文档库 最新最全的文档下载
当前位置:文档库 › 电刺激与蟾蜍骨骼肌收缩的关系(1)

电刺激与蟾蜍骨骼肌收缩的关系(1)

电刺激与蟾蜍骨骼肌收缩的关系(1)
电刺激与蟾蜍骨骼肌收缩的关系(1)

电刺激与蟾蜍骨骼肌收缩的关系

一、目的:1观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,熟悉仪器设备的操作方法。

2观察不同刺激强度时骨骼肌的收缩反应,明确阈下刺激,阈刺激,阈上刺激及最适刺激的概念,观察电刺激频率的变化对骨骼肌收缩形式的影响。

二、器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液,张力换能器,铁支架,刺激电极,肌槽等。

三、原理:略。

四、结果:

刺激强度与肌肉收缩之间的关系

如图:阈刺激为0.9v 最大刺激为2.5v

收缩期为0.12s 舒张期为0.90s 收缩总时辰为1.02s

刺激频率与肌肉收缩之间的关系

由1可知在f=1.0HZ 刺激强度为1.0v时为单收缩图像

当刺激间隔时间小于肌肉的收缩总时间即复合收缩。1/0.12=8.33 可知复合收缩满足f=2~8HZ。

f=7.0HZ,刺激强度为1.0v时为复合收缩图像。

当刺激间隔时间小于收缩期,为完全强直收缩。

f=20HZ >9HZ 刺激强度为1.0v时,为完全强直收缩图像。本组成员:邱静玲2010223376

舒扬2010223381

石秦林2010223379

李云娇2010222922

胡译心2010222959

黄琴2010222961

骨骼肌单收缩和复合收缩--生理学实验

骨骼肌单收缩和复合收缩 骨骼肌纤维受运动神经纤维的控制,神经纤维受到刺激后,其兴奋延神经纤维以动作电位的形式传导到相应的肌纤维,触发肌纤维收缩。若通过神经给予肌肉一次刺激,使肌肉产生一次收缩,称为单收缩。如果肌肉受到连续的刺激,则其收缩可出现复合现象。 本实验用蟾蜍的坐骨神经-腓肠肌标本,使用机-电换能器,通过powerLab系统来获得肌肉的收缩曲线,分析单收缩和复合收缩产生的机制与特点。 实验动物:蟾蜍 实验器材和药品:PowerLab 8S主机,生物电放大器,铁架台,标本盒,任氏液。蛙手术器械, 实验步骤: 1.标本制备:蟾蜍坐骨神经标本制备方法参见P18蟾蜍基本技术操作。将标本浸在任氏液中约5 分钟,待其兴奋性稳定后实验。2.仪器装置及程序设置:

⑴. 连接仪器(图3-4)。 图3-4. 骨骼肌单收缩和复合收缩的实验框图 其中,S1 和S2为刺激电极,与PowerLab的output I相连。⑵.参数设置:启动计算机,打开PowerLab主机电源,在桌面上单击Chart4 for windows图标,进入Chart应用程序窗口。 * 选择采样速度为40K/s,显示比例为500:1。 * 在Channel 1显示骨骼肌收缩曲线。放大器参数设置参见P38放大器参数设置。Range 为200mV, Low Pass为100Hz。如果在Bridge Amplifier设置对话框左侧的信号显示窗口中看不到输入信号,可用鼠标左键单击右侧的zero按钮,系统自动调整输入信号的零位。单击Bridge Amplifier设置对话框下方的units按钮,进入Units Conversion(单位转换)对话框。单位转换的方法参见P39信号幅度范围的设置和单位的转换。

电刺激与骨骼肌收缩反应的关系实验报告

人体机能学实验报告 姓名 张立鑫60专业 临床二系 年级2010级班次4班 赵文韬70日期2011年8月31日 郑维金73 钟原75 【实验名称】 电刺激月骨骼肌收缩反应的关系 【实验目的】 1 .掌握蟾蜍坐骨神经-腓肠肌标本的制备。 2. 通过电刺激蟾蜍的腓肠肌标本,观察电刺激强度与肌肉收缩反应的关系 3. 观察电刺激频率的变化对骨骼肌收缩形式的影响。 【实验对象】 蟾蜍 【实验药品和器材】 任氏液、蛙类手术器械、张力换能器、刺激电极、生物信号记录分析系统、 铁支架、肌槽等。 【实验步骤及方法】(详见书.) 1 .坐骨神经-腓肠肌标本制备。 2 .固定标本。 3 .仪器连接。 4 . BL-410的操作。 【实验结果】 刺激强度与肌肉收缩之间的关系阈刺激 最 犬 刺 激

【讨论与分析】 一、实验过程中的兴奋阈值是否会改变为什么 组员看法: 1.不会改变。组织里的各个细胞都是定的,都有各自的阈值,当刺激强度使得 组织里的每个细胞都产生兴奋时的最小刺激强度就是组织的阈值,所以组织 的阈值就是这个最小刺激强度值,所以是不会变的。 2.在实验过程中当标本没有失活时标本的兴奋阈值不会改变,兴奋阈值 是标本本身的钠离子通道活性决定的,在标本保持活性时,它的钠离子通 道活性是不会改变的。所以我认为当标本保持活性时,标本的兴奋阈值是不 会改变的。 3.会改变。因为细胞没发生一次兴奋后,会有一个绝对不应期,在此期 间无论多强的刺激也不能使细胞再次兴奋,即兴奋阈值无限大,故实验过 程中兴奋阈值发生改变。 二、为什么在一定范围内肌肉收缩的幅度会随刺激强度增大而增大 蟾蜍腓肠肌是由很多肌纤维组成的,它们的兴奋性高低不一,在一定范围内,较弱的刺激仅引起部分兴奋性高的肌纤维发生收缩,肌肉收缩幅度较 小,而较强的刺激则引起更多的肌纤维发生收缩,肌肉收缩幅度较大。故在 不超过肌肉最大收缩幅度的范围内,肌肉收缩的幅度会随刺激强度增大而增 大。 三、肌肉收缩张力曲线融合时,神经干和骨骼肌细胞的动作电位是否融合为什么 肌肉收缩张力曲线融合,说明这是一个强直收缩,强直收缩只能说明此时出现动作电位的频率很高,但是动作电位是不可能融合的,只能是在一个很 小的区域一个动作电位结束后产生另一个动作电位,并且神经传导都有一个 绝对不应期,这更能说明动作点位不能融合。 四、实验过程中注意要点讨论。

