文档库 最新最全的文档下载
当前位置:文档库 › 多肽介导的核酸药物递送系统研究进展

多肽介导的核酸药物递送系统研究进展

多肽介导的核酸药物递送系统研究进展
多肽介导的核酸药物递送系统研究进展

多肽介导的核酸药物递送系统研究进展_丁晓然

106

丁晓然,等:多肽介导的核酸药物递送系统研究进展

介导的核酸分子靶向递送系统和多肽蛋白类递送载体以及利用唾液酸蛋白、多糖、表皮生长因子、叶酸、转铁蛋白、甾体激素、单克隆抗体等靶向分子修饰而具有主动靶向作用的纳米粒[4-5]。随着新载体技术和给药体系的不断发展,一些核酸药物研发公司相继构建了各具特色的递送技术平台,其中具有代表性的核酸药物递送系统包括Arrowhead Research 公司的动态多价偶联递送系统(dynamic polyconjugates,DPC)[6]和转

铁蛋白靶向的环糊精纳米粒递送系统(RONDELTM)[7]、

[8]、Silence公司基于脂质的siRNA递送系统(AtuPLEXTM)

Tekmira公司的脂质纳米粒(LNP)技术[9]以及Alnylam Pharmaceuticals公司的GalNAc-siRNA(N-乙酰半乳糖胺与siRNA的结合体)肝靶向递送系统[10]等。基于上述递送系统,已有多个核酸药物相继进入临床研究阶段(见表1),并有多个相关药物处于申报临床研究或临床前研究的不同阶段。

表1 基于新型递送系统的临床在研核酸药物

Table 1 Nucleic acid drugs based on the new delivery system in clinical development

开发公司

AlnylamPharmaceuticalsSilence Therapeutics Arrowhead Research

药物

ALN-TTRscAtu027ARC-520CALAA-01

载体

GalNAc-siRNAAtuPLEX DPCRONDEL

靶标

甲状腺素运载蛋白(TTR)蛋白激酶N3(PKN3)乙型肝炎病毒(HBV)核苷酸还原酶亚单位M2(RRM2)

埃博拉病毒L聚合酶、

病毒蛋白24(VP24)和病毒蛋白35(VP35)

适应证

TTR介导的淀粉样变性(ATTR)

胰腺癌慢性乙型肝炎感染

淋巴瘤

开发阶段

临床Ⅱ期临床Ⅰb/Ⅱa期

临床Ⅱ期临床Ⅰb期

TekmiraTKM-EbolaLNP埃博拉病毒感染临床Ⅰ期

在众多靶向递送技术当中,多肽蛋白类递送载体是目前研究的热点之一。其中较为简单的一种递送系统是以阳离子肽即细胞穿膜肽(cell-penetrating peptides,CPP)或蛋白转导域(protein transduction domains,PTD)为递送载体,而CPP不仅可用来提高核酸药物的细胞摄取率,还能靶向特定细胞表面受体或组织。自1994年第1条CPP被Fawell等发现以来,一系列新的CPP相继被报道。目前,尽管多肽介导的核酸药物转运机制尚未完全阐明,但该递送载体发展迅速,已经成为核酸药物研发的重点领域[11-12]。

合成法完成,通常反应效率较高。连接多肽与寡核苷酸分子的连接臂需要具有一定的化学稳定性,从而使肽-寡核苷酸缀合物在进入体内和随后的转运过程中保持稳定,而在靶细胞中连接臂可被特定蛋白水解酶降解,从而释放核酸药物。例如,二硫键已被证明可用于多肽介导的核酸药物递送系统[14]。研究发现,二硫键在缀合物到达内涵体或细胞质后才会断裂,这种断裂使多肽不会在细胞内影响寡核苷酸分子对其靶标的抑制作用。但最近的体内实验结果表明,这种断裂不是必须的。二硫键以及巯基可能会增加核酸药物的胞内摄取率,其作用机制尚不清楚[15-16]。

共价缀合的优点在于可以得到结构明确、单一的化合物,简化了药物研发过程。但这种修饰方法也存在一定的局限性,如强阳离子多肽与带负电荷的寡核苷酸缀合和纯化存在一定的难度,限制了用于缀合的多肽类型;此外,共价键修饰可能会影响带电荷核酸分子的生物活性。因此,这种策略更适用于中性的磷酸二酰胺吗啉代寡核苷酸(phosphorodiamidatemorpholino

1 核酸药物递送载体的多肽修饰策略

核酸药物递送载体的多肽修饰主要采用共价缀合和非共价络合两种方式。1.1 共价缀合

共价缀合是通过二硫键、硫醚键、硫醇马来酰亚胺、磷酸二酯键等共价键而将多肽共价缀合到寡核苷酸分子或其他载体上[13],这种缀合可经固相合成法或液相oligomers,PMO)(Summerton等, Antisense Nucleic Acid Drug Dev, 1997年)和肽核酸(peptide nucleic acids,PNA)的修饰(Nielsen, Methods Enzymol, 1996年)。1.2 非共价络合

非共价络合是通过非共价键将多肽及其衍生物与带负电荷的寡核苷酸分子络合,形成复合物。一些肽载体含有疏水性基团(如疏水性氨基酸及脂肪酸、胆固醇等),这些疏水性基团可与中性及带负电荷的分子络合形成复合物,这种络合形成的复合物能够更好地携带寡

核苷酸分子透过质膜,将其高效地递送至靶部位[17]。非共价键连接时,不需要对寡核苷酸进行末端修饰,仅通过简单的混合即可形成复合物,同时这种方法还能有效防止核酸酶对寡核苷酸的降解,因此该方法应用更为广泛。

近年来,随着递送技术的不断发展,还有多种修饰策略相继被提出。如Futaki等采用新一代非共价结合化学修饰多肽载体技术,将十八烷酰基化的阳离子多聚精氨酸肽用作质粒DNA的转运载体获得成功[18]。而且,一些肽相关纳米载体、阳离子聚合物以及多肽复合体/脂质体等也被用于寡核苷酸递送研究。

团队将可特异性结合整合素αvβ3受体的环肽cRGD与靶向血管内皮生长因子受体2(VEGFR2)的siRNA分子进行共价缀合后发现,cRGD-VEGFR2 siRNA可特异性进入整合素αvβ3受体阳性的新生血管内皮细胞——人脐静脉血管内皮细胞(HUVEC),并抑制VEGFR2表达;cRGD-VEGFR2 siRNA显微注射入斑马鱼体内后,能够抑制斑马鱼新生血管的形成;在小鼠体内实验中,cRGD-VEGFR2 siRNA不会诱导先天的免疫反应,且可特异性靶向肿瘤组织,具有显著的抗肿瘤作用[21]。

CPP与PMO的缀合物PPMO近年来被广泛应用于抗病毒、抗细菌以及治疗遗传性疾病等领域。PMO最早由AVI生物制药公司(现更名为Sarepta Therapeutics公司)开发[22],具有诸多优点,如不被酶降解、在细胞内稳定性强、对细胞无毒副作用、且不会激活细胞分泌干扰素及免疫应答等。但是,由于PMO的分子结构中不带有任何电荷,使其无法被细胞表面受体识别,也无法通过转染方式导入细胞内,极大地阻碍了其实际应用。而PPMO技术的发展则有力地推进了PMO的应用研究,研究人员利用该递送技术确证了PMO在多种病毒感染性疾病中均具有较好的抗病毒作用,如卡波济肉瘤相关疱疹病毒、单纯疱疹病毒、日本脑炎病毒、麻疹病毒、登革热病毒、柯萨奇病毒、埃博拉病毒、马尔堡病毒、西尼罗河病毒以及冠状病毒等[23]。另外,有研究表明,相应的多肽-PMO缀合物可干扰血凝素激活蛋白酶TMPRSS2 pre-mRNA的剪接,有效降低甲型流感病毒的滴度[24]。在人呼吸道合胞病毒感染的细胞和小鼠模型中,相应的多肽-PMO缀合物均可有效阻断病毒复制;且在感染早期给药,可显著降低小鼠肺组织的病毒滴度[25]。另有研究表明,对于感染猪生殖和呼吸综合征病毒的猪,无论是感染前还是感染后给予相应的多肽-PMO缀合物治疗均可有效降低病毒血症和间质性肺炎的发生[26]。

在抗细菌感染方面,Sarepta公司与其合作者近期研究发现,靶向金葡菌促旋酶A mRNA的PPMO在动物体内显示出良好的抗菌作用,其可特异性结合靶基因,抑制细菌蛋白质表达,还可避免传统抗生素的耐药问题。目前,该公司的这一抗菌新药正处于临床前研发阶

2 多肽缀合物和复合物在核酸药物递送系统中的应用

20世纪90年代Bongartz等(Nucleic Acids Res, 1994年)首次报道了多肽介导的反义核酸在细胞内的递送过程,即将CPP通过与反义核酸共价连接形成缀合物,介导核酸进

入细胞。这一方法随后被广泛用于PNA、PMO、不同修饰的反义核酸以及siRNA等核酸药物的修饰。Pooga及其研究团队在体内外实验中发现,CPP与靶向甘丙肽受体Ⅰ型mRNA 的PNA共价缀合后,可有效地提高PNA在人黑色素瘤细胞中的摄取率;多肽共价修饰可提高PNA对体内甘丙肽受体的抑制作用(Pooga等, Nat Biotechnol, 1998年)。另有研究人员将F-3肽与经不同化学修饰的反义核酸共价缀合后发现,这种共价缀合可显著提高核酸药物在体内对转录因子ld1的抑制作用[19]。Meng等[20]经实验研究发现,将Tat(47-57)肽与siRNA缀合后,可有效介导siRNA进入细胞。南方医科大学的季爱民教授及其研究段。PPMO抗菌剂的开发将为细菌感染性疾病提供新的治疗策略[27]。另外,Sarepta公司一直致力于遗传性疾病——杜氏肌肉萎缩症(Duchenne muscular dystrophy, DMD)治疗药物的开发,PPMO技术也被证实可提高PMO对DMD的治疗效果[28-29]。尽管PMO的安全性已经得到证实,但是PPMO技术引入缀合肽链后,其安全性有待进一步评价。

