文档库 最新最全的文档下载
当前位置:文档库 › 能量回收装置

能量回收装置

能量回收装置
能量回收装置

Recuperator能量回收装置

毋庸置疑,阿科凌与业内竞争对手相比的最大优势在于我们的专利设备— Recuperator能量回收装置。它是阿科凌专有的能量回收装置/工作转换机,阿科凌也因此成为全球唯一一家拥有专有能量回收装置的海水淡化水供应商。回流机属于等压能量回收装置,具体而言,它是一种活塞式工作转换机。

回流机结构紧凑,呈塔状结构,经过不断的改良,

如今已是第三个版本。阿科凌研发实验室不遗余力

地致力于回流机新功能的开发,并将于近期推出升

级版新产品。回流机目前仅应用于阿科凌的交钥匙

解决方案和自建自营的项目中,但计划不久将作为

第三方产品进行销售。回流机能实现高达98.5%

的废弃能量回收率,可大幅节省运营成本。

背景介绍

膜组件是反渗透海水淡化过程的核心部分,从一开

始,反渗透法海水淡化技术便致力于膜组件的开发

与改良。

阿科凌专功膜法脱盐项目,反渗透海水淡化过程的终极目标是获取材质与结构均符合脱盐市场需求(如高产出率、高脱盐率、抗高压、抗化学性和低给水污染物排放)的膜组件。

随着阿科凌系统设计技术的不断进步,加之阿科凌多年的反渗透系统运营经验、优化的预处理解决方案以及更高效设备和更优材质的采用,将成功节省运营成本并大幅降低系统的生命周期成本。

工作原理

回流机通过反渗透膜滤过的盐水给预处理海水加

压,加压过程由反渗透膜的盐水流量进行调节。

该装置包含两个直立的双向不锈钢塔,分别进行加

压转移和解压释放处理。预处理海水来自加压给水

箱,而给水箱为系统提供恒定的水流量和水压。

回流机能够将加压盐水的能量回收至反渗透膜及

增压泵—只需把加压盐水替换成相同流速的预处

理海水。

效能卓越

回流机能够将能耗降低至2—2.5 kWh/m3,极大地促进了行业的革新。该回流机已应用

于中国台湾、阿曼、埃及和加那利群岛等多元市场,实现高效的能量回收性能。

空调系统热回收技术简介

空调系统热回收技术简介 陈振乾施明恒 (东南大学能源与环境学院南京210096) 摘要:中央空调系统的热回收技术在建筑节能中具有重大的意义。本文分析了中央空调热回收技术原理和建筑中央空调排风及空气处理中的能量回收系统。 Brief Introduction to Heat Recovery in Air Conditioning System Chen Zhenqian and Shi Mingheng (School of Energy and Environment, Southeast University, Nanjing 210096) Abstract: Heat recovery technology in central air conditioning system is very important in building energy saving. The principle of heat recovery technology in central air conditioning system is analyzed. The energy recovery in exhaust air and air handling of building is introduced. 一、前言 随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,根据发改委能源组提供的材料,从1980年到1985年我们国家GDP的年增长率是10.7%,能源消费的增长率是10.9%,1986—1990年GDP年增长是7.9%,能源消费的增长率9.2%。1991—1995年GDP的年增长率是12%,能源消费的增长率是5.9%。1995—2000 年,GDP开始时8.3%,后来调整为8.6%,能源消费增长率是0.6%。2001—2005年GDP年增长率是9.47%,能源的消费增长是9.93%。其中2003年GDP的增长率是10%,能源是15.3%,2004年GDP是10.1%,能源增长率是16.1%。从这个数字可以看出,我们国家从1980—2005年GDP的增长一直在7.8—12%之前,基本上是这个范围内波动,而能源消耗的波动很大,特别是2003、2004年,能源的消费增长远远高于GDP的增长。和发展国家相比我国每平方米的能耗是他们的3倍,这说明在能源的高消费上必须要引起全社会的重视。目前中国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。而在空调采暖这部分能耗中,大约20%~50%由外围护结构传热所消耗(夏热冬暖地区大约20%,夏热冬冷地区大约35%,寒冷地区大约40%,严寒地区大约50%)。从目前情况分析,这些建筑在围护结构、采暖空调系统,以及照明方面,共有节约能源50%的潜力。采暖空调节能潜力最大,在暖通空调设计方面加以控制就能够有效的节能能源。而新风带来的潜热负荷可以占到空调总负荷的20%-40%,开发节能的新风系统是建筑节能领域的一项重大课题。因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。本文主要对空调系统的热回收技术原理进行分析介绍。 二、空调冷水机组余热回收 中央空调的冷水机组在夏天制冷时,一般机组的排热是通过冷却塔将热量排出。在夏天,利用热回收技术,将该排出的低品位热量有效地利用起来,结合蓄能技术,为用户提供生活热水,达到节约能源的目的。目前,酒店、医院、办公大楼的主要能耗是中央空调系统的耗电及热水锅炉的耗油消耗。利用中央空调的余热回收装置全部或部分取代锅炉供应热水,将会使中央空调系统能源得到全面的综合利用,从而使用户的能耗大幅下降。通常,该热回收一般有部分热回收和全部热回收。 1、部分热回收 部分热回收将中央空调在冷凝(水冷或风冷)时排放到大气中的热量,采用一套高效的热交换装置对热量进行回收,制成热水供需要使用热水的地方使用,如图1所示。由于回收的热量较大,它可以完全替