刺激坐骨神经引起骨骼肌收缩的全过程上课讲义

刺激坐骨神经引起骨骼肌收缩的全过程

1.刺激坐骨神经,引起骨骼肌收缩的全过程 A.AP的产生 在坐骨神经一端施加一个阈上刺激,使膜除极达到阈电位,Na+通道开放,Na+内流,引起膜的去极化和反极化,此时Na+通道迅速失活,K+通道通透性增加,K+ 外流,引起膜的复极化和超极化,动作电位产生,引起兴奋。 B.兴奋的传导 分为有髓纤维传导和无髓纤维传导。无髓纤维冲动传导的机制又称局部电流学说,指的是兴奋部位与邻近部位之间存在电位差,产生局部电流,其方向是在膜内电流由兴奋部位流向未兴奋部位,膜外由未兴奋部位流向兴奋部位。局部电流的流动使邻近部位除极达到阈电位,邻近部位兴奋。依此方式,兴奋沿神经纤维传导。有髓纤维冲动传导的机制又称跳跃传导学说,有髓纤维有髓鞘处称节间段,髓鞘间断处称郎飞节。节间段处因脂质厚,离子不能跨膜流动,故有髓纤维受刺激时,兴奋总是在郎飞节处产生,传导兴奋时总是在兴奋的郎飞节和邻近的郎飞节形成局部电流,使邻近的郎飞节兴奋,即兴奋的传导是从一个郎飞节跳跃到另一个郎飞节。这也是有髓纤维冲动传导比无髓纤维快的原因。 C.N-M接头处兴奋的传递 神经末梢的终末小支深入肌纤维膜的凹陷中,称为神经-肌肉接头。神经终末的膜构成接头前膜即终末膜,肌纤维膜称为接头后膜即终板膜。AP 传递至终末膜,膜上Ca2+通道开放,Ca2+内流,引起递质小泡前移,释 放递质乙酰胆碱,乙酰胆碱与终板膜上n型受体结合,n型受体是离子 通道偶联受体,结合后通道打开,Na+内流,K+ 外流,产生终板电位 EPP。EPP是局部电位,以电紧张的方式影响邻近肌膜,其强度积累达 到肌膜阈值后,引起肌膜发生动作电位,并沿肌纤维传导。 D.兴奋-收缩偶联 肌膜的兴奋通过T管膜传向肌细胞内三联体和肌节近旁,三联体处T管膜除极引起Ca2+内流,该信息传递给终末池上受体引起Ca2+的释放。 E.肌细胞的收缩 当肌肉收缩引起肌质内的Ca2+浓度升高时, Ca2+ 与肌钙蛋白的TnC结合,TnI与肌钙蛋白的结合力下降,原肌球蛋白变构移位,暴露出肌动蛋白 与横桥的结合位点。横桥与肌动蛋白结合,消耗ATP,拖动细肌丝向肌 节中央的M线方向滑行,肌节缩短,即肌肉收缩。 2.刺激、AP、RP、TP、锋电位、兴奋、兴奋性之关系 刺激:能为人体感受并引起组织细胞、器官和机体发生反应的内外环境变化统称为刺激 RP(静息电位): 细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差; TP(阈电位):细胞膜达到AP时的需要最小的膜电位水平; SP(锋电位):AP的一个过程之一,AP的除极和复极过程的前半部分进行极为迅速,且变化幅度很大,记录出来的尖波即为锋电位; AP(动作电位):在RP的基础上,产生的一种可传导的电位波动,包括锋电位和后电位两个过程; 兴奋是细胞受刺激产生AP的反应,只有细胞产生动作电位才能说它是兴奋; 兴奋性:细胞受刺激产生AP的能力。 3.从N-M接头传递和跨膜信号转导,谈谈细胞通讯过程;信号转导在生命活动中的意义 A.多细胞生物是由不同类型的细胞组成的社会,这个社会中的单个细胞间必须通过细

(功能性)电刺激

《低频电疗法》 见:南登崑主编.实用物理治疗手册.北京.人民军医出版社,2001,316-363 医学上把频率1000Hz以下的脉冲电流称作低频电流,或低频脉冲电流。应用低频脉冲电流来治疗疾病的方法称为低频电疗法。低频电流的特点是:①均为低频小电流,电解作用较直流电弱,有些电流无明显的电解作用;②对感觉神经和运动神经都有强的刺激作用;③无明显热作用。 低频脉冲电流在医学领域的应用已有一百多年的历史。但最早用“电”来治病要追溯到公元前420年的古希腊医生希波克拉底(Hippocrates)和公元前46年的古罗马医生Scribonius Largus,他们分别将一种放电的鱼(torpedo fish)给病人食用或放在病人患处来治疗头痛和痛风。1700年Dureney开始了用电流刺激蛙肌肉的生理实验。1831年法拉第(Michael Faraday)发明了感应电装置后,低频脉冲电流常用于治疗头痛、瘫痪、肾结石、坐骨神经痛,甚至心绞痛。19世纪后期和20世纪初是“电疗的黄金时代”,电生理学研究不断深入,多种低中频电疗法得到发明并广泛应用于临床。首先是被称为“电疗之父”的D.B.Duchenne 出版了基于电疗的电生理学著作,第一次描述肌肉运动点。然后,1909年法国人Louis Lapicque最早使用“基强度(rheobase)”和“时值(chronaxie)”二词(直到今天仍在沿用)。1916年Adrian首次描述了正常肌肉和病肌的强度—时间曲线。1950年间动电疗法问世。但在随后的本世纪中期,由于生物化学、药理学的进展,电疗一度被临床医生冷落。直到1965年Melzack和Wall提出闸门控制学说和70年代对阿片肽(内原性吗啡样物质)的研究,电疗才又重新受到重视。60年代,高压脉冲电流和电子生物反馈技术开始应用。1968年我国晶体管低频脉冲电针机研制成功,使电针迅速在全国推广普及,并用于针刺麻醉上。同年,Shealy等根据闸门控制学说推出脊髓电刺激疗法,以后相继开展了中枢性电刺激(大脑导水管周围灰质、丘脑、尾核、脑垂体埋入电极刺激法)的研究。70年代,Long和Shealy发明了TENS疗法,功能性电刺激和音乐电疗也在同期开始应用。80年代以来,随着大规模集成电路和计算机技术的应用,又开发了很多功能先进、体积小巧、使用方便的电疗设备,在功能性电刺激、肌电生物反馈及镇痛的研究和应用上取得了很大的进展,使得电疗尤其是低频脉冲电疗在临床上得到了更加广泛的应用。 第一节概述 一、低频电流的分类及各参数的意义 ㈠低频电流的分类 1.按波型:有三角波、方波、梯形波、正弦波、阶梯波、指数波等。 2.按有无调制:分为调制型和非调制型。 脉冲电流可以被调制,如图3-1-2。常见的调制方式有:波幅调制、相位调制、波宽调制、频率调制。还有一种较少见的浪涌调制(surge)或称为斜面调制(ramp),其原理见图3-1-3。可以用几种方式同时调制一个脉冲电流。 有两个概念与调制有关:列(train)和群(burst),在后面将会用到。一列脉冲波是未

