n ?,???,?1-=

相关文档
相关文档 最新文档