清蛋白非特异性结合以及毒性等问题,只能用于寡核苷酸分子的体外转染,并不适用于体内递送,如lipofectin或lipofectamine等。采用亲水聚合物(如PEG等)对脂质体表面进行功能化修饰,则能将其改造为核酸分子的体内递送载体[38]。但PEG修饰后的脂质体载体与细胞膜的相互作用减弱,降低了核酸分子的细胞摄取率,且修饰后的载体还不利于核酸分子的胞内释放[39]。为了提高脂质体载体的核酸递送效率,研究人员在新的脂质体载体中引入了多肽分子。当富含精氨酸的CPP结合到脂质体载体表面后,可显著提高载体的递送效率[38],且安全性可控[40]。另一组研究人员将阳离子脂质体用含16个赖氨酸残基和靶向肽Y的嵌合肽进行修饰后,成功用于递送靶向荧光素酶等目标基因的siRNA[41]。

多功能信封式纳米装置(multifunctional envelope-type nanodevices, MEND)是由Harashima和Futaki团队研发的一种基于脂质体的核酸分子胞内递送载体系统[42]。该系统将寡核苷酸与多聚阳离子鱼精蛋白聚合后用一种含阴阳离子和辅助脂质[如二油酰磷脂酰乙醇胺(DOPE)]的脂质信封包裹,其中辅助脂质DOPE的作用是增加核酸分子的胞内释放。除了表面修饰PEG外,该系统还可利用十八烷基化肽自发插入脂质膜的特点将多肽结合到脂质体表面。为了增加核酸分子递送过程中的靶向性以及胞内释放,此研究团队在新型MEND系统中引入了可断裂的PEG连接键以及靶向特定受体的多肽或融合肽,并利用此载体将未修饰的反义寡核苷酸和siRNA递送入细胞内[43]。MEND系统已被报道成功用于siRNA对肿瘤组织的靶向递送[44]。

由于多数递送载体都会引发机体免疫反应或全身性毒性,因此有研究人员提出另一种生物衍生递送载体——外泌体。外泌体是由大多数细胞和体液分泌而自然产生的膜囊泡,能携带多种蛋白质、mRNA和miRNA,参与细胞通讯和迁移、血管新生、肿瘤发生发展等生理过程。这种外泌体是从内体-溶酶体途径衍生而来,直径40~120 nm,在转运RNA至靶细胞的过程中发挥着重要作用[45],同时它还具备将miRNA转运至靶细胞并诱导基因沉默的能力[46]。因此,外泌体适

3 多肽修饰的载体在核酸药物递送系统中的应用

核酸递送载体修饰策略的另一方向是利用合成或天然的阳离子多聚复合物作为核酸分子的递送载体,这些线性或分枝状的多聚复合物主要包括聚-L-赖氨酸(PLL)、PEI等。这些多聚复合物可将寡核苷酸聚集成小颗粒(DNA复合物),通过内吞作用使核酸分子进入细胞。但是,PEI等阳离子聚合物的非生物降解特性使得其潜在的安全性问题备受关注[30];另外,PEI会与血清中的一些蛋白相互作用,导致其体内递送效率降低[31]。研究人员尝试用聚乙二醇(PEG)修饰PEI聚合物以提高其在血清中的稳定性,但实验显示,这种修饰方法并没有显著增加核酸的细胞摄取率以及胞内释放[32]。而进一步利用多肽修饰这类阳离子聚合物,则能提高核酸分子的组织靶向性、细胞透膜率以及生物活性。研究人员发现,将Tat肽与PEG化PEI形成的共聚物和2′-Ome修饰寡核苷酸混合并给予mdx小鼠后,能改善抗肌肉萎缩蛋白pre-mRNA的外显子跨读(exon-skipping)[33]。Schiffelers等[34]将整合素结合肽RGD修饰的PEG化PEI用于靶向VEGFR-siRNA的转运,获得成功。而将转铁蛋白多肽修饰PEG化PEI后,也能将siRNA高效特异性地转运至神经细胞瘤移植模型的肿瘤细胞中[35]。此外,借助叶酸与其受体的特异性相互作用,叶酸-PEG-siRNA与固定结构聚阳离子复合物可沉默目标基因[36]。浙江大学的梁文权研究团队近期还报道了一种CPP修饰的甘露糖基化PEI衍生物(Man-PEI1800-CPP),并将其成功用于DNA分子的体内递送[37]。

多肽分子与LNP结合而形成的复合物是核酸药物的另一递送载体。目前常用的阳离子脂质体存在着与血合作为核酸分子递送载体。Alvarez-Erviti等[47]利用外泌体成功将外源性siRNA转运至小鼠大脑,其间,选用的外泌体来源于未成熟的树突状细胞,并将表达脑靶向肽RVG的质粒转染至树突状细胞,使RVG与外泌体表面结合,以增强外泌体的脑靶向性;随后借助电穿孔技术导入靶向目的基因的siRNA,再将此RVG-外泌体系统给小鼠静注,致使所载siRNA靶向递送至小鼠大脑,特异性敲除小鼠大脑皮质和纹状体组织中的目的基因。为进一步验证这种RVG-外泌体系统的递送能力,在小鼠实验中,该系统还被用于递送靶向β-分泌酶的siRNA,结果,在小鼠大脑皮质中可观察到靶基因显著被抑制,胞外β淀粉样蛋白1-42(Aβ1-42)的蓄积减少,而值得注意的是,RVG-外泌体递送系统重复给药后,并没有观察到明显的毒性或免疫原性反应。

类载体递送效率的报道较少,Fucharoen研究小组在对PPMO缀合物的研究过程中发现该载体系统静脉注射的递送效率优于皮下注射[50]。

虽然肽类载体对核酸药物的递送作用已被多项研究证实,但对其所致毒性和免疫刺激性缺乏系统性研究。已有研究显示,Penetratin-siRNA缀合物气管内给药可诱发先天免疫反应[52],而其腹腔内给药则不会引起免疫反应,在小鼠模型实验中,其100 mg?kg-1腹腔内给药表现出良好的耐受性[53]。尽管CPP具有潜在的免疫刺激性,但其与PMO的缀合物在动物体内并未观察到有明显的免疫刺激性[54],且肽-PNA复合物也未见报道会诱导免疫反应。

由于PMO不带有任何电荷,毒副作用低,在动物体内及临床试验中具有良好的安全性[55],因此引入的多肽序列和临床使用剂量对于PPMO缀合物的安全性评价至关重要。Amantana等[56]在大鼠体内合理评价了可抑制c-myc表达的PPMO缀合物的安全性,结果显示,低剂量(15 mg?kg-1)时,PPMO具有良好的耐受性;但在高剂量(150 mg?kg-1)组中,大鼠出现了如嗜睡、体质量下降、血尿素氮和血清肌酐升高等现象;致死剂量为400 mg?kg-1。AVI生物制药公司发表的PPMO缀合物在非人灵长类动物模型中的安全性评价报告显示,健康猕猴以9 mg?kg-1剂量静注PPMO(每周1次,共4次)后,出现剂量依赖的肾脏肾小管变性;而mdx小鼠接受更高剂量PPMO给药后,并没有观察到明显的毒副作用[57]。提示,PPMO在不同物种中毒性阈值存在显著差异。类似地,一种缀合了含有赖氨酸、亮氨酸、丙氨酸残基两亲肽的PNA也表现出严重的肾毒性,健康小鼠接受其40 mg?kg-1剂量全身给药后,出现深度近端肾小管坏死,而在相同剂量条件下,PNA与含有精氨酸或精氨酸残基的两亲肽的缀合物却没有显现相同毒性[58]。

4 多肽介导的核酸药物递送系统在应用中存在的问题

大量研究表明,多肽载体在体内外均具有良好的递送效果,但其脱靶效应、体内分布、不同给药途径对分布的影响以及毒副作用还有待进一步考察。

肽类载体的体内分布数据可以通过评价其诱导的生物学效应、检测直接标记的递送载体、使用转基因动物及报告基因系统等方法来获取,但这些方法各自都有一定的局限性。比如,肽类载体诱导的生物学效应检测只能局限在表达靶基因的组织中开展,不表达靶基因的组织中检测不到相应生物学效应的改变;荧光分子或放射性同位素虽然已成功应用于标记和示踪肽类载体[48],但载体-核酸分子存在血清稳定性等问题,只对肽类载体进行标记并不能真实反映核酸分子的分布情况[49];EGFP-654转基因小鼠模型可被用来检测PPMO的体内分布,但是该模型无法反应PPMO对疾病病理过程的影响[50]。

为了优化药物分布模式,获得合理的安全曲线,需要对肽类载体的给药途径(静脉、腹腔、皮下、口服或鼻腔等)作进一步考察[51]。给药方式的选择不仅要考虑多肽的性质和疾病模型的靶向需求,还应充分考虑肽类载体的毒理学特征。目前直接比较不同给药途径间肽

5 结语与展望

多肽介导的核酸药物递送系统能显著提高药物的透膜性和靶向性,减少其毒副作用,增强疗效,在药物靶向递送系统中具有广阔的应用前景。目前,Sarepta公司基于PPMO 递送技术而开发的用于治疗结核杆菌感染的PMO药物正处临床前研发阶段。加拿大BiOasis生物技术公司最新研发的多肽载体Transcendpep经实验证实能有效递送siRNA跨越血脑屏障进入脑细胞,特异性抑制靶基因,该项目已进入临床研究申报阶段。

可以预见,在不久的将来,会有更多基于多肽递送载体的核酸新药品种有望进入临床研究。

不过,肽类载体的制备工艺、脱靶效应及毒副作用是其在核酸药物递送系统应用研究领域中亟需解决的问题。

[参考文献]

[1]Kurreck J. Antisense technologies. Improvement through novel chemical

modi? cations[J]. Eur J Biochem, 2003, 270(8): 1628-1644.

[2]Rayburn E R, Zhang R. Antisense, RNAi, and gene silencing strategies

for therapy: mission possible or impossible?[J]. Drug Discov Today, 2008, 13(11/12): 513-521.