实验九 骨骼肌的单收缩与复合收缩

实验九骨骼肌的单收缩与复合收缩 [实验目的] 1.观察刺激频率与肌肉收缩形式之间的关系,理解形成复合收缩与强直收缩的条件。 2.巩固蟾蜍坐骨神经-腓肠肌标本制备技能。 [实验原理] 肌肉兴奋的外在表现是收缩。给肌肉一个有效刺激,肌肉将发生一次收缩,称为单收缩。单收缩一般要经历潜伏期、收缩期和舒张期三个过程。若给予两个或两个以上的阈刺激时,可因刺激的频率不同而呈现不同的收缩形式。如果两个或多个刺激的间隔大于该肌肉单收缩的全部时间,则引起波型上互相分开的两个或多个单收缩;若后一个刺激落在前一次收缩的舒张期,就会形成两个或多个单收缩不同程度的总合,其收缩幅度比单收缩高。在一定范围内,刺激间隔越小,收缩幅度就越高,称为复合收缩。若多个刺激引起波型呈锯齿状的收缩曲线,称不完全强直收缩,若多个刺激间隔进一步缩小,使后一个刺激落在前一个收缩的收缩期内,肌肉就处于完全持久的收缩状态,产生一个没有舒张期的持续的收缩曲线,叫做完全强直收缩。 [实验动物] 青蛙或蟾蜍 [主要器材及试剂] 中式小剪、眼科剪、普通镊子、探针、锌铜弓、玻璃分针、玻璃蛙板、棉线、RM6240生理记录系统、张力换能器烧杯1个、任氏液。 [实验步骤和观察项目] 1.制备坐骨神经腓肠肌标本 (具体方法见实验一)。 2.连接仪器并装置标本 将换能器的输出线接至RM6240生理记录装置的2通道,电刺激信号接至肌槽的电极上。然后把制备好的坐骨神经-腓肠肌标本股骨固定在肌槽上。将固定肌肉的棉线另一端接在张力换能器上,保持适度松紧,将坐骨神经搭在肌槽的电极上即可开始实验。 3.RM6240生理记录系统的操作步骤 开机进入RM6240系统,点击“实验”菜单,选择生理科学实验菜单中的“刺激强度对骨骼肌收缩的影响”或“刺激频率对骨骼肌收缩的影响”,系统进入信号记录状态。重要参数设定如下:通道模式—张力;采集频率400—1kHz;扫描速度—1s/div;灵敏度10—30g,;时间常数—直流;滤波常数—100Hz。 4.观察项目

肌肉收缩实验报告

骨骼肌收缩实验 一.实验目的 1.肌肉标本收缩现象的描记及单收缩的分析,获得该肌肉收缩的阈值。 2.了解刺激强度对骨骼肌收缩的影响。 3.学习掌握刺激器和张力换能器的使用。 4.加强对神经和肌肉了解,熟练解剖。、 二.实验原理 1.肌肉标本收缩现象的描记 利用刺激器可诱发蛙的离体神经肌肉标本发生兴奋收缩现象,可利用适当的参数和图形,客观、详细、准确地描述收缩的生理过程与现象。 骨骼肌受到一次短促的阈上刺激时,先是产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。收缩的全过程可分为潜伏期、收缩期和舒张期。在一次单收缩中,肌峰电位的时程(相当于绝对不应期)仅1~2毫秒,而收缩过程可达几十甚至上百毫秒(蛙的腓肠肌可达100毫秒以上)。 2. 张力换能器 换能器是一种能将机械能、化学能、光能等非电量形式的能量转换为电能的器件或装置,并线性相关。利用物理性质和物理效应制成的物理换能器种类繁多,原理各异。张力换能器是一种能把非电量的 生理参数如力、位移等转换为电阻变化的间接型传感器,属于电阻应变式传感器。通常由弹性元件、电阻应变片和其他附件组成。弹性元件采用金属弹性悬梁,可根据机械力的大小选用不同厚度的弹性金属。弹性悬梁的厚度不同,张力换能器的量程亦不同。两组应变片r1、r4及r2、r3分别贴于梁的两面。两组应变片中间接一只调零电位器,并用5~6v直流电源供电,组成差动式的惠斯登桥式电路(非平衡式电桥)输出电压值与应变片所受力的大小成正比,即力的变化转换成电桥输出电压的变化。此电信号经过记录仪器的放大处理,就能描记出肌肉收缩变化的过程。 实验时,根据测量方向将换能器用"双凹夹"固定在合适的支架上。但由于双凹夹在支架上移位不方便,很难在小范围内做出精细的移位;移位不当,可能引起标本的损伤和换能器的损坏。故现多采用"一维微调固定器",由上下位置调节钮控制,可在小范围内(上下)精细的移位。这不仅方便了实验操作,也有利于前负荷的控制。测量的方向,即力与位移的方向,要与张力换能器弹性悬梁的前端上下移动的方向保持一致。使能量转换和线性关系良好,符合张力换能器设计与使用上的要求。一般张力换能器的调零电位器设计为暗调节,为了方便使用,其暗调节孔朝上,故张力换能器有暗调节孔的一面为上。 3. 影响骨骼肌收缩效能的因素 肌细胞最本质的功能是将化学能转变为机械功,产生张力和缩短。肌肉收缩效能表现为收缩时产生的张力和/或缩短程度以及产生张力或缩短的速度。横纹肌的收缩效能由收缩前或收缩时承受的负 荷、自身的收缩能力和总和效应等因素决定的。(所谓总和指骨骼肌收缩的叠加效应)通过收缩的总和,骨骼肌可快速调节其收缩强度,而心肌则不会发生总和。由于在体的骨骼肌的收缩是受神经控制的,故收缩的总和是在中枢神经系统的调节下完成的。它有两种形式,即运动单位数量的总和与频率效应的总和。 4. 刺激强度与骨骼肌收缩反应 利用电脉冲刺激离体的神经肌肉标本,可观察到收缩总和的现象。实验证明刺激增加,参与收缩的运动单位增加,收缩的强度亦增加。刺激支配腓肠肌的坐骨神经或直接刺激腓肠肌时,不同的刺激强度会引起肌肉的不同反应。当全部肌纤维同时收缩时,则出现最大的收

