文档库 最新最全的文档下载
当前位置:文档库 › 热电厂供热机组最佳补水方式研究

热电厂供热机组最佳补水方式研究

热电厂供热机组最佳补水方式研究
热电厂供热机组最佳补水方式研究

热电厂供热机组最佳补水方式研究

王秋会

(河南省平顶山鸿翔热电有限责任公司,河南平顶山 467021)

[摘 要] 结合平顶山鸿翔热电有限责任公司的4台供热机组运行的实际情况和供热情况,对该

电厂供热机组补水情况进行分析,通过几种补水方案的分析比较,从中找出最佳的补水方案,以提高电厂运行效益。

[关键词] 供热;除氧器;除盐水;补水 [中图分类号]T K 223.5 [文献标识码]A [文章编号]1006-3986(2008)02-0031-03

S t u d y o nO p t i m a l Ma k e -u pWa t e r Mo d e o f H e a t S u p p l y

U n i t s i nT h e r m a l P o w e r P l a n t

W A N GQ i u -h u i

(H e n a n P i n g d i n g s h a n H o n g x i a n g T h e r m a l C o .,L t d .,P i n g d i n g s h a n 467021,C h i n a )

[A b s t r a c t ]A c c o r d i n g t o t h e r e a l c o n d i t i o n a n d h e a t s u p p l y c o n d i t i o n o f t h e f o u r s e t s o f h e a t s u p p l y u n i t s o p -e r a t i o n i n P i n g d i n g s h a nH o n g x i a n g T h e r m a l C o .,L t d .,t h e i r m a k e -u p w a t e r c o n d i t i o n w a s a n a l y z e d .T h r o u g h c o m p a r i n g s e v e r a l k i n d s o f m a k e -u p w a t e r s c h e m e s ,t h e o p t i o n a l s c h e m e w a s f o u n d o u t t o e n h a n c e t h e o p e r a -t i o n b e n e f i t .[K e y w o r d s ]h e a t s u p p l y ;d e a e r a t o r ;d e s a l t e d w a t e r ;m a k e -u p w a t e r

1 现状分析

河南平顶山鸿翔热电有限责任公司(平顶山电

厂)共5台机组,总装机容量为225M W ,其中1、2、4号机为50M W 抽汽/凝汽机组,3号机为25M W 背压机组,5号机为50M W 纯凝汽机组。1~4号机组承担着平顶山市区绝大部分工业用汽和全部居民采暖用汽的供汽任务,由于供热蒸汽基本无法回收,必须要向机组大量地补水。据统计,2003年冬季供热高峰时,该公司化学补水最大值为530t /h ,平均补水量为430t /h 。据2003年测量,在夏季的平均补水流量为130t /h 左右。在过去,补水直接补入2台低压除氧器,在低压除氧器内进行初步除氧后,由中继水泵打入5台高压除氧器内进行深度除氧,除氧后的水进入锅炉作为给水。据理论计算,在1~4号机供热均在额定流量时,除氧器的除氧用汽量达到50t /h 。这么大的补水量,使除氧器经常出现过负荷而振动的情况,影响到设备安全,而矛盾的是,同时由于为了保证供热的压力,必须减少向除氧器供汽,在冬季,除氧器的压力经常降低到0.36M P a ,温

[收稿日期] 2008-02-18

[作者简介] 王秋会(1973-),女,河南许昌人,工程师。

度下降到139℃(高压除氧器额定温度为158℃,额定压力0.5M P a ),这在很大程度上影响锅炉的给水

温度,增大机组的发电煤耗,进而影响机组运行的经济性。在当前电力生产竞争日趋激烈的情况下,必须向科技要效益,通过依靠科学技术,采用新手段、新技术节能降耗,减少发电的成本,只有这样,才能在激烈的市场竞争情况下,尤其在电力竞价上网的情况下处于比较有利的地位。所以选择最佳补水方式、提高电厂供热机组运行经济性日益显得重要和

迫切[1]

2 补水方式的改进

在改进供热机组补水方式上先后进行了积极的探索和实践。1999年,曾经对公司供热系统的最佳补水方式进行过初步探讨,但是随着时间推移和供热情况的变化,原来的补水方式已经与现在的实际情况不一样了,必须根据现在的情况重新制订最佳的补水方式。

开始想采用向除氧器补水主要依靠向凝汽器补水的方式,但是,经过此补水方式在试验过程中的测量,发现汽轮机凝汽器真空的升高和凝结水的温度的降低并没有出现预料的数值,经过认真检查、分析,发现汽轮机凝汽器补水装置为汽机检修班组自

·

31·V o l .32№2

A p r .2008

湖 北 电 力 第32卷第2期

2008年4月

己设计的棒状减温装置,在一根不锈钢管上钻出许

多直径为1m m 的小孔,所补的除盐水从小孔中喷出,进入凝汽器,此种方式的补水装置虽然简单,易于制造,但是补水呈线状,不分散,并且流动方向与汽轮机的排汽方向相同,与汽轮机的排汽接触面积小,换热系数小,除盐水温度虽然低,但是与汽轮机排汽缸内部的蒸汽换热效果不明显,而且除盐水中所溶解的氧气由于补水不能呈雾状分散,在凝汽器的高真空情况下除氧效果不明显。除盐水补水采用棒状补水装置首先在1号汽轮机上试用,2003年12月1~26日,1号机凝结水水质出现7次含氧量超标,证明此种补水装置是不合适的,必须采用更好的除盐水补水装置。