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

能量回收器原理

反渗透海水淡化系统中的能量回收装置 按照工作原理,流体能量回收技术主要分为流体非直接接触式和流体直接接触式两大类。 一、流体非直接接触式技术 在非直接接触式流体能量回收装置中,高低压流体对需要借助叶轮和轴来传递能量,即以机械能作为流体能量传递的中间环节,故又称为机械能中介式技术。能量转换过程为压力能——机械能——压力能。 采用流体非直接接触式技术的典型装置类型有逆转泵型、佩尔顿型叶轮和水力透平等。这种技术的节能机理是在回收高压流体中的压力能的同时减少高压泵的提升压力差来降低 系统的能耗。 1.逆转泵和佩尔顿叶轮型 逆转泵和佩尔顿叶轮型装置的原理类似,属于外力驱动泵式装置,即其加压泵由外电机驱动,通过轴传递的能量为辅助形式。高压废流体驱动透平中的叶轮,通过传动轴与泵连接,为新鲜低压流体加压,做功后的高压废流体丧失能量后排出。下图为此类装置的能量传递示意图 2.水力透平装置与逆转泵及佩尔顿叶轮机型最大的区别在于其透平叶轮和泵体叶轮安 装在同一壳体中,用高压浓盐水直接冲击透平叶片,通过轴功直接驱动加压泵工作,并尽可能减少中间传动轴的机械能损失,从高压流体回收后的能量作为唯一驱动力驱动泵的工作。下图为此装置的示意图 二、流体直接接触正位移技术 这种技术的节能机理是在产量不变的情况下减少通过高压泵的流量的方式来降低系统

的能耗。它是高低压流体直接交换压力能,而不需要机械辅助装置,又称正位移技术,能量的转换过程为压力能——压力能。按照运动部件的类型,这类装置可分为活塞式功交换器和旋转式压力交换器两种。 1.活塞式功交换器 活塞式功交换器自身结构简单,高压流体通过活塞为低压流体加压,同时活塞还可有效防止高低压流体的混流,而且活塞本山阻力非常小,传递效率接近100%。下图为其结构示意图 2.旋转式压力交换器 旋转式压力交换器主要部件是一个无轴的转子,沿轴向开有数个孔道,高低压流体在孔道中交换能量,并依靠转子的连续转动实现系统的连续运行。

(完整版)乏汽热能回收装置简介new

热力除氧器、疏扩、定扩排汽热能 回收装置简介 南京兆泉科技有限责任公司 二0一一年二月

南京兆泉科技有限责任公司 简介 南京兆泉科技有限责任公司位于风景秀丽的紫金山南麓—南京理工大学国家大学科技园,公司秉持“专业、创新、品质、服务”的创业理念,致力于节能及环保安全工程产品的研发、生产及应用。可为企业节能降耗提供最佳系统解决方案。公司具有本科以上学历的员工占90%,拥有一支既有高学历又有现场务实经验的技术研发队伍。在节能及安全系统工程方面拥有一批核心技术。 公司拥有多项余热回收利用的专利技术,如:一种含氧排汽热能回收装置,专利号:ZL 2005 2 0072109.2,证书号:第846345;一种能回收排汽热能的定排扩容器,专利号:ZL 2009 2 0072109.2,证书号:第1449853。特别擅长对低(无)压蒸汽和凝结水热能的回收利用,如锅炉除氧器含氧排放汽、连排及定扩闪蒸汽乏汽热能回收及企业装置排放的各类工艺排放汽和凝结水的回收利用。能为企业的创造良好的经济效益、改善企业的生产环境,为企业节能减排提供了有力的保障。 随着能源价格的上涨,蒸汽价格也在不断上升,为降低生产成本,增加市场竞争力,企业对各类低(无)压蒸汽热能和凝结水热能的回收利用显得十分迫切。目前本公司生产的乏汽热能回收装置和凝结水利用已在石化、钢铁、电厂、轻工、造纸等企业得到广泛应用,并获得用户的一致好评。 公司乏汽回收装置,目前已被中石化镇海炼化、中石化金陵分公司、中石化齐鲁分公司、金桐石化、鞍钢集团、攀钢集团、宝钢集团梅山钢铁、南钢集团、霍煤集团、华能山东黄台电厂、江苏利港电力有限公司等几十家大型企业广泛采用,运行情况良好。 公司为中石化、中石油物资装备中心设备供应商。公司已于2009年1月通过了ISO9001:2000国际质量体系认证,环保工程专业承包三级资质。公司将以先进、完善的产品体系,一流的产品质量,富有竞争力的产品价格和良好的售后服务,真诚地与用户携手合作,为国家节能减排事业作出贡献。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