生理实验报告蟾蜍骨骼肌生理

人体解剖及动物生理学实验报告 实验名称蟾蜍骨骼肌生理 学号 系别 组别 同组 实验室温度 实验日期2015年5月7日

一、实验题目 蟾蜍骨骼肌生理 A蟾蜍腓肠肌刺激强度与骨骼肌收缩反应的关系 B蟾蜍骨骼肌单个肌肉收缩分析(潜伏期、收缩期和舒期的确定) C蟾蜍腓肠肌刺激频度与骨骼肌收缩的关系 二、实验目的 确定蟾蜍骨骼肌收缩的 (1)阈水平和最大收缩以及刺激强度与肌肉收缩之间的关系曲线 (2)收缩的三个时期:潜伏期、缩短期、舒期 (3)刺激频度与肌肉收缩的关系 三、实验方法 1、蟾蜍坐骨神经-骨骼肌标本的制作及电路连接 1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的做个神 经及小腿的腓肠肌,注意不要将胫神经与腓神经分离。神经端结扎后,剪去无 关分支后游离至膝关节处;肌肉端结扎在肌腱上,将腓神经也一起结扎,结扎 线留长。保留膝关节,剪去腿骨,将标本离体。注意保持神经肌肉湿润。 2)用大头钉将标本的膝关节固定于标本盒R2和R3两记录电极之间的石蜡凹槽, 保证神经、肌肉与电极充分接触。神经中枢端接触刺激电极S1和S2,肌肉接 触记录电极R3和R4,之间接触接地电极。 3)肌肉的结扎线从标本盒中穿出,连接力换能器。注意连线尽量短,以减小阻力。 在实验过程中,注意标本的休息:将神经搭在肌肉上,用浸湿了任氏液的棉花 覆盖神经肌肉,保持湿润。但标本盒避免有过多的液体,防止短路。 4)换能器插头接RM6240通道1。刺激输出线两夹子分别连接标本盒的刺激电极 S1和S2,插头接刺激输出插口。如果需要记录肌肉的动作电位,则在肌肉所搭 置的记录电极上连接输入导线,注意接地,插头接通道2。 2、蟾蜍骨骼肌生理各项数据测定 A蟾蜍腓肠肌刺激强度和骨骼肌收缩反应的关系

骨骼肌单收缩的分析

华南师范大学实验报告学生姓名:学号:200425010** 专业:生物科学年级、班级:200*生物科学1班 课程名称:动物生理学实验实验项目:骨骼肌单收缩的分析 实验类型:验证实验时间:2007年4月17日 实验指导老师:实验评分: 【目的要求】 1.观察骨骼肌单收缩过程。 2.分析骨骼肌单收缩的3个时期。 3.了解骨骼肌收缩的总和现象。 4.观察不同频率的阈上刺激引起肌肉收缩形式的改变。 【基本原理】 肌组织对于一个阈上强度的刺激,发生一次迅速的收缩反应,称为单收缩。单收缩的过程可分为3个时期:潜伏期、收缩期和舒张期。 两个相同强度的阈上刺激,相继作用与神经-肌肉标本,如果刺激间隔大于单收缩的时程,肌肉则出现两个分离的单收缩;如果刺激间隔小于单收缩的时程而大于不应期,则出现两个收缩反应的重叠,称为收缩的总和。当同等强度的连续阈上刺激作用与标本时,则出现多个收缩反应的叠加,此为强直收缩。当后一收缩发生在前一收缩的舒张期时,称为不完全强直收缩;后一收缩发生在前一收缩的收缩期时,各自的收缩则完全融合,肌肉出现持续的收缩状态,此为完全强直收缩。 【动物与器材】 蛙的坐骨神经-腓肠肌标本、常用手术器械、计算机采集系统、双针形露丝刺激电极、支架、双凹夹、肌槽、不锈钢盘或培养皿、滴管、任氏液、橡皮泥、棉线。【方法与步骤】 1、制作标本 2、安装连接设备 3、打开powerlab,打开桌面软件chart5

4、设置桥式放大器(5mv,10Hz,调零) 5、设置刺激器(脉冲等,设置为手动,标记左通道1等),调出刺激面板 6、点开始,单收缩 7、收缩总和 启动波形显示图标,调节扫描速度为5~10mm/s,调节单收缩幅度为1.5cm左右。调节刺激设置为双刺激方式,并使两个阈上刺激强度相等。先调节刺激间隔大于单收缩的时程,然后逐渐缩短刺激间隔,分别观察并记录肌肉收缩形式的变化。【注意事项】 实验过程中要经常用任氏液湿润标本,每次刺激后应使肌肉休息30s。连续刺激不可超过5s。 【作业】 1、实验结果 图1:单收缩曲线图 实验条件:频率f(Hz)=1,脉冲=1ms振幅=2V,量程=5mV 潜伏期:10ms,收缩期:25ms,舒张期:48ms [2] 该单收缩幅度为0.75mv

肌肉收缩实验报告图文稿

肌肉收缩实验报告集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

骨骼肌收缩实验 一.实验目的 1.肌肉标本收缩现象的描记及单收缩的分析,获得该肌肉收缩的阈值。 2.了解刺激强度对骨骼肌收缩的影响。 3.学习掌握刺激器和张力换能器的使用。 4.加强对神经和肌肉了解,熟练解剖。、 二.实验原理 1.肌肉标本收缩现象的描记 利用刺激器可诱发蛙的离体神经肌肉标本发生兴奋收缩现象,可利用适当的参数和图形,客观、详细、准确地描述收缩的生理过程与现象。 骨骼肌受到一次短促的阈上刺激时,先是产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。收缩的全过程可分为潜伏期、收缩期和舒张期。在一次单收缩中,肌峰电位的时程(相当于绝对不应期)仅1~2毫秒,而收缩过程可达几十甚至上百毫秒(蛙的腓肠肌可达100毫秒以上)。 2. 张力换能器 换能器是一种能将机械能、化学能、光能等非电量形式的能量转换为电能的器件或装置,并线性相关。利用物理性质和物理效应制成的物理换能器种类繁多,原理各异。张力换能器是一种能把非电量的 生理参数如力、位移等转换为电阻变化的间接型传感器,属于电阻应变式传感器。通常由弹性元件、电阻应变片和其他附件组成。弹性元件采用金属弹性悬梁,可根据机械力的大小选用不同厚度的弹性金属。弹性悬梁的厚度不同,张力换能器的量程亦不同。两组应变片r1、r4及r2、r3分别贴于梁的两面。两组应变片中间接一只调零电位器,并用5~6v直流电源供电,组成差动式的惠斯登桥式电路(非平衡式电桥)输出电压值与应变片所受力的大小成正比,即力的变化转换成电桥输出电压的变化。此电信号经过记录仪器的放大处理,就能描记出肌肉收缩变化的过程。 实验时,根据测量方向将换能器用“双凹夹”固定在合适的支架上。但由于双凹夹在支架上移位不方便,很难在小范围内做出精细的移位;移位不当,可能引起标本的损伤和换能器的损坏。故现多采用“一维微调固定器”,由上下位置调节钮控制,可在小范围内(上下)精细的移位。这不仅方便了实验操作,也有利于前负荷的控制。测量的方向,即力与位移的方向,要与张力换能器弹性悬梁的前端上下移动的方向保持一致。使能量转换和线性关系良好,符合张力换能器设计与使用上的要求。一般张力换能器的调零电位器设计为暗调节,为了方便使用,其暗调节孔朝上,故张力换能器有暗调节孔的一面为上。 3. 影响骨骼肌收缩效能的因素