经过充分的分析和研究论证后,针对以前机组补水进入凝汽器时水呈线状的实际,研制出了旋转雾化喷水补水装置,除盐水补水在经过喷嘴后呈雾状喷入凝汽器,水雾的流向在汽轮机的凝汽器内与汽轮机的排汽流向是相反的,可以增强换热效果和真空除氧效果,利用机组停机大修期间进行更换。经试验,旋转雾化喷嘴工作状况良好,喷雾均匀,在机组带50M W 负荷纯凝汽工况下运行,循环水入口温度28℃的情况下,向凝汽器补水10t /h ,正常情况下可以使机组的排汽温度降低1.1℃。在合适的补水装置制造成功后,必须选择最佳的补水方案,针对现场的实际情况,提出了2个补水方案。

2.1 方案一

冬季,由于大量的供热,除氧器补水量大,补水在可能的情况下,尽量向凝汽器内补,在高压除氧器水位过低时,补水量不够的情况下,一部分除盐水向低压除氧器内补,由中继水泵从低压除氧器打入高压除氧器;夏季,供热量小,停运1、2号低压除氧器,除盐水补水完全补入凝汽器。

方案一的试验结果及分析:高、低压除氧器系统的布置方式为母管制,运行的各个岗位控制方式为分别控制,即除氧器、给水泵值班员与汽轮机运行值班员不在一个控制室内值班,联系不方便,冬季,在除盐水补水主要向凝汽器补充的情况下,如果除氧器水位过高或过低时,联系汽轮机运行值班员改变补水量将会比较困难;夏季,供热量小,停运2台低压除氧器,使锅炉疏水箱内回收的疏水和汽轮机低位水箱内回收的各放水无法回收,据测量,各种疏放水的回收量为12t /h ,如此大量纯净的水如果不回收,将造成很大的浪费,如果回收,公司必须对系统的布置方式进行重大改造,这样将花费大量的人力

物力。另外,由于公司3号汽轮机(背压式)的制造

原因,汽轮机的低压轴封漏汽必须引入低压除氧器,否则会出现汽轮机高、低压轴封大量漏汽,机组轴向推力增加,推力瓦温度超标,1号瓦回油温度高等情况,直接威胁到机组的安全运行,停运2台低压除氧器是不可行的。冬季情况下,据2003年3月试验,在1号机带60t /h 供热量,2号机带90t /h 的供热量情况下,向1、2号机凝汽器内补水超过40t /h 和60t /h ,汽轮机的真空不再发生变化,且凝结水泵出力不够,必须启动2台凝结水泵才能使凝汽器热水井的水位保持稳定,所消耗的厂用电大量增加。为回收疏放水,在2003年2月试验,停运2号低压除氧器,除盐水补水主要补入凝汽器,在24h 内,1~5号高压除氧器出现满水和无水位情况为10次,而采用过去的补水方式,高压除氧器出现无水位和满水情况的次数为每天4次,这些情况证明这个方案是不合适的。2.2 方案二

在冬季,1~4号机均带额定热负荷情况下,1号机补水30t /h ,2号机补水40t /h ,4号机补水90t /h ,均补入凝汽器,剩余的水由除盐水泵补入低压除氧器,在低压除氧器内进行第一步除氧并加热到102℃,然后由中继水泵从低压除氧器打入高压除氧器。在夏季,热负荷较小的情况下,1、2、4号机为纯凝汽工况运行,理论上可以停止全部低压除氧器运行,但是由于1、2、4号机为供热机组,在50M W 负荷下运行,不投供热调压器的情况下,4号低加出口水温为158.6℃(4号机3号低加出口水温为148℃),如此高温度的凝结水进入除氧器,已经超过除氧器压力对应的饱和温度,如果彻底停止向高压除氧器补水,会造成高压除氧器自生沸腾,除氧器在超过额定压力下运行的情况,甚至使除氧器的安全门频繁动作。为防止除氧器超压,在不对系统进行更改的情况下,为了回收放水和3号机低压轴封漏汽,停止一台低压除氧器运行,保留一台低压除氧器,中继水泵改为变频调速,改变中继水泵打水量,调整低压除氧器水位,其余除盐水补入凝汽器。在除盐水以比较大的流量补入凝汽器后,汽轮机运行值班员和除氧器值班员加强联系,及时调整水位,控制凝汽器的补水量。

方案二的试验情况及分析:通过测量发现,在夏季,循环水入口温度超过25℃,各汽轮机排汽温度超过34℃的情况下,开启除盐水补水后(除盐水温度32℃),汽轮机真空变化值为:

·

32·第32卷第2期

2008年4月

湖 北 电 力

V o l .32№2A p r .2008

1号机的补水流量为10t /h ,真空度升高0.049

k P a ;2号机的补水流量为15t /h ,真空升高0.033k P a ;4号机的补水流量为15t /h ,真空升高0.039k P a ;5号机的补水流量为12t /h ,真空升高0.036k P a 。

3 经济性分析

3.1 除盐水补入凝汽器所引起的冷源损失减少量

以1号机为例,在设计的供热流量为60t /h 时,此时需要的最少补水量为60t /h ,凝汽器的排汽量为89.46t /h 。如果有30t /h 的除盐水补入凝汽器,除盐水的温度为32℃,在凝汽器内,它至少可以吸收30t /h 的汽轮机排汽的汽化潜热。而实际情况下,除盐水的温度要比凝汽器的排汽温度低,这30t /h 的除盐水每小时吸收的汽轮机排汽的汽化潜热

为:2136×30×103=6408×104

k J 。

同样,2号机在设计供热流量为90t /h 的情况下,汽轮机凝汽器的排汽量为72.03t /h ,此时,除盐水补水量最小为90t /h ,这90t /h 的水有40t /h 完全补入凝汽器,它可以吸收40t /h 的汽轮机凝汽器排汽的汽化潜热,这40t /h 的除盐水每小时吸收的汽化潜热量为:2136×40×103

=8544×104

k J 。

对吸收的汽化潜热进行计算,最终折算到整个汽轮机的绝对内效率上,可以使汽轮机的绝对内效率增加,1号机增加值见式(1):