[3]Ricotta D N, Frishman W. Mipomersen: a safe and effective antisense

therapy adjunct to statins in patients with hypercholesterolemia[J]. Cardiol Rev, 2012, 20(2): 90-95.

[4]Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery

systems[J]. Int J Pharm, 2014, 459(1/2): 70-83.

[5]Yang J, Liu H, Zhang X. Design, preparation and application of nucleic

acid delivery carriers[J]. BiotechnolAdv, 2014, 32(4): 804-817. [6]Rozema D B, Lewis D L, Wakefield D H, et al. Dynamic

PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes[J]. Proc Natl AcadSci U S A, 2007, 104(32): 12982-12987.

[7]Davis M E. The ? rst targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic[J]. Mol Pharm, 2009, 6(3): 659-668.

[8]Santel A, Aleku M, Keil O, et al. A novel siRNA-lipoplex technology

for RNA interference in the mouse vascular endothelium[J]. Gene Ther, 2006, 13(16): 1222-1234.

[9]Li L, Wang R, Wilcox D, et al. Tumor vasculature is a key determinant

for the efficiency of nanoparticle-mediated siRNA delivery[J]. Gene Ther, 2012, 19(7): 775-780.

[10]Liu J, Zhou J, Luo Y. SiRNA delivery systems based on neutral cross-linked dendrimers[J]. BioconjugChem, 2012, 23(2): 174-183.

[11]Lehto T, Kurrikoff K, Langel ü. Cell-penetrating peptides for the

delivery of nucleic acids[J]. Expert Opin Drug Deliv, 2012, 9(7): 823-836.

[12]El Andaloussi S A, Hammond S M, M?ger I, et al. Use of

cell-penetrating-peptides in oligonucleotide splice switching therapy[J]. Curr Gene Ther, 2012, 12(3):161-178.

[13]Lu K, Duan Q P, Ma L, et al. Chemical strategies for the synthesis of

peptide-oligonucleotide conjugates[J]. BioconjugChem, 2010, 21(2): 187-202.

[14]Lundin P, Johansson H, Guterstam P, et al. Distinct uptake routes of

cell-penetrating peptide conjugates[J]. BioconjugChem, 2008. 19(12): 2535-2542.

[15]Torres A G, Gait M J. Exploiting cell surface thiols to enhance cellular

uptake[J]. Trends Biotechnol, 2012, 30(4): 185-190.

[16]Ezzat K, Helmfors H, Tudoran O, et al. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides[J]. FASEB J, 2012, 26(3): 1172-1180.

[17]Konate K, Crombez L, Deshayes S, et al. Insight into the cellular uptake

mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery[J]. Biochemistry, 2010, 49(16): 3393-3402.

[18]Del Vecchio C A, Li G, Wong A J. Targeting EGF receptor variant III:

tumor-speci? c peptide vaccination for malignant gliomas[J]. Expert Rev Vaccines, 2012, 11(2): 133-144.

[19]Henke E, Perk J, Vider J, et al. Peptide-conjugated antisense

oligonucleotides for targeted inhibition of a transcriptional regulator in vivo[J]. Nat Biotechnol, 2008, 26(1): 91-100.

[20]Meng S, Wei B, Xu R, et al. TAT peptides mediated small interfering

RNA delivery to Huh-7 cells and ef?ciently inhibited hepatitis C virus RNA replication[J]. Intervirology, 2009, 52(3): 135-140.

[21]Liu X, Wang W, Samarsky D, et al. Tumor-targeted in vivo gene

silencing via systemic delivery of cRGD-conjugated siRNA[J]. Nucleic Acids Res, 2014, 42(18): 11805-11817

[22]Moulton H M, Nelson M H, Hatlevig S A, et al. Cellular uptake of

antisensemorpholino oligomers conjugated to arginine-rich peptides[J]. BioconjugChem, 2004, 15(2): 290-299.

[23]Moulton H M. In vivo delivery of morpholinooligos by cell-penetrating

peptides[J]. Curr Pharm Des, 2013, 19(16): 2963-2969.

[24]B?ttcher-Friebertsh?user E, Stein D A, Klenk H D, et al. Inhibition of

in?uenza virus infection in human airway cell cultures by an antisense

peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2[J]. J Virol, 2011, 85(4): 1554-1562.[25]Lai S H, Stein D A, Guerrero-Plata A, et al. Inhibition of respiratory

syncytial virus infections with morpholino oligomers in cell cultures and in mice[J]. MolTher, 2008, 16(6): 1120-1128.

[26]Opriessnig T, Patel D, Wang R, et al. Inhibition of porcine reproductive

and respiratory syndrome virus infection in piglets by a peptide-conjugated morpholino oligomer[J]. Antiviral Res, 2011, 91(1): 36-42.[27]Geller B L, Greenberg D E. Peptide-conjugated phosphorodiamidate

morpholino oligomers: a new strategy for tackling antibiotic resistance[J]. TherDeliv, 2014, 5(3): 243-245.

[28]Shabanpoor F, McClorey G, Saleh AF, et al. Bi-speci? c splice-switching

PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy[J]. Nucleic Acids Res, 2015, 43(1): 29-39.

[29]O'Donovan L, Okamoto I, Arzumanov A A, et al. Parallel synthesis

of cell-penetrating peptide conjugates of PMO toward exon skipping enhancement in Duchenne muscular dystrophy[J]. Nucleic Acid Ther, 2015, 25(1): 1-10.

[30]Nimesh S. Polyethylenimine as a promising vector for targeted siRNA

delivery[J]. CurrClinPharmacol, 2012, 7(2): 121-130.

[31]Merkel O M, Librizzi D, Pfestroff A, et al. Stability of siRNA polyplexes

from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence

Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging[J]. J Control Release, 2009, 138(2): 148-159.

[32]Wagner E. Polymers for siRNA delivery: inspired by viruses to be

targeted, dynamic, and precise[J]. AccChem Res, 2012, 45(7): 1005-

1013.

[33]Sirsi S R, Schray R C, Guan X, et al. Functionalized PEG-PEI

copolymers complexed to exon-skipping oligonucleotides improve dystrophin expression in mdx mice[J]. Hum Gene Ther, 2008, 19(8): 795-806.

[34]Schiffelers R M, Ansari A, Xu J, et al. Cancer siRNA therapy by

tumor selective delivery with ligand-targeted sterically stabilized nanoparticle[J]. Nucleic Acids Res, 2004, 32(19): e149.

[35]Tietze N, Pelisek J, Philipp A, et al. Induction of apoptosis in murine

neuroblastoma by systemic delivery of transferrin-shielded siRNA polyplexes for downregulation of Ran[J]. Oligonucleotides, 2008, 18(2): 161-174.

[36]Dohmen C, Wagner E. Multifunctional CPP polymer system for tumor-targeted pDNA and siRNA delivery[J]. Methods MolBiol, 2011, 683: 453-463.

[37]Hu Y, Xu B, Ji Q, et al. A mannosylated cell-penetrating

peptide-graft-polyethylenimine as a gene delivery vector[J]. Biomaterials, 2014, 35(13): 4236-4246.

[38]Torchilin V P. Tat peptide-mediated intracellular delivery of

pharmaceuticalnanocarriers[J]. Adv Drug Deliv Rev, 2008, 60(4/5): 548-558.

[39]Ambegia E, Ansell S, Cullis P, et al. Stabilized plasmid-lipid particles

containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression[J]. BiochimBiophysActa, 2005, 1669(2): 155-163.

[40]Hayashi Y, Yamauchi J, Khalil I A, et al. Cell penetrating peptide-mediated systemic siRNA delivery to the liver[J]. Int J Pharm, 2011, 419(1/2): 308-313.

[41]Tagalakis A D, He L, Saraiva L, et al. Receptor-targeted liposome-peptide nanocomplexes for siRNA delivery[J]. Biomaterials, 2011, 32(26): 6302-6315.

[42]Nakase I, Akita H, Kogure K, et al. Ef?cient intracellular delivery of

nucleic acid pharmaceuticals using cell-penetrating peptides[J]. AccChem Res, 2012, 45(7): 1132-1139.

[43]Nakamura Y, Kogure K, Futaki S, et al. Octaarginine-modified

multifunctional envelope-type nano device for siRNA[J]. J Control

Release, 2007, 119(3): 360-367.

[44]Hatakeyama H, Akita H, Ito E, et al. Systemic delivery of siRNA to

tumors using a lipid nanoparticle containing a tumor-speci? c cle avable PEG-lipid[J]. Biomaterials, 2011, 32(18): 4306-4316.

[45]Valadi H, Ekstr?m K, Bossios A, et al. Exosome-mediated transfer of

mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.

[46]Montecalvo A, Larregina A T, Shufesky W J, et al. Mechanism of

transfer of functional microRNAs between mouse dendritic cells via exosomes[J]. Blood, 2012, 119(3): 756-766.

[47]Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse

brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29(4): 341-345.

[48]Maier M A, Esau C C, Siwkowski A M, et al. Evaluation of basic

amphipathic peptides for cellular delivery of antisense peptide nucleic acids[J]. J Med Chem, 2006, 49(8): 2534-2542.

[49]Du L, Kayali R, Bertoni C, et al. Arginine-rich cell-penetrating peptide

dramatically enhances AMO-mediated ATM aberrant splicing correction and enables delivery to brain and cerebellum[J]. Hum Mol Genet, 2011, 20(16): 3151-3160.

[50]Jearawiriyapaisarn N, Moulton H M, Buckley B, et al. Sustained

dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice[J]. MolTher, 2008, 16(9): 1624-1629.

[51]Heemskerk H, de Winter C, van Kuik P, et al. Preclinical PK

and PD studies on 2'-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model[J]. MolTher, 2010, 18(6): 1210-1217.

[52]Moschos S A, Jones S W, Perry M M, et al. Lung delivery studies using

siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity[J]. BioconjugChem, 2007, 18(5):

1450-1459.

[53]Chaubey B, Tripathi S, Pandey V N. Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice[J]. Oligonucleotides, 2008, 18(1): 9-20.