刺激坐骨神经引起骨骼肌收缩的全过程

1.刺激坐骨神经,引起骨骼肌收缩的全过程 A.AP的产生 在坐骨神经一端施加一个阈上刺激,使膜除极达到阈电位,Na+通道开放,Na+内流,引起膜的去极化和反极化,此时Na+通道迅速失活,K+通道通透性增加,K+ 外流,引起膜的复极化和超极化,动作电位产生,引起兴奋。 B.兴奋的传导 分为有髓纤维传导和无髓纤维传导。无髓纤维冲动传导的机制又称局部电流学说,指的是兴奋部位与邻近部位之间存在电位差,产生局部电流,其方向是在膜内电流由兴奋部位流向未兴奋部位,膜外由未兴奋部位流向兴奋部位。局部电流的流动使邻近部位除极达到阈电位,邻近部位兴奋。依此方式,兴奋沿神经纤维传导。有髓纤维冲动传导的机制又称跳跃传导学说,有髓纤维有髓鞘处称节间段,髓鞘间断处称郎飞节。节间段处因脂质厚,离子不能跨膜流动,故有髓纤维受刺激时,兴奋总是在郎飞节处产生,传导兴奋时总是在兴奋的郎飞节和邻近的郎飞节形成局部电流,使邻近的郎飞节兴奋,即兴奋的传导是从一个郎飞节跳跃到另一个郎飞节。这也是有髓纤维冲动传导比无髓纤维快的原因。 C.N-M接头处兴奋的传递 神经末梢的终末小支深入肌纤维膜的凹陷中,称为神经-肌肉接头。神经终末的膜构成接头前膜即终末膜,肌纤维膜称为接头后膜即终板膜。AP传递至终末膜,膜上Ca2+通道开放,Ca2+内流,引起递质小泡前移,释放递质乙酰胆碱,乙酰胆碱与终板膜上n型受体结合,n型受体是离子通道偶联受体,结合后通道打开,Na+内流,K+ 外流,产生终板电位EPP。EPP是局部电位,以电紧张的方式影响邻近肌膜,其强度积累达到肌膜阈值后,引起肌膜发生动作电位,并沿肌纤维传导。 D.兴奋-收缩偶联 肌膜的兴奋通过T管膜传向肌细胞内三联体和肌节近旁,三联体处T管膜除极引起Ca2+内流,该信息传递给终末池上受体引起Ca2+的释放。 E.肌细胞的收缩 当肌肉收缩引起肌质内的Ca2+浓度升高时,Ca2+ 与肌钙蛋白的TnC结合,TnI与肌钙蛋白的结合力下降,原肌球蛋白变构移位,暴露出肌动蛋白与横桥的结合位点。横桥与肌动蛋白结合,消耗ATP,拖动细肌丝向肌节中央的M线方向滑行,肌节缩短,即肌肉收缩。 2.刺激、AP、RP、TP、锋电位、兴奋、兴奋性之关系 刺激:能为人体感受并引起组织细胞、器官和机体发生反应的内外环境变化统称为刺激RP(静息电位): 细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差; TP(阈电位):细胞膜达到AP时的需要最小的膜电位水平; SP(锋电位):AP的一个过程之一,AP的除极和复极过程的前半部分进行极为迅速,且变化幅度很大,记录出来的尖波即为锋电位; AP(动作电位):在RP的基础上,产生的一种可传导的电位波动,包括锋电位和后电位两个过程; 兴奋是细胞受刺激产生AP的反应,只有细胞产生动作电位才能说它是兴奋; 兴奋性:细胞受刺激产生AP的能力。 3.从N-M接头传递和跨膜信号转导,谈谈细胞通讯过程;信号转导在生命活动中的意义 A.多细胞生物是由不同类型的细胞组成的社会,这个社会中的单个细胞间必须通过细胞通讯协调它们的行为,如生物体的生长发育、分化等。 细胞通讯有以下三种方式:

脑深部电刺激置入术

脑深部电刺激置入术护理 (一)概念 脑深部电刺激置入术是通过立体定向技术及神经电生理记录技术准确标定脑内的相关核团,将一根非常柔软的电极放置于靶点,外接一个电刺激程控器和电源,通过体外遥控调整高频刺激参数,抑制相应脑区异常活动的神经元,从而达到全面控制症状的目的。 (二)护理措施 术前护理 1、病情评估详细了解起病时间和起病形式、首发症状;观察意识、瞳孔及生命体征;评估有无神经功能受损。 2、一般护理鼓励患者采取主动舒适的卧位,维持和培养自己的业余爱好,积极进行床旁、房间内运动,鼓励患者生活自理。指导患者家属挟制进行肢体功能活动。 3、饮食护理给予低盐、低脂、低胆固醇、适量优质蛋白质的清淡饮食,多食蔬菜、水果和粗纤维食物,避免刺激性食物,戒烟、酒、槟榔等。 4、症状护理仔细倾听患者的主诉,了解并尽量满足患者的需要,教会患者用手势、字、画等表达自己的需求。有吞咽困难者应取半卧位进食,予流质或半流质饮食,进食时速度宜慢,必要时给予鼻饲流质饮食。鼓励患者进行鼓腮、撅嘴、吹吸等动作以锻炼和改善面部表情,锻炼面肌。 5、用药护理帕金森病药物治疗均存在长期服药后疗效减退、不良反应明显等特点,应指导患者及家属认真观察及记录用药情况(药名、剂量、时间、症状缓解的时间)、副作用出现的时间、类型、次数及有无精神症状等,以便医师能合理调整用药方案,避免患者及家属盲目用药。手术前3天遵医嘱将口服药逐渐减量,至手术前1天完全停药,以免药物影响掩盖症状,影响术中对效果的观察。 6、心理安抚与健康教育鼓励患者及家属正确面对帕金森病的病情变化与形象改变,合理解释相关知识,鼓励患者树立信心,积极配合治疗;与患者及家属共同探讨合理用药及护理措施,以争取达到最佳疗效。 7、做好安全防护,活动时注意防跌倒、坠床、烫伤等意外,静止性震颤、肌强直时应拉好床档,尽量避免使用约束带。 术后护理 1、密切观察病情密切观察患者的意识、瞳孔、生命体征、血氧饱和度的变化,