Δη1=(αc 1×q c 1-αc ×q c )/q 1=(0.283×2136-0.426×2136)/2521.3=12.1%(1)式中 αc

———凝汽器排汽占汽轮机总进汽量的份额;

q c ———实际循环的冷源损失; q 1—

——循环吸热量。同理,2号机循环绝对内效率的增加值为式(2):

Δη1=(αc 1×q c 1-αc ×q c )/q 1=

16.1%(2)最终,统一计算,由于减少冷源损失,可以使冬季发电煤耗降低1.1g /k W h 。

2003年,平顶山电厂全年的发电量按11×

108

k W h 计算,其中冬季发电量为4.8×108

k W h ,节

约发电标准煤528t 。

3.2 运行经济性的分析

除氧器为混合式加热器,按等效热降理论的规定为汇集型。经过计算,在1、2号机带额定供热负荷,向凝汽器分别补水30t /h 和40t /h 时,可以使除氧器的除氧用汽比直接补水入除氧器减少1.6t /

h 和1.9t /h ,使高加入口温度增加6℃,从而使高加

抽汽量减少,低加抽汽量增加。于是,由于高加进、出口温度升高,给水温度升高3℃,使发电煤耗减少0.43g /k W h 。2003年度总发电量按13×108

k W h 计算,节约发电标准煤为559t 。

由于除氧器抽汽量减少,使机组供热能力增加15t /h ,使供热更稳定,带来的社会效益是可观的。3.3 发电煤耗分析

1号机:夏季由于除盐水补水,真空平均升高0.049k P a ,真空度升高0.054%,使1号机发电煤耗降低:0.054×4.79=0.26g /k W h ;2号机:夏季由于除盐水补水,真空平均升高0.033k P a ,真空度升高0.037%,使2号机发电煤耗降低:0.038×4.79=0.18g /k W h ;4号机:夏季由于除盐水补水,真空升高0.039k P a ,真空度升高0.036%,使4号机发电煤耗降低:0.036×4.79=0.17g /k W h ;5号机:夏季由于除盐水补水,真空升高0.036k P a ,真空度升高0.032%,使5号机发电煤耗降低:0.032×4.79=0.15g /k W h 。

2003年夏季,1、2、4、5号机的总发电量为3.7×108

k W h ,则由于真空提高所减少的发电标准煤耗为:(0.26+0.18+0.15+0.17)×3.1×100=281.2t 3.4 安全性分析

在除盐水补水主要补入凝汽器后,及时调整除盐水向凝汽器的补水量,使除氧器水位稳定,在冬季,高压除氧器出现水位不稳定情况而必须到就地调整的频次为每天3次,采用比补水方式前为每天4次,不会出现高压除氧器水质不合格的情况。

4 结论

平顶山鸿翔热电有限责任公司的供热机组,在额定供热负荷下运行时,选择合适的除盐水补水方

式,采用旋转喷雾装置,吸收汽轮机循环的汽化潜热,提高循环效率,并且提高除氧器的温度,可以在很大程度上起到节能降耗的作用,提高电厂运行的经济性。

平顶山电厂每年节约发电标准煤528+559+281=1368t ,每吨标准煤按270元计算,每年可以节约燃料费用1368×270=369360元。

[参考文献]

[1] 郑体宽.热力发电厂[M ].水利电力出版社,1989.

·

33·V o l .32№2

A p r .2008

湖 北 电 力 第32卷第2期

2008年4月

热电厂供热首站扩容改造

热电厂供热首站扩容改造 摘要:本文针对鹤煤热电厂供热首站供热能力不足的问题,着重对汽轮机的供热及外管网的输送能力进行核算,围绕首站系统设备选型、控制方式及热网系统的安全运行等问题提出具体增容改造方案。首站扩容后热电厂的供热能力达到245mw,年节省标煤3.5×104t,为促进淇滨新区发展作出了贡献。 关键词:首站扩容增效节能 1 概况 城市集中供热是现代化城市中必不可缺的基础设施,也是城市公用事业的一个重要组成部分,在节约能源、减少城市污染方面具有至关重要的作用。 鹤煤热电厂装有2×135mw抽凝式热电机组。设计工业抽汽压力1.276mpa,工业抽汽温度446℃,抽汽量30t/h;采暖抽汽压力0.245mpa,采暖抽汽温度239℃;采暖额定抽汽量80t/h,采暖最大抽汽量120t/h。即热电厂设计最大供热能力为160mw,只能满足320万m2热用户的采暖需求。 作为城区集中供热的唯一热源,因受热网首站容量的制约,已无法满足供热需求。因此,为提高对外供热量,增大集中供热面积,对热网首站进行扩容改造是当务之急。 2 供热能力分析 2.1 汽轮机最大抽汽能力

根据制造厂提供的数据,机组最大供热工况额定蒸汽流量为 445t/h,在供热工况下运行时,汽轮机高、中压汽封漏汽等各种损失、回热系统用汽总量为126.61t/h;保证汽轮机中压缸安全的中压缸排汽压力为0.245mpa、低压缸最低蒸汽通流量为70t/h。为保证汽轮机最大供热工况运行时调节级及各监视段压力、供热蝶阀后压力、供热抽汽压力等参数完全在汽轮机叶片允许压力范围之内,在保证抽30t/h工业蒸汽的情况下,采暖抽汽最大抽汽量为190t/h,若无工业抽汽采暖最大抽汽量可达220t/h,能保证机组安全运行。考虑到两台机同时供汽及系统故障等因素的影响,两台机组可靠供热抽汽量为340-360t/h,即231-245mw。 2.2 抽汽管网管径核算 单台机组的采暖抽汽管径现为dn900,采暖抽汽量为170t/h,则:d=(■)■ 代入数据,则有: 0.92=■ v=69.62m/s 管道内蒸汽流速经核算为69.62m/s。蒸汽管道热介质的最大允许流速为80m/s,推荐流速为35m/s~60m/s。综合机组运行情况、管线较短各方面情况分析,该段管道造成的压力降较小,对热经济性影响不大,完全可以满足运行要求。 3 供热首站扩容改造方案