[54]Wu B, Moulton H M, Iversen P L, et al. Effective rescue of dystrophin

improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer[J]. Proc Natl AcadSci U S A, 2008, 105(39): 14814-14819.

[55]Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and

dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidatemorpholino oligomer treatment: an open-label, phase 2,

dose-escalation study[J]. Lancet, 2011, 378(9791): 595-605.

[56]Amantana A, Moulton H M, Cate M L, et al. Pharmacokinetics,

biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate[J]. BioconjugChem, 2007, 18(4): 1325-1331.

[57]Moulton H M, Moulton J D. Morpholinos and their peptide conjugates:

therapeutic promise and challenge for Duchenne muscular dystrophy[J]. BiochimBiophysActa, 2010, 1798(12): 2296-2303.

[58]Wancewicz E V, Maier M A, Siwkowski A M, et al. Peptide nucleic acids

conjugated to short basic peptides show improved pharmacokinetics and antisense activity in adipose tissue[J]. J Med Chem, 2010, 53(10): 3919-3926.

多肽类抗肿瘤药物研究进展

多肽类抗肿瘤药物研究进展 【摘要】目前,恶性肿瘤已严重威胁人类的健康,传统的手术、化疗、放疗等治疗手段不仅选择性低,毒副作用大,且易产生耐药性。而多肽具有良好的靶向性,且分子量小、来源广泛,具有低毒性、易于穿透肿瘤细胞且不产生耐药性的优点。抗肿瘤活性肽可特异性结合并作用于肿瘤组织,与肿瘤生长转移相关的信号转导分子相互作用,从而抑制肿瘤生长或促进肿瘤细胞发生凋亡。本文将从抗肿瘤多肽药物的来源、作用机制及发展现状进行概述。【关键词】多肽来源抗肿瘤作用机制 恶性肿瘤是一类严重威胁人类健康和生命的疾病,仅次于心血管疾病,每年死于癌症的患者约占总死亡人数的1/4,且中国占相当庞大的病例数。药物治疗是当今治疗肿瘤的主要手段之一,但目前的抗肿瘤药物不良反应较大。对此,寻找新型高效低毒的抗肿瘤药物一直是国内外医药研发的热点。随着免疫和分子生物学的发展,以及生物技术与多肽合成技术的成熟,人们发现多肽类药物不仅毒性低、活性高、易于吸收,还可以通过提高机体免疫功能抑制肿瘤的生长和转移,增强抗肿瘤作用,而且其广泛存在于动物、植物、微生物体内,因此,越来越多的多肽药物被开发并应用于临床。 抗肿瘤多肽的来源 天然来源的抗肿瘤活性肽 天然活性多肽是存在于动物、植物和微生物等生物体内的一类生物活性肽,可经过特殊提取分离工艺直接得到。近年来,对某些多肽经修饰加工后发现其具有显著的抗肿瘤作用,它们可针对肿瘤细胞发生、发展的不同环节,特异性杀伤、抑制肿瘤细胞,显示出极好的应用前景。 1.1微生物源抗肿瘤多肽 微生物源抗肿瘤多肽主要是指广泛存在于生物体内的一种小分子多肤,它们是非核糖体合成的抗菌肽,如多黏菌素(polymyxin)、杆菌肽(bacitracin)、短杆菌肽(gramicidin)等,主要是由细菌产生,并经结构修饰而获得,这类微生物产生的抗菌多肽的研究近年来取得了较大的进展。 细菌抗菌肽又称细菌素,是最常见的一类抗菌肽,革兰氏阳性菌和革兰氏阴性菌均可分泌。细菌中已发现杆菌肽、短杆菌肽S、多黏菌素E和乳链菌肽(Nisin) 4种类型抗菌肽,能特异性杀死竞争菌,而对宿主自身无害。例如[1],枯草芽孢杆菌可以产生多种抗微生物物质,如表面活性素(surfactin),该物质具有抗病毒、抗肿瘤、抗支原体、抗真菌活性和一定程度的抗细菌活性。除此之外,人们还发现某些抗菌肽对部分病毒、真菌和癌细胞等有杀灭作用,甚至能提高免疫力、加速伤口愈合。 1.2动物源抗肿瘤多肽 动物源多肽主要是指从哺乳动物、两栖动物、昆虫中分离提取出来的抗肿瘤多肽。如,有些哺乳动物来源的抗肿瘤多肽对淋巴瘤细胞有较强的抗肿瘤活性且免疫原性低;此外,还有Berge [2]等通过体内实验验证来源于牛科动物乳铁蛋白Lfcin B的9肽LTX-302 ( WKKWDipKKWK )的抗肿瘤效果,结果表明其对淋巴瘤细胞A20具有抗肿瘤活性,IC50为16 μmol·L ̄1 。 多数研究表明,从天蚕中分离出的天蚕素Cecropins具有较强的抗肿瘤活性。Cecropin A和Cecropin B对膀胱癌细胞有选择性细胞毒作用,以剂量依赖的方式抑制膀胱癌细胞增殖,对所有膀胱癌细胞系的IC50为73.29~220.05 μmol·L ̄1,它们的作用机制可能是破坏靶细胞膜导致不可逆的细胞溶解和细胞破坏[3]。 1.3植物源抗肿瘤多肽

2019年执业药师药学专业知识一:药物递送系统(DDS)与临床应用

2019年执业药师药学专业知识一:药物递送系统(DDS)与临床应用 学习要点 1.快速释放制剂:口服速释片剂、滴丸、吸入制剂 2.缓释、控释制剂:基本要求、常用辅料,骨架片、膜控片、渗透泵片 3.经皮贴剂剂型特点 4.靶向制剂:基本要求、脂质体、微球、微囊 第一节快速释放制剂 1.口服速释片剂(分散片、口崩片) 2.滴丸 3.固体制剂速释技术与释药原理:固体分散技术、包合技术 4.吸入制剂 二、滴丸剂 1.发展了多种新剂型 2.圆整度、溶散时限 3.适用药物:液体、主药体积小、有刺激性 4.基质 水溶性:PEG/甘油明胶/泊洛沙姆/硬脂酸钠 (冷凝液:液状石蜡)

脂溶性:硬脂酸/单甘酯/氢化植物油/虫蜡/蜂蜡 三、固体制剂速释技术 3.固体分散体的速释原理 药物特殊分散状态+载体促进溶出作用—→润湿、分散、抑晶—→阻止已分散的药物再聚集粗化—→有利于溶出。 吸入制剂质量要求 ①气溶胶粒径需控制 ②多剂量:释药剂量均一性检查 ③气雾剂:泄漏检查

④定量:总揿/吸次 每揿/吸主药含量 临床最小推荐剂量的揿/吸数 抑菌剂 随堂练习 A:适用于呼吸道给药的速效剂型是 A.注射剂 B.滴丸 C.气雾剂 D.舌下片 E.栓剂 『正确答案』C 『答案解析』气雾剂是适用于呼吸道给药的速效剂型。 A:固体分散体中,药物与载体形成低共熔混合物药物的分散状态是 A.分子状态 B.胶态 C.分子复合物 D.微晶态 E.无定形 『正确答案』D 『答案解析』药物与载体形成低共熔混合物药物的分散状态是微晶态。 A:下列关于β﹣CD包合物优点的不正确表述是 A.增大药物的溶解度 B.提高药物的稳定性 C.使液态药物粉末化 D.使药物具靶向性 E.提高药物的生物利用度 『正确答案』D 『答案解析』包合物没有靶向性。

新型纳米载药体系研究

2015年教育部推荐项目公示材料(自然奖、自然奖-直报 类) 1、项目名称:新型纳米载药体系研究 2、推荐奖种:高等学校自然科学奖 3、推荐单位:东南大学 4、项目简介:纳米载药体系的研究和应用,不仅能显著提高疾病治疗效果和提高人类的健康水平,还能显著降低医疗成本,也是各国政府大力推进的新技术。但目前纳米载药领域也还有着很多的问题没有解决,发现和研究高效低毒的纳米载药体系并加以应用,是材料、药物和医学界共同努力和追求的目标。基于此,本项目团队着重研究基于氧化石墨烯、牛血清白蛋白和壳聚糖纳米粒子的纳米载药系统的构建和潜在应用研究,取得了如下主要创新成果: 1、基于氧化石墨烯的新型纳米载药体系的研究:化疗是目前治疗癌症最有效的方法之一。但化疗的效果往往不够理想,主要原因在于化疗给药的靶向性差,毒副作用严重,而且长期使用容易产生耐药性。针对以上问题,我们通过化学修饰新型二维纳米材料氧化石墨烯,首次实现了抗癌药物阿霉素和喜树碱的可控联合载药和生物靶向递送,其在体外实验中表现出比单一载药更高的抗肿瘤效应,利用聚乙烯亚胺功能化石墨烯,联合递送具有靶向肿瘤抗凋亡蛋白

Bcl-2的siRNA及阿霉素显著增强抗肿瘤效果。与此同时,通过系统比较和计算机模拟,发现将氧化石墨烯还原制备的还原氧化石墨烯可更高效率吸附单链核酸,并可将本来难以进入细胞的单链核酸有效递送至细胞内。 2、基于牛血清白蛋白的多功能纳米药物递送体系的研究:围绕药物靶向递送,我们也通过化学改性血清白蛋白这一体内常见蛋白质,构建了聚乙二醇化的血清白蛋白纳米粒子,该粒子对水不溶性药物具有较强的吸附能力,并可显著增强不溶性药物的溶解度,可用于构建靶向递送系统。改性后的牛血清白蛋白可溶于DMSO等有机溶剂,从而可利用这种改性的血清白蛋白直接修饰油溶性的无机纳米粒子,改善其水溶性,构建多功能纳米载药体系。 3、基于壳聚糖的纳米药物递送体系的研究:我们采用离子凝胶法制备了基于壳聚糖的微纳米颗粒,通过同轴静电纺丝制备“核-壳”结构的表面多孔的PLLA纤维支架,并携带药物实现功能化,阐明了药物释放规律及机理;采用“graft to”的方法,结合两性离子材料磺酸甜菜碱甲基丙烯酸甲酯(SBMA)的优良的抗蛋白质吸附性能和多巴胺(DOPA)衍生物邻苯二酚(catechnol)的粘附功能,对PLLA血管支架表面改性,大大改善了其生物相容性(见代表性论文6-7);与此同时,为改善纳米药物递送系统存在的凝血等诸多问题,本研