热能回收装置

热偶现象是指两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。 据德国《科学画报》杂志报道,来自德国慕尼黑的一家芯片研发企业研究出的这种新型电池,主要由一个可感应温差的硅芯片构成。当这种特殊的硅芯片正面“感受”到的温度较之背面温度具有一定温差时,其内部电子就会产生定向流动,从而产生“微量但却足够用的电流”。负责研发这种电池的科学家温纳·韦伯介绍说,“只要在人体皮肤与衣服等之间有5℃的温差,就可以利用这种电池为一块普通的腕表提供足够的能量。” 据美国物理学家组织网1月19日(北京时间)报道,美国西北大学的化学家、物理学家和材料学家携手研发出一种新材料,这种新材料展示出了高性能的热电特性,能更有效地将机动车的排气系统、工业生产过程和设备、太阳光等发热系统产生的废热转化为电力,其转化效率高达14%,这在科学史上尚属首次。该突破可广泛应用于汽车、玻璃制造等领域。研究结果发表在《自然·化学》杂志上。 该论文的联合作者之一、西北大学化学教授梅科瑞·卡纳茨迪斯说:“早在100多年前,科学家就知道半导体拥有能利用电力的特性。为了使这一过程变得有效,人们需要找到正确的材料,现在我们已找到制造这种材料的配方。” 卡纳茨迪斯团队将岩盐纳米晶体溶解在碲化铅内制造出了这种新材料。以前,科学家针对大块物质中内含纳米结构进行的研究表明,纳米内含物可以改进碲化铅的能量转化效率,但纳米内含物也会让电子扩散更多,消减整个组合物的导电能力。在此项研究中,西北大学的研究团队首次证明,碲化铅内内含纳米结构可以同时做到消减电子扩散和提高能源转化效率。 论文联合作者、西北大学材料科学和工程教授文纳雅克·戴维说:“我们可以将这种材料放在一个只有几根电线的廉价设备内部,并将其同电灯泡之类的设备连接在一起。利用灯泡产生的热量,并将其中约10%到15%的热量转化为能效更高的电能,这种设备能使灯泡更有效地工作。” 卡纳茨迪斯表示,利用此项科学突破,汽车、化工、玻璃和其他任何利用热能进行生产的工业都能提高其系统的能效。戴维说:“环保领域的专家也会对该突破感兴趣,但这仅仅只是一个开始。这类结构还可以在诸如机械特性和改进材料的强度和韧度方面起作用。” 总编辑圈点 单说热电转换率的话,垃圾发电系统中广泛采用的碱金属热电转换技术可以超过30%,西北大学这份14%的成绩单相比之下好像有点拿不出手。不过别忘了,基于半导体材料的此类装置以往蹦着高也没够到12%的天花板。另外,传统的高效率热电转换部件如果用作汽车

能量回收装置

Recuperator能量回收装置 毋庸置疑,阿科凌与业内竞争对手相比的最大优势在于我们的专利设备— Recuperator能量回收装置。它是阿科凌专有的能量回收装置/工作转换机,阿科凌也因此成为全球唯一一家拥有专有能量回收装置的海水淡化水供应商。回流机属于等压能量回收装置,具体而言,它是一种活塞式工作转换机。 回流机结构紧凑,呈塔状结构,经过不断的改良, 如今已是第三个版本。阿科凌研发实验室不遗余力 地致力于回流机新功能的开发,并将于近期推出升 级版新产品。回流机目前仅应用于阿科凌的交钥匙 解决方案和自建自营的项目中,但计划不久将作为 第三方产品进行销售。回流机能实现高达98.5% 的废弃能量回收率,可大幅节省运营成本。 背景介绍 膜组件是反渗透海水淡化过程的核心部分,从一开 始,反渗透法海水淡化技术便致力于膜组件的开发 与改良。 阿科凌专功膜法脱盐项目,反渗透海水淡化过程的终极目标是获取材质与结构均符合脱盐市场需求(如高产出率、高脱盐率、抗高压、抗化学性和低给水污染物排放)的膜组件。 随着阿科凌系统设计技术的不断进步,加之阿科凌多年的反渗透系统运营经验、优化的预处理解决方案以及更高效设备和更优材质的采用,将成功节省运营成本并大幅降低系统的生命周期成本。 工作原理 回流机通过反渗透膜滤过的盐水给预处理海水加 压,加压过程由反渗透膜的盐水流量进行调节。 该装置包含两个直立的双向不锈钢塔,分别进行加 压转移和解压释放处理。预处理海水来自加压给水 箱,而给水箱为系统提供恒定的水流量和水压。 回流机能够将加压盐水的能量回收至反渗透膜及 增压泵—只需把加压盐水替换成相同流速的预处 理海水。