低频脉冲电刺激疗法对小儿运动发育迟缓的治疗效果分析

低频脉冲电刺激疗法对小儿运动发育迟缓的治疗效果分析 发表时间:2018-04-03T16:29:07.517Z 来源:《中国蒙医药》2018年第1期作者:姜海燕 [导读] 探讨和分析低频脉冲点刺激疗法对小儿运动发育迟缓治疗中的应用效果。 湖南省邵阳市第二人民医院湖南邵阳 422000 【摘要】目的:探讨和分析低频脉冲点刺激疗法对小儿运动发育迟缓治疗中的应用效果。方法:选取我院2016年2月至2017年2月运动发育迟缓患儿100例为研究对象,根据电脑随机分配方法进行分组,分为对照组以及研究组,两组均为50例,其中对照组采取常规的运动训练,而研究组则在对照组的基础上进行低频脉冲点刺激治疗方式,对比两组患儿之间的临床治疗效果。结果:研究组的总有效率明显高于对照组的总有效率,P<0.05,有明显差异有统计学意义。研究组患儿在精细运动发育商、粗大运动发育商以及总体发育商的评分均比对照组评分高,P<0.05,有明显差异有统计学意义。结论:使用低频脉冲点刺激疗法对小儿运动发育迟缓能够改善患儿运动发育功能,从而有效的提高治疗效果。 【关键词】小儿运动发育迟缓;治疗;低频脉冲点刺激 小儿运动发育迟缓通常是指在生长发育的过程中出现缓慢或顺序异常的现象,其发病率在6%至8%之间[1]。一般正常的儿童在发育期间能够正常的发育,而不利于儿童生长发育的主要因素都会严重的影响到患儿的健康发育,从而导致儿童的成长出现了异常。该病若是不及时的的得到救治,就会出现后遗症等障碍的发生,有资料显示[2],如果在早期的时候给予患儿治疗和干预,能够有效的改善患儿的健康,从而提高患儿的生活质量。本文将对低频脉冲电刺激疗法对小儿运动发育迟缓的治疗效果进行分析。现将报告如下。 1.资料与方法 1.1一般资料 选取我院2016年2月至2017年2月运动发育迟缓患儿100例为研究对象,分别根据电脑随机分配方法进行分组,主要分为对照以及研究组,两组均为25例,其中对照中男患儿占有26例,女患儿为24例,其年龄大致在3个月至3岁,平均年龄为(1.57±0.21)岁。研究组中男患儿占有27例,女患儿为23例,年龄主要大致在4个月至4岁,其平均年龄为(2.17±0.56)岁。对比两组患儿的性别和年龄,无明显差异,有统计学意义。P>0.05,具有对比性。 1.2方法 对照组所采用的方法为常规的运动训练,每个患儿之间具有一定的差异,对此医护人员要根据患儿的具体病情制定相关的计划,最基础的训练具体为:患儿需要每天一次进行运动,其运动的时间在超过半个小时在一个小时内,10天为一个疗程,一共需要进行8个疗程。而研究组所采用的方法主要在基础训练上进行低频脉冲点刺激治疗,其主要的具体过程为:采用脑电仿生电刺激低频脉冲物理治疗仪进行治疗,其时间为1.0-1.5s,通过连接患儿的四肢以及腰部进行刺激,以刺激的方式引起肌肉收缩反应,每天一次,一次二十分钟。十天为一个疗程,其以8个疗程为主。 1.4统计学处理 采用SPSS19.0统计学软件进行数据分析,计量数据采用均数±标准差表示,进行t检验,以P<0.05表示差异学统计学意义。 2.结果 2.1治疗前后两组患儿的精细运动发育商、粗大运动发育商以及总体发育商的评分 研究组中的各项指标治疗效果均比对照组的治疗效果高,P<0.05,差异有统计学意义。具体数据见表2. 3.讨论 近几年小儿运动发育迟缓的发病率逐年呈上升的趋势,小儿运动发育迟缓给患儿的发育带来严重的影响。若在该病的早期对患儿进行

骨骼肌的强直收缩实验报告记录

骨骼肌的强直收缩实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

刺激参数对 骨骼肌 收缩的影响实验 专业:生物科学 班级:周三下午班 学号:13941202 姓名:张优 刺激参数对骨骼肌收缩的影响实验

一.实验内容 1.刺激频率对骨骼肌收缩的影响。 2.肌肉兴奋-收缩时相关系(包括单刺激和频率递增刺激两种模式下肌肉兴奋与收缩时相关系)。 二.实验原理 1.刺激频率与骨骼肌收缩反应:运动神经元发放冲动的频率会影响骨骼肌的收缩形式和收缩强度。由于肌锋电位时程仅1~2ms,而收缩过程可达几十甚至几百ms,因而骨骼肌有可能在机械收缩过程中接受新的刺激并发生新的兴奋和收缩。新的收缩过程可以与上次尚未结束的收缩过程发生总和。 2.当骨骼肌受到频率较高的连续刺激时,可出现以这种总和过程为基础的强直收缩。如果刺激频率相对较低,总和过程发生于前一次收缩过程的舒张期,会出现不完全强直收缩;如提高刺激频率,使总和过程发生在前一次收缩过程的收缩期,就会出现完全性强直收缩。通常所说的强直收缩是指完全性强直收缩。 3.骨骼肌电兴奋与收缩的时相关系原理:骨骼肌兴奋在前,收缩在后。即在神经冲动的作用下,骨骼肌首先产生动作电位,然后发生收缩。在一次单收缩中,动作电位时程仅数毫秒,而收缩过程可达几十甚至几百毫秒。收缩的时程比兴奋的时程大很多。 三.实验装置 1.材料:青蛙一只 2.试剂:任氏液