脂质体—神奇药物递送系统汇总

Hans Journal of Medicinal Chemistry 药物化学, 2016, 4(3), 19-24 Published Online August 2016 in Hans. https://www.wendangku.net/doc/4817589585.html,/journal/hjmce https://www.wendangku.net/doc/4817589585.html,/10.12677/hjmce.2016.43003 文章引用: 王继波, 刘继民, 袁红梅. 脂质体—神奇的药物递送系统[J]. 药物化学, 2016, 4(3): 19-24. Liposome—A Novel Drug Delivery System Jibo Wang 1, Jimin Liu 2, Hongmei Yuan 3 1 School of Pharmacy, Medical Department of Qingdao University, Qingdao Shandong 2Division of Microbiology, Medical Department of Qingdao University, Qingdao Shandong 3Pharmacy Department, Qingdao Municipal Hospital, Qingdao Shandong Received: Oct. 27th , 2016; accepted: Nov. 12th , 2016; published: Nov. 15th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/4817589585.html,/licenses/by/4.0/ Abstract The study of liposome has become a focus in physical pharmacy recently and showed the prospec-tive value of application in many ways. The summarization of origin, basic concept, types, prepa-ration, in vivo characteristics, quality control and application of liposome was made. The stability and target design of liposome are the fundamentality of its application. The future development of liposome was viewed. Keywords Liposome, Drug Delivery System, Stability, Lipid Bilayer, Target 脂质体—神奇的药物递送系统 王继波1,刘继民2,袁红梅3 1 青岛大学医学部药学院,山东 青岛 2青岛大学医学部微生物教研室,山东 青岛 3青岛市立医院药剂科,山东 青岛 收稿日期:2016年10月27日;录用日期:2016年11月12日;发布日期:2016年11月15日 摘 要 近年来,脂质体已成为物理药学领域研究的热点,并且已经在许多方面显示出其潜在的应用价值。本文Open Access

多肽类药物研究及应用进展

多肽类药物研究及应用进展 内容摘要:多肽是一类在氨基酸构成及其连接方式上与蛋白质相同,但在某些性质方面又有别于蛋白质的物 质,如其空间结构较简单、免疫原性较低或无免疫原性、生理活性强等。但多肽类物质自身固有的特点,如口服利用率较低、酶 降解性高以及半衰期极短等,使其作为药物开发应用受到诸多的局限。而导致多肽类药物不稳定的一个重要原因就是多肽特殊的分子结构。 本文重点从分子结构改造方面对多肽类药物的研究进展做一综述。 关键词:多肽药物结构改造化学修饰基因工程环肽 多肽作为药物,具有生理活性强、免疫原性低、疗效高等诸多优点,随着生物技术的不断发展,其在人类疾病治疗中的地位也日趋重要,目前已成为国际药学界研究的热点之一。但多肽类物质自身固有的特点,如口服利用率较低、酶降解性高以及半衰期极短等,使其作为药物开发应用受到诸多的局限。而导致多肽类药物不稳定的一个重要原因就是多肽特殊的分子结构,其中多肽主链氨基酸的降解和侧链氨基酸残基的结构变化是多肽结构不稳定的主要原因,因此从多肽类药物本身的分子结构进行改造,是改变其理化性质和药代动力学性质的根本。本文拟重点从分子结构改造方面对多肽类药物的研究进展做一综述。 1 化学修饰 化学修饰不仅是多肽类药物定向改造、提高稳定性的有力工具,也是研究多肽结构与功能的一种重要手段。对多肽的主链基团和侧链基团都可以进行化学修饰。主链基团修饰包括氨基酸肽链的延长、切除及氨基酸定位突变等;侧链基团修饰主要集中于氨基、巯基和羧基上。修饰剂主要有葡聚糖、多聚唾液酸、聚乙二醇、四硝基乙烷等。根据修饰剂与 多肽之间反应的性质,修饰反应可分为糖基化反应、酯化反应、酰化反应、取代反应、磷酸化反应、烷基化反应、氧化还原反应等。由于烷基化反应和氧化还原反应对多肽的活性影响较大,实际应用较少,而磷酸化反应对多肽稳定性的影响意义不大。现主要对前 4 种修饰反应进行重点介绍。 1.1 糖基化反应 糖基化是指多肽的氨基和单糖还原端的羰基在温和的条件下经过一系列变化成为较稳定的糖肽的过程,是一种较为理想的稳定多肽类药物的方式,糖链的存在及其结构的可变性、复杂性和多样性直接影响着糖肽在组织中的降解和在体内的寿命[1],也使得糖肽成为药学研究的新热点。脑内的亮氨酸脑啡肽可特异性地与阿片受体结合,在机体内起着调控痛觉感受并调节心血管与胃肠功能的作用,但半衰期短。 1.2 酯化反应 酯化是指多肽的羧基和醇羟基形成较稳定的酯类化合物的反应。聚乙二醇(polyethylene glycol,PEG)是常用的酯化反应试剂,是一种线性、亲水、灵活而不带电的高分子聚合物。通常选择相对分子质量大于10 000 的PEG 在温和的条件下对多肽进行修饰,选择合适的修饰类型、修饰程度以及修饰位点有利于改善多肽类药物的活性并提高其稳定性。目前已有不少经PEG 修饰的多肽类药物如PEG-IL-2[2]、PEG-水蛭素[3]等已进入临床试验阶段。 1.3 酰化反应

合成多肽药物有关物质研究的几点考虑

发布日期20071127 栏目化药药物评价>>非临床安全性和有效性评价 标题合成多肽药物有关物质研究的几点考虑 作者审评五部 部门 正文内容 审评五部 有关物质研究是合成多肽药物药学研究的一项重要内容,由于合成多肽本身结构、合成工艺以及稳定性方面的特殊性,这类药物的 有关物质研究较为复杂、存在一定的难度。国家食品药品监督管理 局颁布的《合成多肽药物药学研究技术指导原则》已经就该类产品 的有关物质研究提出了原则性的要求,本文主要是根据审评中遇到 的一些共性问题就合成多肽药物有关物质研究需重点关注的几个 问题做进一步的说明。 (一)合成多肽药物有关物质的特点和研究的难点。 合成多肽的有关物质主要为源于合成过程带来的工艺杂质和由于多肽不稳定而产生的降解产物、聚合物等。 工艺杂质尽管目前合成多肽的纯化工艺已经有了很大进步,但工

艺杂质仍是合成多肽有关物质的重要来源,这主要是由于合成多肽的一些工艺杂质(如缺失肽、断裂肽、氧化肽、二硫键交换的产物等)与药物本身的性质可能非常近似,从而给纯化造成了一定的难度。而且,不同的多肽合成方法也在很大程度上决定了终产品中杂质的性质,例如液相合成和固相合成所引入的工艺杂质就会明显不同,固相合成中Boc合成法与Fmoc合成法所产生的杂质也会有所差异,甚至不同的保护/脱保护策略都会带来不同的工艺杂质。因此,在进行合成多肽的有关物质研究时,研究者必须结合自身的工艺特点对可能由此引入的杂质有充分认识,从而才能够建立有针对性的有关物质研究方法。同时,这也意味着,对于仿制产品而言不能盲目照搬国家标准、已上市产品的有关物质检查方法,必须充分考虑到产品本身的工艺特点。 降解产物及聚合物多肽的化学稳定性和物理稳定性一般较差,因此降解产物、聚合物等是合成多肽有关物质研究的主要对象之一。影响合成多肽稳定性的因素包括脱酰胺、氧化、水解、二硫键错配、消旋、β-消除、聚集等,研究显示合成多肽中最常见的降解产物是脱酰胺产物、氧化产物、水解产物。在组成多肽的各种氨基酸中,天冬酰胺、谷胺酰胺易于发生脱酰胺反应(尤其是在pH值升高和高温条件下);甲硫氨酸、半胱氨酸、组氨酸、色氨酸、酪氨酸最易氧化,对光照也较为敏感;天冬氨酸参与形成的肽链较易断裂,尤其是Asp-Pro和Asp-Gly肽键。由于一个多肽分子中通常