海水淡化PX能量回收装置维护说明书

PX-260能量回收装置 一、PX能量回收装置介绍 海水淡化反渗透系统中能量回收装置选用EnergyRecovery,Inc.(ERI)公司生产的PX-260型能量回收装置 1、设计原理 每台PX装置都要经过效率、噪声级别、工作压力和流量的测试。每台装置的测试记录都予以保存,并可根据其序列号查询。PX产品采用装配合适的聚苯乙烯泡沫包装以保护装置在运输时免受损伤。PX产品已用稀释的除菌剂溶液进行了清洗,以防止在装箱和存放期间的细菌孽生。PX产品在存放或工作的环境温度不得低于33℉[1℃],且不得高于120℉[49℃]。 PX能量回收装置将高压浓盐水水流的压力传递给低压新鲜海水水流,这两股水流在转子的内通道中直接接触,从而完成压力交换。转子装在一个间隙尺寸精确的陶瓷套中,该陶瓷套位于两个陶瓷端盖之间。当高压水注入时,可形成一个几乎无摩擦的水力轴承。在水力轴承里旋转的转子是PX装置中唯一的运动部件。 在任意时刻,转子内通道的一半处于高压水流中,而另一半则处于低压水流中。转子转动时,通道会通过一个将高压和低压隔离的密封区。这些含有高压水的通道与相邻的含有低压水的通道被转子通道间的隔断和

陶瓷端盖形成的密封区隔离。 PX能量回收装置的陶瓷部件示意图如下图所示。由海水供水泵供应的海水流进低压区左侧的通道,该水流将浓盐水从通道的右侧排出。在转子转过密封区后,高压盐水从右侧流入通道,给海水增加压力,受压后的海水然后再流入循环泵。转子每旋转一圈,这个压力交换过程就在每个通道内重复,从而不断有水流注入和排出。转子公称转速为l,200rpm,即转子每秒钟转20转。 2、SWRO系统中的能量回收装置 PX能量回收装置从根本上改变了SWRO系统的工艺流程。图4.2显示PX 能量回收装置在SWRO系统中的典型流程。来自SWRO系统的浓盐水[G]通过PX装置,其压力直接传递给进入的新鲜海水,效率高达98%。与浓盐水的压力和流量接近的加压海水流[D] 进入循环泵。循环泵采用变频控制,通过改变电机的频率来调整高压循环管路[E-G-D]的流量。被循环泵完全加压的海水与高压泵出水混合,进入反渗透膜。

【CN209840143U】一种锅炉余热回收装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920314145.7 (22)申请日 2019.03.12 (73)专利权人 北京北燃供热有限公司 地址 100000 北京市西城区西直门南小街 22号7层 (72)发明人 芦潮 赵博  (74)专利代理机构 北京冠和权律师事务所 11399 代理人 朱健 张迪 (51)Int.Cl. F23J 15/02(2006.01) F23J 15/06(2006.01) F28D 7/08(2006.01) F28F 17/00(2006.01) F28F 1/12(2006.01) (54)实用新型名称 一种锅炉余热回收装置 (57)摘要 本实用新型涉及锅炉余热回收设备领域,具 体地,涉及一种锅炉余热回收装置,包括锅炉本 体,锅炉本体上设置有烟气排出管,烟气排出管 上固定安装有烟气余热回收器,烟气余热回收器 包括有进气口和出气口,烟气余热回收器内设置 有换热管,换热管的输入端连接有低温液体管, 换热管的输出端连接有高温液体管。本装置用于 对锅炉排出的烟气中的余热进行回收再利用,利 用烟气的高温余热加热低温水等,锅炉本体排出 的烟气通过烟气排出管到达烟气余热回收器,低 温液体管将冷水导入烟气余热回收器中的换热 管中,随后通过换热管将烟气中的余热转化传递 给换热管中的冷水,冷水被加热由高温液体管导 出,并在保温水桶内储存等待使用。本装置应用 广泛, 实用性强。权利要求书1页 说明书4页 附图4页CN 209840143 U 2019.12.24 C N 209840143 U