3.器材:张力换能器(双凹夹和肌动器)、支架、玻璃针、镊子、手术剪、普通剪刀、神经剪刀、绳子、蜡盘、培养皿、胶头滴管、铜锌弓、生理信号采集系统、电脑、电极线、引导肌电电极。 刺激频率对骨骼肌收缩的影响实验装置图肌肉兴奋-收缩时相关系实验装置图 四.实验操作 (一)剥制坐骨神经-腓肠肌标本 1.处死青蛙:将探针在枕骨大孔处垂直插入,先是左右摆动探针以横断脑和脊髓的联系,再将探针向前方插入颅腔,旋转并摆动探针以捣毁青蛙的脑组织。将探针转向后方并插入脊椎管内。 2.除去青蛙上肢:将动物腹位放在蜡盘上。在两前肢的下方将皮肤做环周切开。用带齿镊或手撕去前肢以下的全部皮肤。剪开腹壁,在尾杆骨上方2~3节脊椎处,拦腰剪断脊柱和上半段蛙体。弃掉蛙体上半段后的标本置于盛有任氏液的培养皿中。 3.分离神经和腓肠肌:取一腿放于蛙板上,将标本背侧向上放置。顺神经走向剪去沿途的小分支,将神经从半膜肌和股二头肌的肌缝中分离出来。再使标本腹面向上,沿神经向腰部的走向,用玻璃针小心

骨骼肌单收缩与复合收缩

骨骼肌的单收缩和复合收缩 实验目的 观察刺激强度与骨骼肌收缩力量的关系及刺激频率对骨骼肌收缩形式的影响,了解单收缩、复合收缩的产生机制及其意义。 实验原理 肌肉组织具有兴奋性,受到刺激后会发生反应,表现为肌肉收缩。当刺激坐骨神经-腓肠肌标本时,在一定范围内,随着刺激强度的增大,参与兴奋的神经纤维和骨骼肌纤维的数目随之增多,骨骼肌的收缩力量也随之增强。改变刺激频率,肌肉可出现不同形式的收缩反应。肌肉受到一次刺激,爆发一次动作电位,引起一次收缩,称为单收缩。其全过程可分为潜伏期、缩短期和舒张期三个时期。单收缩是骨骼肌其他收缩形式的基础。当给予骨骼肌两个以上相继有效的刺激时,肌肉将出现连续的收缩。改变刺激频率,即可使肌肉出现不同形式的收缩反应。如果刺激频率较低,刺激间隔时间大于肌肉单收缩的持续时间,肌肉的反应表现为一连串的单收缩;若逐渐增加刺激频率,使刺激间隔时间逐步缩短,使后一次的收缩反应落在前一收缩的舒张期内,则引起锯齿状的不完全强直收缩;若继续增加刺激频率,使后一次收缩反应落在前一收缩的缩短期内,则出现收缩曲线呈平滑的完全强直收缩。这种肌肉收缩波形的部分或全部重合,又称为复合收缩。所以,有效刺激的频率决定了肌肉收缩的形式。在正常机体内骨骼肌的收缩几乎全是强直收缩。 实验器材和药品 Medlab生物信号采集处理系统,张力换能器,蛙类手术器械一套,蛙板,玻璃板,滴管,线,棉花,肌动器,铁支架;任氏液。 实验对象 蟾蜍。 实验方法和步骤 1.标本制备与安放 按实验1的方法制备出坐骨神经-腓肠肌标本,并在任氏液中浸泡10-15 分钟。然后将标本的股骨固定在肌动器上,腓肠肌跟腱用线扎紧并与换能器相连,调节好扎线的张力,不可过松或过紧,以使肌肉自然拉平为宜(保证肌肉一旦收缩,即可牵动张力传感器的应变梁);将坐骨神经轻放在肌动器电极上,并注意保持局部湿润。 2.仪器调试打开计算机,进入Medlab生物信号采集处理系统操作界面,对采样条件,刺激参数等进行设置。

刺激强度、频率对骨骼肌收缩的影响实验报告

实验一刺激强度、频率对骨骼肌收缩的影响实验报告一实验目的 1、观察不同刺激强度和刺激频率对骨骼肌收缩的影响。 2、了解阈刺激、阈上刺激、最大阈刺激的概念和意义。 3、了解单收缩、不完全强直收缩,完全强直收缩的概念和意义。 二实验原理 由许多肌纤维组成的腓肠肌在受到不同强度的刺激时引起不同反应。刺激强度过小时发生阈下刺激(subthreshold stimulus),引起肌肉发生收缩反应的最小刺激强度为阈刺激(threshold stimulus)。使肌肉发生最大收缩反应的最小刺激强度为最适刺激强度。 肌肉组织对阈上刺激发生的单收缩的过程分为:潜伏期、收缩期、和舒张期。 同一强度的阈上刺激相继作用于神经-肌肉标本,根据刺激间隔与单收缩时程的关系会产生不同的现象;当同一强度的阈上刺激连续作用于标本时,根据后一收缩与前一收缩发生的时期关系可出现:强直收缩、不完全强直收缩和完全强直收缩。 三实验器材 蟾蜍,粗剪刀,玻璃分针,探针,木锤,镊子,培养皿,任氏液,娃板,保护电极,肌槽,张力转换器(100g),锌铜弓,微机生物信号处理系统。 四实验步骤 制作标本(观看视频):毁脑脊髓、下肢标本制备、腓肠肌标本制备、连接仪器。 (一)1打开计算机软件中的模拟实验。 2打开电源,对蟾蜍腓肠肌进行单刺激,频率为1HZ,电压由逐渐增大到,记录 下每次增大电压后的收缩力。每个电压下刺激3次,记录数据。 3将图表截下来并画出数据表格进行分析。 (二)1打开计算机软件中的模拟实验。 2打开电源,对腓肠肌进行连续刺激,即使腓肠肌进行完全强直收缩。电压不变,频率由1HZ逐渐增加到12HZ,记录下每次增大频率之后的收缩力。 3将图表截下来并画出数据表格进行分析。 五结果 图1蟾蜍腓肠肌连续刺激时刺激频率和收缩力的关系 表1 蟾蜍腓肠肌单刺激时刺激强度和收缩力的关系 固定频率1HZ

4通道脉冲刺激器

课程名称:FPGA原理及应用 作业名称:基于FPGA的多通道脉冲刺激器任课教师:冯晓明 学院:信息与通信工程 姓名:蔡刚 学号:2013124019 日期:2014年6月10日