pH敏感药物传递系统的研究进展

pH敏感药物传递系统的研究进展 发表时间:2016-08-03T13:56:01.367Z 来源:《医药前沿》2016年7月第21期作者:王鹏[导读] 各种不同的酸敏感基团的使用,人们可以根据需要来获取不同pH响应行为的聚合物分子,进而在不同的体系中加以应用。王鹏 (国药控股天津有限公司天津 300040) 【中图分类号】R94 【文献标识码】A 【文章编号】2095-1752(2016)21-0376-02 人们已经认识到,在许多治疗方案中,药物比如抗癌药等要想发挥高效作用。药物运载系统要想将药物运载到靶向部位,需要克服重重困难,总体概括为细胞外与细胞内。在细胞外,运载体在血液中的稳定性,血液中的循环时间,靶向组织部位的累积情况等等。在细胞内,运载体如何高效进入细胞,内含体逃逸问题,药物可控释放等等。 下面简单介绍几种具有酸敏感的聚合物分子的合成以及特点。首先是在主链上引入酸敏感基团。在主链上引入酸敏感基团,设计合成的聚合物分子在中性条件(pH=7.4)具有稳定的结构,而在酸性条件(pH=5.0-6.0)下会发生降解为小分子的行为。缩醛结构在pH敏感药物运载体中得到了广泛的研究,这是由于其在酸性条件下比较快速的水解反应,而且其水解产物为可生物降解的醇与醛。Jin-Ki Kim等合成出一种新颖的pH敏感的基于缩醛结构的两亲性嵌段聚合物的药物运载分子PEG–PEtG–PEG,同时使用水溶性极差的药物分子紫杉醇PTX作为药物控制释放实验。经实验得知,该嵌段聚合物由于具有缩醛结构,所以在酸性条件可酸催化水解[1]。在不同的pH条件下,经过24h,考察释药环境的pH对载药体释药的影响。通过实验结果可以看出,pH很大程度上影响着药物分子的释放行为。在PEtG–PEG500聚合物胶束中,在pH=5.0时,1h内的PTX释药量达到了50%,而对于pH=7.4,在1h内的PTX释药量仅仅为20%。在释药6h后,对应pH=7.4,6.5以及5.0的条件下,PTX的累积释放百分率分别为49.3%,71.7%以及94.1%。对于聚合物胶束PEtG–PEG750而言,其释药行为也有类似的趋势。在释药6h后,对应不同的pH=7.4,6.5以及5.0,其PTX释药率分别为54.4%,68.3%以及89.1%。总的实验结果证明,具有缩醛结构的聚合物胶束搭载药物后的释药行为是收到释药体系的pH条件控制的。在弱酸条件下,聚合物胶束中的酸敏感基团的水解速率较快,导致药物分子的释放速率大为增加。 另外,与缩醛结构类似,缩酮结构也常常被用于聚合物结构中,赋予聚合物分子酸敏感功能。Dongwon Lee等人合成出具有pH敏感的两亲性聚合物分子聚缩酮己二酸-co-聚乙二醇嵌段共聚物(PKA-PEG)[2]。在该聚合物的疏水骨架中,具有酸敏感的缩酮键结构。该两亲性聚合物分子可以自组织成核/壳层结构,利用其疏水内腔可以搭载疏水性药物分子。搭载药物后,在酸性条件下,药物运载体结构破坏,从而将药物分子释放,即在弱酸性条件下具有可控药物释放功能。该嵌段共聚物(PKA-PEG)的结构示意图如下,作为对比,作者又合成出没有酸敏感基团的聚合物胶束聚环己基己二酸-co-聚乙二醇(PCA-PEG),结构示意图1如下。 * 图1 PKA-PEG与PCA-PEG示意图 两聚合物胶束均可经自组织形成壳层结构,都可在疏水内腔搭载药物分子。为了研究其对pH的响应性,作者采用模型分子尼罗红Nile Red来研究其释放行为。Nile Red是一种疏水性荧光探针,在水溶液中其荧光强度很低,然而在疏水性环境中,其荧光强度变得很高[3]。据此,研究聚合物胶束在中性条件以及弱酸性条件下的结构变化。下图为聚合物胶束PKA-PEG与Nile Red复合物的荧光强度随pH变化情况。从图2中可以看出,对于pH=7.4,在观察18h后,体系的荧光强度没有明显变化,然而对于pH=5.4而言,荧光强度有着显著的下降。这说明,在弱酸性条件(pH=5.4)条件下,聚合物胶束中的缩酮结构水解从而胶束结构被破坏,导致疏水性荧光分子从胶束中转移到水溶液中,从而降低了荧光强度。这说明两亲性嵌段共聚物由于具有缩酮结构从而对酸敏感,可以根据体系的pH来控制药物分子的释放行为。 *

药物递送系统

第五章药物递送系统(DDS)与临床应用学习要点 1.快速释放制剂:口服速释片剂、滴丸、吸入制剂 2.缓释、控释制剂:基本要求、常用辅料,骨架片、膜控片、渗透泵片 3.经皮贴剂剂型特点 4.靶向制剂:基本要求、脂质体、微球、微囊 第一节快速释放制剂 1.口服速释片剂(分散片、口崩片) 2.滴丸 3.固体制剂速释技术与释药原理:固体分散技术、包合技术 4.吸入制剂 二、滴丸剂 1.发展了多种新剂型 2.圆整度、溶散时限 3.适用药物:液体、主药体积小、有刺激性 4.基质 水溶性:PEG/甘油明胶/泊洛沙姆/硬脂酸钠 (冷凝液:液状石蜡)

脂溶性: 硬脂酸/单甘酯/氢化植物油/虫蜡/蜂蜡 三、固体制剂速释技术 3.固体分散体的速释原理 药物特殊分散状态+载体促进溶出作用—→润湿、分散、抑晶—→阻止已分散的药物再聚集粗化—→有利于溶出。 吸入制剂质量要求 ①气溶胶粒径需控制 ②多剂量:释药剂量均一性检查

③气雾剂:泄漏检查 ④定量:总揿/吸次 每揿/吸主药含量 临床最小推荐剂量的揿/吸数 抑菌剂 随堂练习 A:适用于呼吸道给药的速效剂型是 A.注射剂 B.滴丸 C.气雾剂 D.舌下片 E.栓剂 『正确答案』C 『答案解析』气雾剂是适用于呼吸道给药的速效剂型。 A:固体分散体中,药物与载体形成低共熔混合物药物的分散状态是 A.分子状态 B.胶态 C.分子复合物 D.微晶态 E.无定形 『正确答案』D 『答案解析』药物与载体形成低共熔混合物药物的分散状态是微晶态。 A:下列关于β﹣CD包合物优点的不正确表述是 A.增大药物的溶解度 B.提高药物的稳定性 C.使液态药物粉末化

合成多肽药物药学研究技术指导原则

附件三 合成多肽药物药学研究技术指导原则

合成多肽药物药学研究技术指导原则 一、前言 多肽类化合物是一类重要的生物活性分子。20世纪70年代生物技术在生命科学领域的应用,使多肽等生物技术药物的研究进展迅速;与此同时,随着多肽固相合成技术及高效液相色谱(HPLC)纯化、分析技术等的发展,合成多肽药物的开发也成为药物研究中的一个活跃领域。 采用化学合成方法制备多肽,可以对天然多肽的结构进行修饰,从而增加多肽与受体的亲和力、选择性,增强对酶降解的抵抗力或改善药代动力学特性,甚至由受体的激动剂变为拮抗剂;此外,新技术的发展,例如以多肽固相合成和组合化学为基础的组合肽库合成技术,使得在短时间内获得大量的多肽化合物成为可能,药物筛选的效率不断提高。因此,将会有越来越多的采用化学合成方法制备的多肽类化合物成为治疗用药物。 合成多肽药物是指采用化学合成方法制备的多肽类药物。这类药物的药学研究同样遵循国家食品药品监督管理局已经发布的相关技术指导原则的一般性要求。但是,由于多肽主要由氨基酸(包括天然氨基酸和非天然氨基酸)构成,这使得多肽类药物在制备方法、结构确证、质量研究等方面又有与一般药物不同的独特问题。本指导原则就是在已有的相关指导原则基础上,对合成多肽药物药学研究方面所涉及的特殊问题进行分析,结合国内对多肽药物研究和评价的实践经验,提出多肽药物药学各项研究的一般性要求。当然,具体品种研究的内容与深度还要取决于品种本身的特性。 本指导原则适用于采用液相或固相合成方法制备的多肽药物。

二、合成多肽药物药学研究的基本考虑 合成多肽药物药学研究的主要内容、研究思路、研究方法及一般性的技术要求与其他类型的化学药物基本一致。但是,由于多肽药物的特点,在进行药学研究时还应注意考虑以下问题。 1、关于多肽(原料药)合成工艺选择的考虑 多肽的化学合成是有机合成的一个非常特殊的分支,目前主要有液相合成和固相合成两种方法。 液相合成是经典的多肽合成方法,一般采用逐步合成或片段缩合方法。逐步合成法通常从链的C'末端氨基酸开始,向不断增加的氨基酸组分中反复添加单个α-氨基保护的氨基酸。片段缩合一般先将目标序列合理分割为片段,再逐步合成各个片段,最后按序列要求将各个片段进行缩合。液相合成的优点是每步中间产物都可以纯化、可以获得中间产物的理化常数、可以随意进行非氨基酸修饰、可以避免氨基酸缺失,缺点是较为费时、费力等。 固相合成是将目标肽的第一个氨基酸的羧基以共价键的形式与固相载体(树脂)相连,再以这一氨基酸的氨基为合成起点,使其与相邻氨基酸(氨基保护)的羧基发生酰化反应,形成肽键。然后让包含有这两个氨基酸的树脂肽的氨基脱保护后与下一个氨基酸的羧基反应,不断重复这一过程,直至目标肽形成为止。其优点是简化了每步反应的后处理操作,避免因手工操作和物料转移而产生的损失,产率较高且能够实现自动化等;其缺点是每步中间产物不可以纯化,必须采用较大的氨基酸过量投料,粗品纯度不如液相合成物,必需通过可靠的分离手段进行纯化等。 液相合成和固相合成各有优缺点,应根据合成的实际需要选择适合的工艺。一般而言,液相合成法较适于合成短肽;固相合成法

第05章 药物递送系统(DDS)与临床应用

第5章药物递送系统(DDS)与临床应用 一、最佳选择题 1、属于主动靶向制剂的是 A、糖基修饰脂质体 B、聚乳酸微球 C、静脉注射用乳剂 D、氰基丙烯酸烷酯纳米囊 E、pH敏感的口服结肠定位给药系统 2、将微粒表面加以修饰作为“导弹”载体,使药物选择性地浓集于病变部位的靶向制剂称为 A、被动靶向制剂 B、主动靶向制剂 C、物理靶向制剂 D、化学靶向制剂 E、物理化学靶向制剂 3、药物透皮吸收是指 A、药物通过表皮到达深层组织 B、药物主要通过毛囊和皮脂腺到达体内 C、药物通过表皮在用药部位发挥作用 D、药物通过破损的皮肤,进入体内的过程 E、药物通过表皮,被毛细血管和淋巴吸收进入体循环的过程 4、口服缓控释制剂的特点不包括 A、可减少给药次数 B、可提高患者的服药顺应性 C、可避免或减少血药浓度的峰谷现象 D、有利于降低肝首过效应 E、有利于降低药物的不良反应 5、控制颗粒的大小,其缓控释制剂释药所利用的原理是 A、扩散原理 B、溶出原理 C、渗透泵原理 D、溶蚀与扩散相结合原理 E、离子交换作用原理 6、微囊的特点不包括 A、防止药物在胃肠道内失活 B、可使某些药物迅速达到作用部位 C、可使液态药物固态化 D、可使某些药物具有靶向作用 E、可使药物具有缓控释的功能 7、关于微囊技术的说法错误的是 A、将对光、湿度和氧不稳定的药物制成微囊,可防止药物降解 B、利用缓释材料将药物微囊化后,可延缓药物释放 C、挥发油药物不适宜制成微囊 D、PLA 是可生物降解的高分子囊材 E、将不同药物分别包囊后,可减少药物之间的配伍变化