新风热回收设备及其应用

新风热回收设备及其应用 摘要:介绍了目前常用的各种新风热回收方式的原理、优缺点及适用场合,并对各种方式做了技术分析与经济比较,为实际工程应用和设计提供了一般指导。 关键词:热回收建筑节能显热或全热交换回收效率 1、概述 随着社会经济的不断发展,人们不再满足于室内温度舒适性的要求,越来越多的人们已经意识到改善室内空气环境的必要性和紧迫性。有关室内空气品质的研究,可以追溯到20世纪初,当时,人们已经开始采用通风的方法来改善室内空气环境。空调系统的出现,为人们创造了舒适的空调环境。70年代的全球能源危机,使空调系统这一能源消耗大户面临严重考验,节能降耗成为空调系统设计的关键环节。节能措施之一就是减少入室新风量,但是这一措施引起了室内空气环境恶化,再加上现代建筑中密闭空间的增多以及各种装饰材料的使用,出现了“病态建筑综合症”。80年代以来,空调步入一个新的发展阶段,新阶段的标志之一就是由舒适性空调向健康空调的变革。新风热回收装置以其独特的优势已在市场上逐步普及开来。 空气热回收装置是使进风和排风之间产生显热或全热交换,回收冷(热)量的装置。国家标准《室内空气质量标准》GB/T1883-2002于2002年开始施行,此标准规定了每个人的新风量为30CMH,新风量的大小不仅关系到保证人体的健康,也与能耗、初投资和运行费用密切相关。2005年国家建设部又颁布了《公共建筑节能设计标准》GB50189-2005,进一步划分不同场合的新风量标准。新风热回收装置的运用使得平衡式通风得以实现,在空调房间引进新风的同时排出房间的空气;新风热回收装置的运用可以调节空调房间的压力,不同的压力状况的实现只需要调节新风与排风的比例即可;新风热回收装置的运用使得新风处理的能耗减少而节能并降低运行了运行费用。 2、新风热回收方式的类型及其应用 新风热回收的方式很多,各种不同方式的效率高低、设备费的大小、维护保养的繁简也各不相同。热回收装置有板式热回收机、转轮式热回收机、热管式热回收机、中间热媒式热回收机、热泵式热回收机、溶液喷淋式热回收机等。以下介绍几种常用的新风热回收方式。 2.1、板式新风热回收装置 板式热回收机分为显热热回收机和全热热回收机。板式 显热热回收机的基材为铝箔等导热性能好的金属使排风与新 风之间进行热交换。板式全热热回收机是采用金属平板膜片与 高分子平板膜片组合而成,当隔板两侧气流之间存在温度差和 水蒸汽分压力差时,两气流之间就产生传热和传质的过程,进 行全热交换。芯体结构示意图见图2.1-1。其特点是构造简单,过滤除尘,双向换气,无互串气,效率高,机体内没有运动部件运行,安全、可靠,各出入口接管便利,安装方便,设备费用较低,适用于一般民用空调工程。 在选用板式显热热回收机时,新风温度不宜低于-10℃,否则排风侧出现结霜;当新风温度低于-10℃时,应在热交换器前加新风预热器;新风进入热回收机之前,必须先经过过滤器净化,排风进入热回收机之前,一般也装过滤器,但当排风较干净时,可不装。在选用板式全热热回收机时,当排风中含有有害成分时,不宜选用。

海水淡化工艺设计方案

1刖占1.1概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下: 分析报告

1.3海水淡化规模

根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,目前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合 2x1000MW发电机组的建设规模,暂按配套建设2x104m3/d规模的海水淡化装置设计;并对总规模为40x1。伽%海水淡化厂作出展望。 本专题报告按本期工程厂内自用的 2 x104m3/d规模和规划容量的40x 104m3/d的海水淡化站分别进行比较论述。 2海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸镭法(俗称热法)和反渗透法(俗 称膜法)。蒸镭法主要有多级闪蒸(MSF)、低温多效蒸镭(LT-MED)技术。 2.1蒸镭法淡化技术 2.1.1多级闪蒸(MSF) MSF是蒸馆法海水淡化最常用的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是我国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1 。 图2-1盐水再循环式多级闪蒸(MSF)原理流程 多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。 MSF装置具有设备单机容量大、使用寿命长、出水品质好、造水比高、热