热电厂供热须知

热电厂供热须知 一、供热时间为每年11月下旬至次年4月上旬,具体日期视天气变化由供热主管部门确定,供热天数为136天。 二、每年4月15日至10月20日为办理暖气停供、开启手续时间,办理手续时需携带房产证、身份证,逾期不予办理。以前年度欠费用户,在办理停供、开启手续前,应补交欠费及滞纳金。老系统用户不办理开启、停供手续,用户须进行分户控制改造。 三、每年11月1日至11月20日为交纳供热费时间。单元阀用户以单元为单位到威海热电厂客服中心交费,分户控制用户,可到威海热电厂客服中心或商业银行任意营业网点一次性交纳供热费。逾期未交者,每逾期一天加收应交供热费1‰的滞纳金。 四、每年11月1日至11月20日为调试送水打压时间(一般情况下,不再另行公告)。每年11月1日前,用户必须确保室内供热设施完善,如有问题,请提前与威海热电厂客服中心或供热站联系维修。调试期间,用户可与所属供热站联系,了解具体的送水打压时间,调试当天必须家中留人。如果您是单户阀用户,家中无人,可以提前将阀门关闭。因家中无人或系统不完善给自身或他人造成损失的,由责任人自负。 五、请您自觉爱护供热设施,严禁私自改动供热设施、安装水嘴、私开供热阀门等。安装换热器用户,须到威海热电厂客服中心办理手续。用户如果不执行有关规定,热电厂将按有关规定给予处罚,由此造成的一切后果由用户承担;造成重大后果的,移交司法部门处理。 六、您的供热方式为热电厂汽轮机循环水供热,供热质量稳定、安全、可靠。因供热热水中已加入化学药品,具有一定危害性,敬请广大用户:严禁放水!否则由此造成的一切后果均由用户自负。因放水导致供热系统事故的,移交司法机关依法追究经济和法律责任。 七、供热期间,在用户房屋保温正常,且供热设施符合采暖设计技术规范的情况下,室内供热温度为18℃±2℃。 八、特殊环境用户,因其建筑采暖能耗大,热环境差,供热期间,执行协议供热温度。 九、供热期间,我厂配备专业维修抢险队伍,设立厂及供热站服务热线电话,24小时为您服务: (一)热电厂供热服务热线:5817755; (二)各供热站及维修电话如下:

热电厂供热系统故障应急预案

热电厂供热系统故障应急预案 1总则 1.1编制目的 为及时、有效地处理供热系统故障,避免或减少因供热系统故障带来的不良影响,确保安全、可靠、持续供热,特制订本应急预案。 1.2编制依据 《中华人民共和国突发事件应对法》(主席令第六十九号) 《电力安全事故应急处置和调查处理条例》(国务院599 号令) 《关于印发《电力突发事件应急演练导则(试行)》等文件的通知》(电监安全[2009]22 号)《关于印发《电力企业应急预案管理办法》的通知》电监安全【2009】61 号 1.3适用范围 本应急预案适用于xxx 热电厂。 2故障类型和危害程度分析 2.1供热系统故障定义 是指因热电联产机组或所辖热网系统发生故障,导致供热质量降低或供热中断,影响到用户的正常生产与生活,带来不良影响。 2.2本厂供热系统概况: 供热机组概况:包括机组型号、供热介质(热水、蒸汽),设计参数(温度、压力)等内容。 供热系统主管道分布:包括管网敷设图、管网材质、敷设方式、防腐、保温型式、补偿类型和方式、管网分段和分支阀门的类型和连接方式、热力站系统和其它设备情况等。 本企业负责管辖的范围及危险点分析:主要指与地区供热公司的设备划分,危险点分析包括阀门渗漏、补偿器腐蚀破坏、支架锈蚀、易损管段等内容。 2.3故障类型及现象分析: 2.3.1供热机组设备故障,导致供热汽源中断或不能满足热网需求。 2.3.2燃料中断或燃煤质量恶化,导致供热机组出力严重不足或被迫停运。 2.3.3厂用电中断或全厂失电,导致供热机组、热力站系统不能正常运行。 2.3.4热网主管道、主设备损坏无法在10 小时内修复,使整个热网系统退出运行。 2.4预警级别和信息发布:Ⅰ级预警:供热机组因全厂停电、厂用电中断、燃料中断、火灾事故、重大