8、滴丸的脂溶性基质是 A、明胶 B、硬脂酸 C、泊洛沙姆 D、聚乙二醇4000 E、聚乙二醇6000 二、多项选择题 1、脂质体的基本结构脂质双分子层的常用材料有 A、胆固醇 B、硬脂醇 C、甘油脂肪酸酯 D、磷脂 E、纤维素类 2、下列制剂具有靶向性的是 A、前体药物 B、纳米粒 C、微球 D、全身作用栓剂 E、脂质体 3、经皮给药制剂的优点为 A、减少给药次数 B、无肝首过效应 C、有皮肤贮库现象 D、药物种类多 E、使用方便,适合于婴儿、老人和不宜口服的病人 4、以减少溶出速度为主要原理的缓、控释制剂的制备工艺有 A、制成溶解度小的酯或盐 B、控制粒子的大小 C、制成微囊 D、将药物包藏于溶蚀性骨架中 E、将药物包藏于亲水性高分子材料中 5、影响微囊中药物释放速率的因素有 A、制备工艺条件 B、溶出介质离子强度 C、PH值的影响 D、附加剂 E、药物的性质 答案部分

多肽、蛋白质类药物缓释剂型的研究进展天烽

多肽、蛋白质类药物缓释剂型的研究进展 作者:文章来源:点击数:3201 更新时间:2004-7-13 随着生物技术的高速发展,多肽、蛋白质类药物不断涌现。目前已有35种重要治疗药物上市,生物技术与生物制药企业的发展也日益全球化。生物技术药物研究的重点是应用重组技术开发可应用于临床的多肽、蛋白、酶、激素、疫苗、细胞生长因子及单克隆抗体等。据's 报道,目前已有723种生物技术药物正在接受审评(包括Ⅰ~Ⅲ期临床及评估),700种药物处于早期研究阶段(研究与临床前),还有200种以上药物已进入最后批准阶段(Ⅲ期临床与评估)[1]。 生物技术药物的基本剂型是冻干剂。常规制剂尽管其疗效早为临床所证实,但由于半衰期短,需要长期频繁注射给药,从患者的心理与经济负担角度看,这些都是难以接受的问题。为此,各国学者主要从两方面着手研究开发方便合理的给药途径和新制剂:①埋植剂和缓释注射剂。 ②非注射剂型,如呼吸道吸入、直肠给药、鼻腔、口服和透皮给药等[2]。缓释生物技术药物的注射制剂,是很有应用前景的新剂型,有一些品种如能缓释1至3个月的黄体生成素释放激素()类似物微球注射剂已经上市[3],本文着重介绍这类制剂。 1多肽、蛋白质药物缓释制剂的主要类型 多肽、蛋白质药物缓释制剂的研究与开发,从发展过程及剂型看,主要分埋植剂和微球注射剂两类。 1.1埋植剂() 1.1.1细棒型埋植剂[4]埋植剂外形为一空心微型细棒,一头封闭,另一头开口,棒材为聚四氟乙烯等非生物降解聚合物。腔内灌入药物与硅胶(,聚二甲基硅氧烷)混合物。埋植剂埋入人体皮下,药物通过硅胶基质开口处缓慢释放。美国内科医生手册()上收载了商品名为?的埋植剂,药物为左旋-18乙基炔诺酮,用于计划生育。该制剂每根直径 2.4 ,长34 ,医生通过手术将6根细棒状物埋植在患者上臂内侧,药物可在体内按零级模式释药达5年,药物释完后再经手术取出。 1.1.2微型渗透泵埋植剂美国公司20世纪70年代开发了外形像胶囊的埋植剂,该制剂埋植于皮下或其它部分,体液可渗透过外壳,溶解夹层电解层,使体积膨胀的夹层压向塑性内腔,促使药物溶液从开口定速释放。有不少生物大分子药物,如胰岛素、肝素、神经生长因子等作为模型药物的动物体内外研究报道[5]。埋植剂对需要长期用药的慢性患者的治疗具有积极的意义,但它存在以下缺陷:①必须经手术途径植入。②制剂骨架材料为非生物降解聚合物,释药结束后还需经手术取出。③制剂在局部组织有刺激与不适感。 1.1.3可注射的埋植剂可生物降解聚合物作为埋植型或注射型缓释制剂骨架是近20年来国内外学者大力研究的方向,这类聚合物包括两大类:①天然聚合物,如明胶、葡聚糖、白蛋白、甲壳素等。②合成聚合物,如聚乳酸、聚丙交酯、聚乳酸-羟乙酸()、聚丙交酯乙交酯()、聚己内酯、聚羟丁酸等。 近年合成聚合物尤为人们重视,于20世纪70年代起即用作外科缝线及体内埋植材料,如人工关节、护板、螺栓等。聚合物在体内可逐渐

药一 第五章药物递送系统与临床应用习题

第五章药物递送系统与临床应用考试要点 滴丸剂特点与质量要求 吸入制剂的附加剂种类和作用 缓释、控制制剂的释药原理 缓释、控释制剂的常用辅料和作用 经皮给药制剂的基本结构与类型 经皮给药制剂的处方材料 速释技术与释药原理 靶向制剂的分类、特点 靶向性评价指标和参数解释 脂质体的组成与结构 微球的载体材料和微球的用途 药物微囊化的材料 X 速释制剂载体材料对药物溶出的促进作用表现在 A.水溶性载体材料提高了药物的可润湿性 B.载体保证了药物的高度分散性 C.载体提高了药物的稳定性 D.载体材料对药物有抑晶性 E.载体提高了药物的可溶性 『正确答案』ABD 滴丸剂X 下列辅料,可作为滴丸水溶性基质的是 A.聚乙二醇类6000 B.甘油明胶 C.氢化植物油 D.泊洛沙姆 E.虫蜡 『正确答案』ABD 缓控释制剂A 关于缓(控)释制剂的说法错误的是 A.缓(控)释制剂可以避免或减少血药浓度的峰谷现象 B.减少给药次数,提高患者的用药顺应性 C. 降低药物毒副作用 D.减少单次给药剂量 E.在临床应用中对剂量调节的灵活性降低 『正确答案』D 缓控释制剂X 缓释、控释制剂的释药原理包括 A.溶出原理 B.扩散原理

C.溶蚀与溶出、扩散结合原理 D.渗透压驱动原理 E.离子交换作用 『正确答案』ABCDE 缓控释制剂X 下列属于不溶性骨架材料: A.MC B.EC C.PVP D.EVA 乙烯一醋酸乙烯共聚物 E.HPMC 『正确答案』BD 缓控释制剂X 下列属于溶蚀性骨架材料的是 A.巴西棕榈蜡 B.蜂蜡 C.氢化植物油 D.硅橡胶 E.硬脂醇 『正确答案』ABCE 缓控释制剂X 属于膜控型片的是 A.微孔膜包衣片 B.膜控释小片 C.渗透泵片 D.肠溶膜控释片 E.蜡质性骨架片 『正确答案』ABD 经皮给药系统A 关于经皮给药系统说法错误的是 A.避免肝首过效应及胃肠灭活效应 B.维持恒定的血药浓度,增强了治疗效果 C.延长作用时间,减少用药次数,改善患者顺应性 D.患者可以自主用药 E.起效快,作用确切 『正确答案』E 经皮给药系统A 药物透皮吸收是指 A.药物通过表皮到达深层组织 B.药物主要通过毛囊和皮脂腺到达体内

浅谈药物传输系统的研究热点

浅谈药物传输系统的研究热点 摘要:通过查阅近年国外文献,重点介绍了药物传输系统较新的进展,有脉冲药系统,结肠定位给药系统及受体型与免疫型靶向制剂等内容。式给 关键词:药物传输系统脉冲式给药系统结肠定位给药系统受体与免疫靶向制剂 药物传输系统(Drug Delivery Systems,DDS)系指人们在防治疾病的过程中所采用的各种治疗药物的不同给药形式,在60年代以前的药剂学中称为剂型。如注射剂、片剂、胶囊剂、贴片、气雾剂等。随着科学的进步,剂型的发展已远远超越其原有的内涵,需要用药物传输系统或给药器(Device)这类术语加以表述,即原由药物与辅料制成的各种剂型已满足不了临床治疗的需要,有的将药物制成输注系统供用,有的则采用钛合金制成给药器植入体内应用,使临床用药更理想化。为克服普通制剂的有效血浓维持时间短的缺陷,出现了长效注射剂,口服长效给药系统或缓/控释制剂、经皮给药系统等一系列新的制剂。由于缓/控释制剂的特点,它的市场前景看好。缓释制剂通常是指口服给药后能在机体内缓慢释放药物,使达有效血浓,并能维持相当长时间的制剂。控释制剂系指释药速度仅受给药系统本身的控制,而不受外界条件,如pH、酶、离子、胃肠蠕动等因素的影响[ 1 ],是按设计好的程序控制释药的制剂,如零级释药的渗透泵,脉冲释药的微丸,结肠定位释药的片剂或胶囊以及自动调节释药的胰岛素给药器等等。亦有些文献对缓释、控释制剂不加严格区分,统称为缓/控释制剂。 我国早在1977年版的中国药典就收载了防治血吸虫病的没食子酸锑钠缓释片,但在这方面的研究直到80年代才被广泛重视。1995年我国批准的缓/控释制剂就有7个,脂质体、微球、毫微粒等亚微粒分散给药系统以及结肠定位给药系统这类口服靶向给药制剂国内研究也很活跃(目前脂质体已有批准生产的品种)。今就以下几个侧面进行概述。 1 新型缓/控释制剂研究概况 1.1 脉冲式给药系统 根据时辰药理学研究,药物的治疗作用、不良反应和体内过程均有时间节律,这已成为设计定时释药这类控释制剂的重要依据。释药方式符合人体昼夜节律变化的规律,这是近代药剂学研究的一种新型释药模式。国外有多家制药企业正在研究开发这类脉冲式给药系统,国内亦已开始研究。