烟气余热回收装置

烟气余热回收装置 根据本项目的具体情况,锅炉为泰安锅炉,其排烟温度较高,虽然招标方没提及此项节能改造内容,但我公司仍然建议加装上冷凝式余热回收设备,详细介绍如下: 烟气冷凝回收系统图 a) 技术说明 4.2MW燃气热水锅炉: 型号:LN400-1.0;换热面积:295.520m2(折合:49.17m2/0.7MW); 材质:不锈钢304(0Cr18Ni9),设备采用不锈钢304制作; 烟气降幅:80-110℃ 使用寿命:15年。 本烟气余热冷凝回收装置是采用不锈钢、铝复合的强化翅片换热管结构。分组组装,安装方便,便于维修。采用不锈钢材质、强化传热技术,足够的受热面以达到余热回收最大化的目的,节气率处于全国同类产品领先地位。从而能够把烟气中的显热和潜热最大程度回收的一种专用于燃气(油)锅炉(直燃机)的节能装置。 b) 烟气余热冷凝回收装置的性能特点 加装烟气余热冷凝回收利用装置后,常规油(气)锅炉就改造为分体式冷凝型锅

炉(另一种为热管式),热效率可达到98%以上。在比较理想的工况下节气率可达到6%~15%。能够大大地降低运行费用,为用户带来显著的经济效益。 高效烟气余热回收装置采用不锈钢、铝材质的强化翅片换热管结构。分组组装,安装方便,便于维修。翅片管外走烟气,管内走水,形成间壁式对流换热。设备外部保温用硅酸铝耐热纤维毡保温,保温层外用彩色钢板包装。足够的受热面以达到余热回收最大化的目的。 烟气余热回收装置的阻力不大于500pa,通过大量的实际使用完全不会影响锅炉的燃烧。 烟气余热冷凝回收装置设计压力为1.0MPa,水压试验压力为1.25MPa,完全可以满足采暖和锅炉补水压力的使用要求。 设计结构本身就考虑了水力的均匀分配。所配管束均为一样。实际的使用效果也很好! 采用的不锈钢、铝合金翅片管具有很强的抗酸性腐蚀的能力。完全可以保证使用寿命。使用寿命在15年以上。 设备本身带有冷凝水排放装置,“烟气余热冷凝回收装置”最下部设置了冷凝水收集箱及排放口,及时将产生的冷凝水排出,排入下水系统。冷凝水为弱酸性,PH值在6左右,不会对环境造成污染。冷凝水收集采用不锈钢制作,耐腐蚀性强,使用可靠。 设备外包装完全可以根据用户的要求配备不同的颜色,从而和锅炉协调一致。 c) 余热冷凝回收装置的节能率计算

丹佛斯能量回收装置模拟

Seal Zone PX High Pressure Outlet PX Low Pressure inlet Seal Zone Start PX Booster Pump Main High Pressure Pump 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar 0 flow 0 bar PX High Pressure Inlet PX Low pressure Outlet V F D FM FM PX Rotor Step 1: Start seawater supply or fresh water flush. SW Pump Start Flush Seal zone Air Vent Permeate 0 flow

Seal Zone PX Rotor Seal zone LP PX High Pressure Outlet PX Low Pressure inlet PX Booster Pump Main High Pressure Pump --flow 2 bar 0 flow 2 bar --flow 2 bar 58.8 flow 2 bar 58.8 flow 1 bar PX High Pressure Inlet PX Low pressure Outlet V F D FM FM Seawater Pump Start Booster Stop SW Pump Air Vent 0 flow 2 bar Permeate 0 flow Seal Zone

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无 公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用 越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多 数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用组成:系统的初期设 备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%, 几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数 的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、 人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的 下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪 费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的疑难和低效问题总是让人 觉得很复杂和无从下手。其实对压缩空气系统进行正确的能源审计就可 以为用户的整个压缩空气系统提供全面的解决方案。对压缩空气系统设 备其进行动态管理,使压缩空气系统组件充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低10%—50% 的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出:

转轮式全热交换器一种高效的热回收装置

转轮式全热交换器 ——一种高效的热回收装置 Ro tary To tal2H eat Exchanger ——A n Efficien t H eat R ecovery U n it 秦伶俐 李洪芳 (上海水产大学 200090) 〔摘要〕 本文通过计算,对采用转轮式全热交换器与未采用的空调系统的耗 能量、一次性投资及运行费用等方面进行了比较。从计算结果可知,空调系统中采 用转轮式全热交换器不仅可以节省能耗和一次性投资,并且可以节省运行费用;是 一种非常经济高效的空调节能装置,值得大力推广使用。 〔关键词〕 转轮式全热交换器 温度效率 焓效率 新风负荷 自从本世纪七十年代世界性能源危机以来,节能成为国内外暖通界关注的焦点问题之一。采用热回收装置就是目前较成熟的一种节能措施。热回收装置的种类很多,有转轮式热交换器、板式热交换器、热管式热交换器、盘管闭路式热交换器、间接蒸发式热交换器等。它们又可分为显热型和全热型;回转型和静止型等各种不同形式。而全热交换器是当今世界公认的暧通空调领域的最佳能量回收装置。在欧美发达国家,从1970年至今,在暖通空调系统中安装该装置的总装机容量已达3000万千瓦,每年可节省一次能源(燃烧油)约400万吨,价值5亿美元以上。 图1 热回收设备的种类