电锅炉蓄热采暖系统的工作原理

电锅炉蓄热采暖系统的工作原理 电锅炉蓄热采暖系统是以电锅炉为热源,水为热媒,利用峰谷电价差,在供电低谷时,开启电锅炉将水箱的水加热、保温、储存;在供电高峰及平电时,关闭电锅炉,用蓄热水箱的热水供热。 系统是由电锅炉、蓄热水箱、换热器、水箱循环泵、供热泵、补水泵、定压装置、电动三通阀等设备组成。 电锅炉为热源,蓄热水箱用于蓄热和放热,定压装置用于用户侧定压,热交换器用于热源系统与采暖系统换热。 换热器一次侧由锅炉,蓄热水箱,蓄热泵,板换等组成热源系统。换热器二次侧由系统循环泵,换热器,定压装置,用户等组成了采暖供热系统。在系统中设置了电动三通调节阀,根据室外温度变化, 自动调节换热器二次侧的供水温度。从而节约能源,保证了采暖的舒适性。 系统内的电锅炉、水泵、电动三通阀均由系统控制柜控制,加上电动碟阀可做到无人值守全自动运行,在需要时全部设备也可手动操作运行。 电锅炉蓄热采暖的优越性 1.自动化程度高, 可根据室外温度变化调节采暖供水温度, 运行合理, 节约能源消耗。 2.运行安全可靠,具有过温、过压、过流、短路、断水、缺相等六重自动保护功能,实现了机电一体化。 3.无噪音、无污染、占地少(锅炉本体体积小,设备布置紧凑,不需要烟囱和燃料堆放地,锅炉房可建在地下)。 4.热效率高,运行费用低,可充分利用低谷电。 5.操作方便, 值班人员劳动强度小,节约人工费用。 6.适用范围广,可满足各种环境及条件的要求,可满足宾馆、饭店、机关、学校、厂房、住宅等多种取暖方式和生活热水的需要。 电锅炉蓄热采暖运行方式介绍 蓄热式电锅炉的运行方式,主要分为两种形式: 一种是全部使用低谷电,(23:00~7:00为低谷电价)即低谷时段电锅炉开启运行并蓄热,平电及高峰用电时段(7:00~8:00、11:00~18:00执行平电电价,8:00~11:00、18:00~23:00执行峰电电价)关闭电锅炉,由蓄热水箱中的热水向系统供热。 另一种运行方式是在使用低谷电的同时使用一部分平电,即低谷时段电锅炉开启运行并蓄热;白天关闭电锅炉,由蓄热水箱中的热水向系统供热、同时使用一部分平电蓄热或供热。

热电厂供热及供电标煤耗率计算

热电厂供热及供电标煤耗率计算 是热电企业财务统计、成本计算、审核审计工作的前提。当前各热电企业,在数据交流和上报时可能会发现一些问题,主要是计算公式不尽相同,致使同样的原始资料数据,计算结果可能不一致,或者会出现一些不应该有的错误。这种情况使我们无法正确进行财务评价,也无法对热电成本正确性进行评价。 现有关于供热、供电标煤耗率计算主要取自浙江省标准“热电厂煤耗和厂用电率计算方法”(浙江省标准计量局发布 1991年12月20日实施),在这以后,国家已发布了一系列有关文件和计算公式,例如: 国家四部委急计基础[2000]1268号文; 2001年1月11日三部委发布的“热电联产项目可行性研究技术规定”,最近发布的文件与前述“省标”对某些计算公式不完全相同。现将计算中可能遇到问题及对这些公式理解提出一些看法,供热电行业有关同仁参考与研究。 二.对供热及供电标准煤耗率计算方法理解: 1.浙江省标准局1991年发布的“热电厂煤耗和厂用电率计算方法”(以下简称“煤耗计算”与同时发布的“小型热电厂成本计算方法”(以下简称“成本计算”)是当时同时发布,又必须同时应用的2个标准,后者的“成本计算”必须应用前者的“煤耗计算”数据,因此,前者是成本计算的前提。 2.对供热标煤耗率br的理解: “煤耗计算”中公式 (9)中 br=Br/Qr×103 其中: br 供热标煤耗率kg/GJ

Br 供热耗标煤量t Qr 对外总供热量GJ 上式中Br;Qr的计算如下: Br=Bb·αr αr=Qr/Qh 其中: Qh 为锅炉总产汽热量GJ 其中一部分通过汽轮机或通过减温减压器对外供热, 另一部分通过汽轮发电机发电。 αr 为供热比,表示对外供热占总锅炉产汽热量百分比。 Bb为热电厂总耗标煤量, 以上这个公式br仅考虑了总耗煤量的一次分摊,而厂用电量,没有考虑进去。标准“成本计算”在计算供热燃料费用的成本时,又加入了供热厂用电所需燃料费,这个又称为二次分滩,所以原标准“成本计算”中是考虑了二次分摊,但供热标煤耗率br没有考虑二次分摊。2001年三部委发布的“热电联产项目可行性研究技术规定”(以下简称“技术规定”)已在这个br计算公式中考虑了二次分摊。 公式如下: brp=34.12/ηgLηgd+εrbdp (书中公式17-20) 其中: brp 全厂年平均供热标准煤耗率kg/GJ ηgL 锅炉效率% ηgd 管道效率%

太阳能采暖工作原理

太阳能供热采暖系统工作原理(参考北京地区的阳光指数) 系统包括太阳能集热系统、储热膨胀水箱,生活热水系统、辅助热源系统、末端供暖系统和控制系统。 太阳能集热系统采用多台供热采暖两用太阳热水器并联运行。太阳能可置于任何受光位置。以水为工质,温度控制运行状态。蓄热水箱同时具有膨胀水箱功能。太阳能水箱具有换热、供给热水、供暖和温差发电功能。辅助热源采用电采暖炉,整个系统运行状态无需人工操作。 太阳能供热采暖系统特点 ①采用高效供热采暖两用太阳热水器,使用寿命长,运行安全可靠,全年综合得热量高。 ②太阳能循环系统采用家用暖通循环系统,安装方法与土暖气相似。 ③太阳能的安装位置不受地理的限制,实现太阳能系统与建筑完美结合。 ④太阳能水箱具有常压承压两个压力状态,保证系统长寿命和在恶劣情况下无故障运行。 ⑤生活热水与采暖水相互隔离,保证了水质。 ⑥系统实现全自动运行,保证在停电、停水等意外工况的系统安全。 ⑦辅助热源用户可自选,利用电采暖炉作辅助热源有利于系统的全自动。