1、本作业时基于Altera公司Cyclone系列EP1C6型FPGA芯片的多通道视皮层刺激器。该刺激器由FPGA和外围电压/电流转换电路两部分组成。FPGA 内部包括刺激脉冲发生器和多个多路选择器:刺激脉冲发生器产生各种形式的脉冲序列信号;多路选择器作为控制端实现对信号的选择,每一通道对应一个多路选择器,增加多路选择器即可实现通道的增加。 FPGA输出的电压信号通过外围电压/电流转换电路,转换为电流信号后传入电极阵列。采用Altera公司Cyclone系列EP1C6型FPGA制作了四通道实验样机进行手部恢复训练。采用瘫痪的手作为实验对象,在瘫痪的手掌五指都包裹可控制运动的支撑杆,而支持杆通过直流电机来控制,然后通过FPGA来控制直流电机,直流电机来控制支撑杆运动,使手部得到恢复训练。 2、功能性电刺激( functional electrical stimulation,FES)广泛应用于心脏起搏和除颤,缓解疼痛、呼吸维持、尿失禁控制、人工视觉、人工听觉和癫痫治疗等。电刺激视皮层是功能性电刺激在视觉修复方面的重要应用。电刺激醒觉人大脑皮质的最早观察见于20世纪20年代德国神经外科学家的报告,点状刺激一侧视皮质则在对侧视野产生静止的点状光觉。早期的刺激器可产生光感,不能形成图像。最新的视皮层刺激器系统由微型数码摄像机获取图像,经微处理器编码处理,产生特定模式的电刺激信号经电极阵列刺激视皮层。虽然直接刺激皮层可能存在感染及诱发病灶性癫痛的危险,并且面临许多技术挑战,但该方法仍然具有可行性。美国犹他大学的Normannl等人,澳大利亚新南威尔士大学的Chelvanayagam等人在视皮层视觉修复方面作进行了大量的研究。多通道刺激器是视皮层视觉修复系统的核心部分,其功能是产生刺激视皮层的电流脉冲信号。为了研究人体对各种刺激的反应,刺激器可以输出各种形状与强度的刺激信号,例如,矩形脉冲波、双脉冲波、系列脉冲波及各类调制脉冲波等。电刺激脉冲也因参数不同而异,电刺激脉冲的基本参数包括刺激脉冲的宽度、幅度、重复频率或周期及刺激的 持续时间等。刺激器输出的要求,或是需要供给一定的功率,或是需要具有稳压或恒流输出。 早期的晶体管刺激器功能不全,控制不够精确,稳定性较差。普通数字式刺激器虽然克服了上述缺点,仍存在输出幅度较低,电路复杂,控制不便等缺点。FPGA ( filed programmable gate array,FPGA)是专用集成电路(ASIC)概念上的一个新型范畴和门类,与数字器件相比,它具有简洁、经济、高速度、低功耗等优势,用户可通过现场编程和配置来改变其内部连接和元件参数从而获得所需要的电路功能;而与普通的模拟电路相比,它又具有全集成化、实用性强,便于开发和维护升 级等显著优势。因此,利用FPGA来实现高速度、低功耗、小体积和易于控制的电刺激器是一种高效可靠的解决方案。 3、系统结构 多通道刺激器由FPGA和外围转换电路2部分组成,如图1所示。FPGA内部包括刺激脉冲发生器和多路选择器。刺激脉冲发生器产生各种形式的脉冲序列信号。多路选择器作为控制端实现对信号的选择,每一通道对应一个多路选择器,充分利用FPGA丰富的I/O资源,增加多路选择器即可实现通道的增加。FPGA输出的电压信号通过外围转换电路,转换为电流信号后传入电极阵列。

电刺激与骨骼肌收缩反应的关系实验报告

人体机能学实验报告 姓名 张立鑫2010221460专业 临床二系 年级 2010级 班次 4班 赵文韬2010221470日期 2011年8月31日 郑维金 2010221473 钟 原 2010221475 【实验名称】 电刺激月骨骼肌收缩反应的关系 【实验目的】 1 .掌握蟾蜍坐骨神经-腓肠肌标本的制备。 2 .通过电刺激蟾蜍的腓肠肌标本,观察电刺激强度与肌肉收缩反应的关系 3.观察电刺激频率的变化对骨骼肌收缩形式的影响。 【实验对象】 蟾蜍 【实验药品和器材】 任氏液、蛙类手术器械、张力换能器、刺激电极、生物信号记录分析系统、 铁支架、肌槽等。 【实验步骤及方法】(详见书P59.) 1 .坐骨神经-腓肠肌标本制备。 2 .固定标本。 3 .仪器连接。 4 . BL-410的操作。 【实验结果】 刺激强度与肌肉收缩之间的关系阈刺激 最 大 刺 激 O.OSOV 。們艸 0 LOOV 0 1L0V 0 120V

分隔的单收缩不完全强直收缩完全强直收缩 刺激频率与肌肉收缩之间的关系 【讨论与分析】 一、实验过程中的兴奋阈值是否会改变?为什么? 组员看法: 1.不会改变。组织里的各个细胞都是定的,都有各自的阈值,当刺激强度使得 组织里的每个细胞都产生兴奋时的最小刺激强度就是组织的阈值,所以组织 的阈值就是这个最小刺激强度值,所以是不会变的。 2.在实验过程中当标本没有失活时标本的兴奋阈值不会改变,兴奋阈值 是标本本身的钠离子通道活性决定的,在标本保持活性时,它的钠离子通道 活性是不会改变的。所以我认为当标本保持活性时,标本的兴奋阈值是不会 改变的。 3.会改变。因为细胞没发生一次兴奋后,会有一个绝对不应期,在此期 间无论多强的刺激也不能使细胞再次兴奋,即兴奋阈值无限大,故实验过程 中兴奋阈值发生改变。 二、为什么在一定范围内肌肉收缩的幅度会随刺激强度增大而增大? 蟾蜍腓肠肌是由很多肌纤维组成的,它们的兴奋性高低不一,在一定范围内,较弱的刺激仅引起部分兴奋性高的肌纤维发生收缩,肌肉收缩幅度较 小,而较强的刺激则引起更多的肌纤维发生收缩,肌肉收缩幅度较大。故在 不超过肌肉最大收缩幅度的范围内,肌肉收缩的幅度会随刺激强度增大而增 大。 三、肌肉收缩张力曲线融合时,神经干和骨骼肌细胞的动作电位是否融合?为什 么? 肌肉收缩张力曲线融合,说明这是一个强直收缩,强直收缩只能说明此时出现动作电位的频率很高,但是动作电位是不可能融合的,只能是在一个很 小的区域一个动作电位结束后产生另一个动作电位,并且神经传导都有一个 绝对不应期,这更能说明动作点位不能融合。

相关文档
相关文档 最新文档