1 转轮式全热交换器的工作原理 全热交换器主要是由转芯、传动装置、自控调速装置及机体构成。转芯是转轮式全热交换器的主体,它可以采用各种不同材料和工艺制成。目前成熟的做法是采用铝箔或合金钢作为基本原料,添加N a2SO4、N aC l和L i C l等吸热剂和吸湿剂以及增加强度的胶料加工而成;也有采用硅酸盐类物质烧结而成的复合材料制作的。转轮式全热交换器是利用转轮转芯的蓄热和吸收水分的作用来回收排风中的冷量(或热量),并将其回收的冷量(或热量)直接传给新风,在夏季和冬季分别使新风获得降温去湿和升温加湿处理,从而降低空调系统中处理新风用能。其工作原理和处理过程的焓湿图如图2、图3。 图2 工作原理图 图3 空气状态变化的I—D图 该设备可以同时回收显热和潜热。其显热和全热回收效率分别为:  显热交换效率(温度效率)=(新风送风温差新风回风温差)×100%;  全热交换效率(焓效率)=(新风送风焓差新风回风焓差)×100%; 对于成熟产品(如进口产品),其热回收效率全年可达到70~90%。使用转轮式全热交换器后的空调系统较之未使用的系统,既可减少系统投资,又可节省运行费用,其经济性非常可观。 2 全热交换器回收能量及经济性计算 下面通过一个实例来对采用转轮式全热交换器的空调系统进行经济分析。系统图见图4。 按上海市气象条件查得: 室外计算温度:干球温度34℃,相对湿度70%, 焓95kJ kg,密度1113kg m3; 室内设计温度:干球温度27℃,相对湿度50%, 焓55kJ kg,密度1117kg m3;

空气-空气能量回收装置实施规则

空气-空气能量回收装置 Air-to-air energy recovery equipment 中国建筑科学研究院认证中心发布

目 次 前言.................................................................................................................................................................... III 1 适用范围 (1) 2 认证模式 (1) 3 认证的基本环节 (1) 4 认证实施的基本要求 (1) 4.1 认证申请 (1) 4.1.1 认证单元划分 (1) 4.1.2 申请文件 (1) 4.2 型式试验(抽样) (2) 4.2.1 抽样原则 (2) 4.2.2 抽样时机 (2) 4.2.3 抽样场所 (2) 4.2.4 抽样人员 (2) 4.2.5 抽样方法、检测标准和检测要求 (2) 4.2.6 检测机构 (2) 4.2.7 判定原则 (2) 4.2.8 关键零部件管理要求 (2) 4.3 初始工厂检查 (2) 4.3.1 工厂检查时间 (2) 4.3.2 工厂检查内容 (2) 4.4 认证结果评价与批准 (3) 4.4.1 认证结果评价与批准 (3) 4.4.2 认证时限 (3) 4.5 获证后的监督 (3) 4.5.1 监督的频次 (3) 4.5.2 监督的内容 (4) 4.5.3 获证后监督结果的评价 (4) 5 认证证书 (4) 5.1 认证证书的保持 (4) 5.1.1 证书的有效性 (4) 5.1.2 认证证书内容 (4) 5.1.3 认证产品的变更 (4) 5.2 认证证书覆盖产品的扩展 (5) 5.3 认证证书的暂停和撤销 (5) 6 认证标志使用的规定 (5) 6.1 准许使用的标志样式 (5) 6.2 变形认证标志的使用 (5) 6.3 加施方式 (5)

车辆制动能量回收

低碳世博,能源再利用—— 基于超级电容的城市轨道车辆制动能量回收 1 概述 由于城市轨道车辆具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点,世界各国普遍认识到,解决城市交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。随着我国经济的高速发展、城市化进程的不断加快,城市轨道交通将在我国城市公共交通运输中占有越来越越重要的地位。到目前为止我国已有北京、上海、广州、深圳、武汉等城市已经运行,截至2009年9月,我国有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已经获得国务院批复。至2015年,北京、上海、广州、深圳等22个城市将建设79条轨道交通线路,总长度为2259.84公里,计划总投资8820.03亿元。 城市轨道交通列车的特点就是线路的站间距短,列车运行时频繁地起动、制动,基本上在列车达到最高速时很快就会制动。目前,我国地铁列车大都采用接触网/轨直流供电, 牵引系统大都是变压变频的交流传动系统。列车牵引时从电网吸收能量,制动时采用反馈制动把制动能量反馈回电网, 根据经验,地铁再生制动产生的能量除了一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其他相邻列车吸收利用外,剩余部分将主要被列车的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。当列车发车密度较低时,再生能量被其他车辆吸收的概率将大大降低。资料表明,当列车发车间隔大于10 min 时,再生制动能量被吸收的概率几乎为零,此时绝大部分制动能量将被车辆吸收电阻吸收,变成热能并向四外散发,这必将使隧道和站内的温度升高。目前国内城市轨道交通在地面采用电阻能耗吸收装置处理列车运行过程中的再生能量,这不仅浪费能量,而且也增加了站内空调通风装置的负担,并使城轨建设费用和运行费用增加。如能将这部分能量储存再利用,这些问题将迎刃而解。 2 可行性分析 城市轨道交通车辆制动能量是否具有回收的可行性,需要对制动能量进行合理计算,并根据其大小确定制动能量是否具有实际回收价值。现以一列上海轨道交通2号线6节车辆编组为例(4节动车,2节拖车),设轨道车辆的制动初速度为70km/h (V1) ,制动末速度为8km/h (V2),M为车辆和载客质量,则利用公式(1)计算电制动能量。(1)