系统参数:(假设采暖面积为100平米的家用采暖) ①采暖面积:100㎡ ②集热面积45-50㎡,采暖面积选用58*1800真空管。 ③蓄热膨胀水箱0.5-1t ④电加热功率6KW 散热设备采用超导散热器或集成地暖。系统节能效益系统使用寿命15年以上。太阳能系统初投资400-600元/㎡左右。每年可节电2000KW·h,采暖季节煤3650kg. 系统运行情况地板采暖供水温度40-50℃,室内温度20℃以上。用户多采用经济运行方法,即调节散热器阀门或地暖分水器阀门,控制房间温度。达到最佳节能状态。 对于上述采暖技术描述,根据您所处的地域以及实际采暖现状要求(鉴于河北地区冬季阳光辐射量较少),600平米的采暖面积需要使用58*1800真空管集热面积在300平米左右,一吨集热器的采暖面积为16.2平米,所以为了保证使用效果需要采用集热器共20吨才能满足冬季采暖要求。

供热空调水系统各种阀门的工作原理

供热空调水系统各种阀门的工作原理 供热空调水系统各种阀门的工作原理-上海阀门知识 阀门在供热空调水系统中被广泛应用于控制水的压力、流量和流向。供热空调水系统阀门的种类和工作原理:供热空调水系统中常用的阀门按阀体结构形式和功能可分为闸阀、蝶阀、截止阀、球阀、旋塞阀、止回阀、减压阀、安全阀、疏水阀、平衡阀等类。按照驱动方式分为手动、电动、液动、气动等四种方式。按照公称压力分高压、中压、低压三类。供热空调水系统常用的鸿丰阀门的工作原理及特点如下: 闸阀是指关闭件(阐板)沿介质通道轴线的垂直方向移动的阀门。其优点是流阻系数小,启、闭所需力矩较小,介质流向不受限制。缺点是结构尺寸大,启闭时间长,密封面易损伤,结构复杂。把闸阀分为不同类型,最常见的形式是平行式和楔式闸阀,根据阀杆的结构,还可分成明杆闸阀。闸阀按结构形式可分为以下四种: 闸阀 (1)平行式闸阀:指两个密封面相互平行的闸阀。适用于低压,中、小口径(DN50-400mm)的管道。 (2)楔式闸阀:指两个密封面成楔形的闸阀。分为双阐板、单阐板和弹性阐板。 (3)明杆闸阀:由于能较直观显示其启闭程度,所以多年来中小通径被广泛应用,通常DN 小于等于80mm选用明杆闸阀。 (4)暗杆闸阀:其阀杆螺母在阀体内与介质直接接触。适用于大口径阀门和安装空间受限制的管路,如地下管线。 蝶阀 其名称来源于翼状结构的蝶板。在管道上它主要用于切断和节流,当蝶阀用于切断时,多用弹性密封,材料选橡胶、塑料等,当用于节流时,多用金属硬密封。鸿丰蝶阀的优点是体积小,重量轻,结构简单,启闭迅速,调节和密封性能良好,流体阻力和操作力矩较小。蝶阀按结构可分为杠杆式(双摇杆)、中心对称门 指关闭体(阀瓣)沿阀座中心线移动的阀门。它在管道中一般只作切断用,而不用于节流,通常公称通径都限制在DN250mm以下。缺点是压力损失大。截止阀种类很多,按照结构一般分为直通式、确式和直流式。角式截止阀在制冷系统中较多采用,其进口通道呈90度直角,会产生压力降,最大优点是安装在管路系统的拐角处,既省90度弯头,又便于操作。球阀 球阀是由旋塞阀演变而来的,它在管道上主要用于切断、分配和改变介质流向。它的特点是流体阻力最小,其阻力系数与同长度的管段相等,启闭快,密封可靠,结构紧凑,易于操作和维修,因而广泛用于许多场合。球阀按球体的结构形式可分为以下三种: (1)浮动球球阀:其结构简单,密封性能良好,由于球所承受的工作介质载荷全部传给了出口端阀座密封圈,因而这种结构只适用于中、低压场合,其缺点是组装困难,制作精度要

热电厂主要能耗指标计算

一、热电厂主要能耗指标计算 绍兴热电专委会陈耀东一、热电厂能耗计算公式符号说明 二、能耗热值单位换算

1、吉焦、千卡、千瓦时(GJ、kcal、kwh) 1kcal=4、1868KJ=4、1868×10-3MJ=4、1868×10-6GJ 1kwh=3600KJ=3、6MJ=3、6×10-3GJ 2、标准煤、原煤与低位热值: 1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。 Q y=5000kcal/kg=20934KJ/kg 1kg标准煤热值Q y=7000kcal/kg=29、3×103KJ=0、0293GJ/kg 当原煤热值为5000大卡时,1T原煤=0、714吨标煤,则1T标煤=1、4T原煤 3、每GJ蒸汽需要多少标煤: b r=B/Q=1/Q yη=1/0、0293η=34、12/η 其中:η=ηW×ηg=锅炉效率×管道效率 当ηW=0、89,ηg=0、958时,供热蒸汽标煤耗率b r=34、12/0、89×0、958=40kg/GJ 当ηW=0、80,ηg=0、994时,供热蒸汽标煤耗率b r=34、12/0、80×0、994=42、9kg/GJ 二、热电厂热电比与总热效率计算 绍兴热电专委会骆稽坤 一、热电比(R): 1、根据DB33《热电联产能效能耗限额及计算方法》 2、2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。 R=供热量/供电量×100% 2、根据热、能单位换算表: 1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦)

3、统一计量单位后的热电比计算公式为: R=(Q r/E g×36)×100% 式中: Q r——供热量GJ E g——供电量万kwh 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,其热电比为: R=(16×104/634×36)×100%=701% 二、综合热效率(η0) 1、根据浙江省地方标准DB33定义,综合热效率为“统计期内供热量与供电量所表征的热量之与与总标准煤耗量的热量之比” η0=(供热量+供电量)/(供热标煤量+供电标煤量) 2、根据热、能单位换算表 1万kwh=36GJ 1kcal=4、1868KJ 1kg标煤热值=7000kcal 1kg标煤热值=7×103×4、1868=29、3×103KJ=0、0293GJ 3、统一计量单位后的综合热效率计算公式为 η0=[(Q r+36E g)/(B×29、3)]×100% 式中:Q r——供热量GJ E g——供电量万kwh B——总标煤耗量t 4、示例: 某热电厂当月供电量634万kwh,供热量16万GJ,供热耗标煤6442吨,供电耗标煤2596吨,该厂总热效率为: η0=[(16×104+36×634)/(6442+2596)×29、3]×100%=69%