药物递送系统(DDS)与临床应用

药物递送系统(DDS)与临床应用 学习要点 1.快速释放制剂:口服速释片剂、滴丸、吸入制剂 2.缓释、控释制剂:基本要求、常用辅料,骨架片、膜控片、渗透泵片 3.经皮贴剂剂型特点 4.靶向制剂:基本要求、脂质体、微球、微囊 第一节快速释放制剂 1.口服速释片剂(分散片、口崩片) 2.滴丸 3.固体制剂速释技术与释药原理:固体分散技术、包合技术 4.吸入制剂 减负运动:实例结合片剂学习 再回首:片剂崩解时限 2018 分散、可溶:3

舌下、泡腾:5 普通:15 薄膜衣:30,肠溶:60 QIAN片剂崩解时限总结 可溶内外用,崩解快舌下 分手吃泡面,35分钟就搞定 素颜一刻钟,穿衣半小时 入肠一小时,溶散成碎粒 二、滴丸剂 滴丸剂:固体或液体药物与适宜的基质加热熔融混匀,再滴入不相混溶、互不作用的冷凝介质中,由于表面张力的作用使液滴收缩成球状而制成的制剂,主要供口服用。

1. 滴丸剂的分类 2.滴丸剂的特点 (1)设备简单、操作方便、工艺周期短、生产率高。 (2)工艺条件易于控制,质量稳定,剂量准确,受热时间短,易氧化及具挥发性的药物溶于基质后,可增加其稳定性。 (3)基质容纳液态药物的量大,故可使液态药物固形化。 (4)用固体分散技术制备的滴丸具有吸收迅速、生物利用度高的特点。 (5)发展了耳、眼科用药的新剂型,五官科制剂多为液态或半固态剂型,作用时间不持久,制成滴丸剂可起到延效作用。 3.滴丸剂常用基质 ①水溶性:PEG、甘油明胶、泊洛沙姆、硬脂酸钠、聚氧乙烯单硬脂酸甘油酯(S-40) 冷凝液:液状石蜡 ②脂溶性:硬脂酸、单甘酯、氢化植物油、虫蜡、蜂蜡 QIAN减负运动:基质总结

长效多肽药物的研究

长效多肽药物研究进展 王秀贞 1,2  吴 军 13  孟宪军 2 (1军事医学科学院生物工程研究所 北京 100071 2沈阳农业大学食品科学院 沈阳 110161) 摘要 重组蛋白药物在体内存留时间的长短,极大地影响到药物的使用剂量和治疗效果。防止 多肽在体内迅速降解、延长半衰期成为蛋白质工程药物改造的重要课题之一。经过许多学者多年来的不懈研究,不少长效多肽药物已经上市,还有一些正在进行临床研究。综述了几种多肽药物常用的长效改造方法如化学修饰、基因融合、点突变以及药物制剂释放系统的改造。关键词 多肽药物 半衰期收稿日期:2003203221 修回日期:20032082223通讯作者,电子信箱:wqmxjr @s https://www.wendangku.net/doc/4817589585.html, 生物技术的发展极大地促进了多肽、蛋白药物的研制开发,目前已有40种以上重要的治疗药物上市,720多种生物技术药物正进行Ⅰ~Ⅲ期临床试验或接受FDA 审评,其中200种以上的药物进入最后的批准阶段(Ⅲ期临床与FDA 评估)。多肽因子、蛋白药物主要通过降解、排泄、以及受体介导的内吞等作用在体内被清除。其中分子量小于20kDa 的多肽因子在代谢过程中易由肾小球滤过;通过肾小管时多肽因子又被其中的蛋白酶部分降解并从尿中排出,因而半衰期短。为维持一定的疗效需要大剂量反复用药,长期的频繁注射不仅增加了病人的痛苦而且易引发一系列副反应。近几年各国学者主要从化学修饰、基因融合、点突变以及制剂改造等方面着手进行长效多肽药物的研究。 1 化学修饰 化学修饰是延长蛋白药物半衰期的一个有效途径,其中应用最为广泛的修饰剂是单甲氧基聚乙烯二醇(methoxypoly ethylene glycol ,mPEG ),其次是多糖类如葡聚糖、聚蔗糖、淀粉等;同源蛋白质、人工合成多肽类如白蛋白、聚丙氨酸等;长链脂肪酸类以及聚烯属烃基化合物、聚酸酐等[1] 。PEG 是惰性、两亲、不带电荷的柔性聚合物,分子量随聚合程度而变化(1~50kDa ),有线性和支链两种构型,其中线性单甲氧基聚乙烯醇(mPEG )已经FDA 批准作为许多药物的安全载体。mPEG 通过共价键与蛋 白质连接,对蛋白表面氨基进行修饰以有效地改变多肽、蛋白药物在体内的分布和药物学特性。目前mPEG 修饰已应用于40多种不同蛋白的修饰如猪血清白蛋白(BS A )、粒细胞集落刺激因子(G 2CSF )、白介素22(I L 22)等。PEG 修饰后血浆半衰期一般可延长几倍至几十倍甚至是上百倍(表1),但大部分蛋白的免疫原性也有所降低,而蛋白的生物活性也有不同程度降低。这可能是由于PEG 大分子在蛋白分子周围形成一层外壳阻碍了免疫细胞与蛋白的接触保护了蛋白,掩盖了蛋白酶识别位点避免蛋白酶降解的发生,但同时也使蛋白的活性位点受到影响。中国药科大学田泓等[2] 用聚乙二醇修饰干扰素α2的研究表明活性损失与修饰率有关,修饰率保持在30%以内时生物活性保持较好M otoo Y amasaki 等[3] 在PEG 修饰重组人粒细胞集落刺激因子(rhG 2CSF )中发现修饰位点的多少(即1分子rhG 2CSF 与几分子PEG 结合)对半衰期的延长方面并无多大影响,但修饰位点少活性损失就相对少一些;为保持蛋白的生物活性,采取位点特异性修饰即将蛋白功能结构域中易与PEG 结合的氨基酸残基换成功能相似不干扰蛋白与PEG 结合的氨基酸 残基如赖氨酸替换成精氨酸[4] 。PEG 修饰应用十分广泛,它对酶、多肽、受体、抗体片断等均能实现偶联以延长半衰期,抗体药物是继疫苗之后的第二大生物技术药物产业,但是异体抗体容易产生免疫识别而被清除,经PEG 修饰后就可得到明显改善[5] ,从而为抗体更广泛地应用于疾病的治疗提供了基础。随着研究的不断深入,不少PEG 修饰蛋白药物已经上市或者进入临床(表2)。 第23卷第10期 中 国 生 物 工 程 杂 志 CHI NA BI OTECH NO LOGY 2003年10月

新型给药系统进展综述

新型给药系统(DDS)的发展综述 摘要本文概述了缓控释给药系统、靶向给药系统、纳米给药系统、透皮给药系统、粘附给药系统、无针粉末喷射给药系统,和其他给新型给药系统的研究现状。 关键词新型给药系统缓控释给药系统靶向给药系统纳米给药系统透皮给药系统粘附给药系统无针粉末喷射给药系统其他给药系统 给药系统系指人们在防治疾病的过程中所采用的各种治疗药物的不同给药形式。新型药物传递系统(DDS)的研发具有周期短、成本低的特点,已经成为研发机构进行药物创新的重要选择。可分为缓控释给药系统、靶向给药系统、纳米给药系统、透皮给药系统、粘附给药系统,和其他给药系统。 一、缓控释给药系统(sustained and controlled drug delivery system) 近年来,随着高分子科学和现代医学、药学、生物学以及工程学的迅速发展,一个研究药物传递系统的理论和技术的新领域一药物控制释放系统逐渐成为技术研究的热门。目前,缓控释给药系统按其给药途径可分为注射剂、口服固体、液体制剂。 1.口服缓、控释制剂发展状态 口服缓控释固体制剂的品种国内以涉及到抗生素、抗心律失常药、降高血压药、抗组胺药、解热镇痛药、抗炎抗风湿药、糖尿病药、止痛药、抗哮喘药、抗癫痫药、全身用抗病毒药、抗贫血制剂、维生

素类。国外涉及的新的品种有激素类药物,如FDA批准麦考酚酸缓释片;喹若酮类抗生素,环丙沙星控释片;干扰素,澳大利亚生产的干扰素口含片等。 口服液体控释系统(简称OLCRS)是一种通过液体混悬或乳剂形式供口服给药的控释制剂,这种制剂可直接以液体形式服用,也可以f 临时调配成液体形式服用,分散的微粒可以是微囊、微球、或乳滴,分散介质可以是水、糖浆或其他可供药用的油性液体。OLCRS是针对幼儿、老人和吞咽困难患者用药的一类新型口服控释系统。它具有流动性好,可以分剂量,很少受胃排空速率影响,掩盖味道,减少给药次数,降低毒副反应及便于服用等优点。目前,已有美沙芬、可待因一扑尔敏、苯丙胺茶碱、伪麻黄碱等药物的OLCRS。 2.缓释及控释注射剂 缓释及控释注射剂其显著优点是可以减少注射次数,消除频繁注射给患者带来的精神上的烦恼和肉‘体上的疼痛。可分为溶液型,混悬型、凝胶型、微囊型、微球型、脂质体型注射剂。主要适宜的药物有抗精神类药物、抗菌素类药物、多肽、蛋白质类药物、疫苗类药物、抗癌药物等。 缓控释制剂根据不同的原理制备:胃内漂浮型、渗透泵型、骨架型、蚀解式、肠道定位、双层缓控释片等。 缓控释材料有醋酸纤维素,乙基纤维素(水分散体),甲基丙烯酸共聚物,硅酮弹性体,PVAP,HPMCP,HPMCAS,交联海藻酸盐等新型材料。

相关文档
相关文档 最新文档