汽车减震器能量回收装置设计概要

目录 1 绪论 (1) 1.1 能量回收装置简介 (1) 1.2 研究的背景及意义 (1) 1.3 国内外发展现状及趋势 (2) 1.3.1国外发展现状 (2) 1.3.2国内发展趋势 (2) 2 理论基础 (3) 2.1 减震器 (3) 2.2 电磁发电技术 (4) 2.2.1法拉第电磁感应定律 (4) 2.2.2电磁感应发电装置结构 (4) 2.3 压电发电技术 (5) 2.3.1压电材料 (5) 2.3.2压电效应 (5) 3 基于压电叠堆储能的新式能量回收装置的结构及工作原理 (7) 3.1 压电叠堆发电装置的结构 (7) 3.2 能量回收装置的工作原理 (7) 4 能量回收装置的等效模型分析 (8) 4.1 模型假设 (8) 4.2 等效模型 (8) 4.3 发电装置的性能分析 (8) 4.4油压频率f对回收装置输出特性的影响 (9) 4.5 压电叠堆长度对输出特性的影响 (9) 4.6 压电叠堆截面面积S对输出特性的影响 (10) 4.7 本章小结 (11) 5 能量回收装置输出电路 (11) 6 结论与展望 (12) 参考文献 (13)

汽车减震器能量回收装置设计 摘要:传统的被动悬架以及半主动悬架只能起到加速车架和车身震动的衰减作用,而起不到对振动能量回收的作用。当汽车对减震器施加力时,减震器孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中,这一部分能量被白白浪费掉。设计一种能量回收装置,能量回收装备将减震器内部的部分压力能转化为电能储存起来。通过查阅大量关于能源转化的资料,并对各种能量回收方案进行比较,最终确定用压电叠堆能量回收的装置对减震器内部的压力能进行回收。本文主要对压电能量回收装置的工作原理、理论设计、及数学模型的分析进行概述。 关键词:能量回收;储存;压电叠堆 1绪论 1.1能量回收装置简介 目前,大多数的混合动力车和电动车都配有制动能量回收装置,该装置有推广到非混合动力车的趋势,国际汽联也希望通过KERS系统在F1中的推广,树立环保先锋的形象。制动能量的回收通常有两种途径,一是以高速旋转的飞轮储存能量,二是车轮在制动时带动发电机,产生的电能储存于电池组中。制动产生的额外能量可以回收,那么汽车行驶中产生的其它能量也可以回收。减震器是悬架的重要组成部分,悬架的好坏关系到汽车的舒适性。在能源短缺的今天,节能减排越来越受到人们的重视。消费者在选择汽车时,在考虑动力性、舒适性、美观的同时,经济性也是一个重要的原因。减震器能量回收装置,能够回收减震器在伸张、压缩行程产生的能量,通过压电能量回收原理将机械能转变为电能储存于蓄电池之中,为其他用电设备供电。1.2研究的背景及意义 从汽车发明以来,汽车工业带动了各个国家经济的发展,但在其发展过程中,一系列的问题不断出现。能源短缺、环境污染、气候变暖成为各个国家面临的共同挑战。如何采用新的技术创造出一种新型的汽车成为各国企业不断攻克的难题。 当前内燃机汽车普遍采用的是普通的液力减震器。由于传统的减震器只起到缓解汽车振动的作用,并不能回收汽车在振动过程中的能量,这就造成了能量的浪费。 众所周知,在经过不平的路面时,汽车车身会发生振动,并且路面越不平稳,汽车振动的越厉害。通常情况下,振动的能量会以减震器内部机油摩擦生热而损耗,如果能将汽车振动作用在减震器上的能量加以回收再利用,为汽车的其他电器提供能量,已达到节能的目的。

相关文档