采暖系统的压力计算原理

采暖系统的压力计算原理 一、流体力学基础 1,流体的压强p:单位帕斯卡(Pa) 1Pa=1N/㎡。单位面积所受的压力。流体压强产生源于它的流动性,因此流体微元对各个方向的压强大小相等。水的压强公式:p=ρgh 只与水柱高度有关,这也是为什么人们常用水柱高度(m)来表达压强。 2,流体的能量(单位均为焦耳):压力能P、位能(重力势能)Z=ρgz、动能ρν2/2。 (1)压力能与压强的区别:压力能P是能量,单位是焦耳;压强p是压力,单位是帕斯卡。要注意区别。两者关系:p=P/ρg。 (2)水的压强公式中h和位能公式中z的区别:h是水柱本身的高度,z是水柱的重心距离0参考面的距离。如下图所示: 3,伯努利方程 流体在单位体积下: Z1+P1+ρν12/2=Z2+P2+ρν22/2+ΔQ (单位:焦耳)ΔQ ——由阻力产生的能量损耗伯努利方程是特定情况下的能量守恒定律。 z1+p1+ν12/2g=z2+p2+ν22/2g+ΔH (单位:mH2o)ΔH——阻力损耗此公式是伯努利方程的变形,用压强的形式间接表达了能量守恒定律。也可表示为: Z1/ρg+P1/ρg+ν12/2g=Z2/ρg+P2/ρg+ν22/2g+ΔH 这个式子,是用水柱高度(即水头)表达的伯努利方程。Z1/ρg为位置水头,P1/ρg为压强水头,ν12/2g为速度水头。 经此变形,可知,伯努利方程可以用压力来表达能量,压力的变化即能量的变化。 二、循环流体

1,循环流体的特点:1)管径变化不大的情况下,动能的变化是很小的,因此一般是可以忽略不计的; 2)循环水泵只负责补充由于摩擦阻力和局部阻力产生的能量损耗,因此,循环水泵运行时的扬程是系统的总阻力损耗,而对压力能P、位能(重力势能)Z=ρgz、动能ρν2/2是没有影响的,水泵扬程只等于ΔH。(当采用热水自然循环系统时,热水供回水的密度差承担了循环水泵的功能) 3)由于动能的忽略不计,水柱的总能量一般只考虑压力能P、位能(重力势能)Z=ρgz两部分,(即伯努利方程中的前两项Z1/ρg+P1/ρg),称为测压管水头H c=Z1/ρg+P1/ρg。系统每一点的测压管水头连接成线,即是水压图: 2,资用压差:测压管水头H c=Z1/ρg+P1/ρg 是管道内水柱的总能量体现。因此,在循环水系统中,H c即是某一点水系统能提供的总压力,即“资用压力”,那么供回水之间资用压力的差值(即“资用压差”)就是该供回水管段之间所有连接的末端设备可以损耗的能量的总能量。如采暖入口的资用压差为50KPa,那整个系统的阻力损失最多只能是50KPa,否则,系统将不能正常运行。资用压差=系统阻力损失。 3,静压:流体静止时对容器壁的压强。p=ρgh 4,工作压力:流体工作时对容器壁的压强。由于工作时水泵的加压作用,测压管水头H c 大于静止时的值。而系统任意点的位置水头Z1/ρg是固定的,不因系统静止或运行而改变(因为距离基准点的距离是不变的)因此,测压管水头H c增加的部分都转化为压强水头P1/ρg,

热电厂供热、供电标煤耗率计算方法说明及分析

小型热电厂供热、供电标煤耗率计算方法介绍及分析 一.前言 热电厂供热及供电标煤耗率计确实是热电企业财务统计、成本计算、审核审计工作的前提。当前各热电企业,在数据交流和上报时可能会发觉一些问题,要紧是计算公式不尽相同,致使同样的原始资料数据,计算结果可能不一致,或者会出现一些不应该有的错误。这种情况使我们无法正确进行财务评价,也无法对热电成本正确性进行评价。 现有关于供热、供电标煤耗率计算要紧取自浙江省标准“热电厂煤耗和厂用电率计算方法”(浙江省标准计量局公布1991年12月20日实施),在这以后,国家已公布了一系列有关文件和计算公式,例如:国家四部委急计基础[2000]1268号文;2001年1月11日三部委公布的“热电联产项目可行性研究技术规定”,最近公布的文件与前述“省标”对某些计算公式不完全相同。现将计算中可能遇到问题及对这些公

式理解提出一些看法,供热电行业有关同仁参考与研究。 二.对供热及供电标准煤耗率计算方法理解: 1.浙江省标准局1991年公布的“热电厂煤耗和厂用电率计算方法”(以下简称“煤耗计算”与同时公布的“小型热电厂成本计算方法”(以下简称“成本计算”)是当时同时公布,又必须同时应用的2个标准,后者的“成本计算”必须应用前者的“煤耗计算”数据,因此,前者是成本计算的前提。 2.对供热标煤耗率br的理解: “煤耗计算”中公式(9)中 br=Br/Qr×103 其中:br 供热标煤耗率 kg/GJ Br 供热耗标煤量 t Qr 对外总供热量 GJ 上式中Br;Qr的计算如下: Br=Bb·αr αr=Qr/Qh 其中: Qh 为锅炉总产汽热量 GJ 其中一部分通过汽轮机或通过减温减压器对外供热,

热电厂循环冷却水供热

热电厂循环冷却水供热探讨 摘要:本文介绍电厂利用循环冷却水增加供热能力的方案。详细阐述了方案的设计思路。认为循环冷却水供热是可行的,可以提高电厂热电联产的供热效率,达到节能减排的目的。 1 引言 当前,在节能减排、保护环境政策的要求下,各城市都在积极建设热电联产工程达到节能减排、保护环境的目的。同时,电厂也在不断通过技改,提高供热效率,增加对外供热量。 本文以工程实例,阐述电厂利用循环冷却水增加供热量的技术方案。望得到广大同仁指正。 2 工程项目概况 2.1 电厂概况 哈密二电厂位于新疆哈密市西北方向,直线距离约10kM。二电厂历史总装机容量344MW,分别为一期2×12MW汽机配75t/h锅炉,二期2×25MW汽机配130t/h锅炉和三期2×135MW汽机配420t/h锅炉。目前,电厂已拆除#1、#2、#4机组,仅保留3#机锅炉作为供热调峰热源。同时,#5、#6机组供热抽汽量350t/h。一期厂房已改建成市区供热首站。目前,二电厂是哈密市热电联产工程唯一的供热电厂。 前两个采暖季,市区供暖期最大抽汽量为260t/h左右。 2.2 项目建设背景 位于二电厂东北方向、市区北部的石油基地,在石油系统主副业

分离的改革要求下,决定将基地供热交由城市热电联产系统供热。石油基地供热负荷180MW(含发展预留热负荷)。 为同时向哈密市区和石油基地供热,二电厂采用通过技术改造提高供热效率,增加对外供热能力的方式解决,并新建石油基地供热首站。 3 工程方案 3.1 设计参数 ⑴ 一次热网供回水温度 根据石油基地多年实际供热运行数据,本工程确定一次热网供回水温度:125/55℃;二次热网供回水温度:75/50℃。 ⑵ 电厂循环冷却水参数 #5机组循环冷却水系统为单元制。单台机组循环水量约为8000t/h,供回水温度:28/35℃。 3.2 方案概述 本案利用电厂供热蒸汽作为驱动热源,循环冷却水作为低温热源,采用蒸汽吸收式热泵机组+热网加热器制取高温热水为石油基地供热。 改造前,#5机组汽轮机乏汽余热通过循环冷却水系统,送入湿冷塔冷却,余热散入大气。降温后循环冷却水再次进入汽轮机吸收乏汽余热,周而复始。改造后,利用蒸汽吸收式热泵机组,将循环冷却水中的乏汽余热提取对外供热,此部分循环冷却水不再进入湿冷塔冷却,直接进入汽轮机再次吸收乏汽余热,周而复始。

最新1-1-1-1自然循环热水供暖系统工作原理及系统形式

项目一:室内热水供暖工程施工 模块一:识读、绘制室内热水供暖系统施工图 单元1 热水供暖系统形式 1-1-1-1自然循环热水供暖系统工作原理及系统形式 1.自然循环热水供暖系统的工作原理 图 1-1-1为自然循环热水供暖系统的工作原理图。图中假设系统有一个加热中心(锅炉)和一个冷却中心(散热器),用供、回水管路把散热器和锅炉连接起来。在系统的最高处连接一个膨胀水箱,用来容纳水受热膨胀而增加的体积。 运行前,先将系统内充满水,水在锅炉中被加热后,密度减小,水向上浮升,经供水管道流入散热器。在散热器内热水被冷却,密度增加,水再沿回水管道返回锅炉。 在水的循环流动过程中,供水和回水由于温度差的存在,产生了密度差,系统就是靠供、回水的密度差作为循环动力的。这种系统称为自然(重力)循环热水供暖系统。 图1-1-1 自然循环热水供暖系统工作原理图 1-热水锅炉 2-供水管路 3-膨胀水箱 4-散热器 5-回水管路 2.自然循环热水供暖系统的形式特点 图1-1-2是自然循环热水供暖系统的两种主要形式,左侧立管为双管上供下回式系统;右侧立管为单管上供下回式(顺流式)系统。上供下回式系统的供水干管敷设在所有散热器之上,回水干管敷设在所有散热器之下。

图1-1-2 自然循环热水供暖系统 1-回水立管 2-散热器回水支管 3-膨胀水箱连接管 4-供水干管 5-散热器供水支管 6-供水立管 7-回水干管 8-充水管(接上水管) 9-止回阀 10-泄水管(接下水道) 11-总立管 (1)自然循环双管上供下回式系统,其特点是:各层散热器都并联在供、回水立管上,热水直接流经供水干管、立管进入各层散热器,冷却后的回水经回水立管、干管直接流回锅炉,如果不考虑水在管道中的冷却,则进入各层散热器的水温相同。分析该系统循环作用压力时,因假设锅炉是加热中心,散热器是冷却中心,可以忽略水在管路中流动时管壁散热产生的水冷却,认为水温只是在锅炉和散热器处发生变化。 (2)自然循环单管上供下回式系统,其特点是:热水进入立管后,由上向下顺序流过各层散热器,水温逐层降低,各组散热器串联在立管上。每根立管(包括立管上各组散热器)与锅炉、供回水干管形成一个循环环路,各立管环路是并联关系。 3. 热水供暖系统的排空气问题 无论是自然循环还是机械循环热水供暖系统,都应考虑系统充水时,如果未能将空气完全排净,随着水温的升高或水在流动中压力的降低,水中溶解的空气会逐渐析出,空气会在管道的某些高点处形成气塞,阻碍水的循环流动。空气如果积存于散热器中,散热器就会不热。另外,氧气还会加剧管路系统的腐蚀。所以,热水供暖系统应考虑排空气的问题。 4. 自然循环上供下回式热水供暖系统排空气及供回水干管的坡度设置 在自然循环系统中,水的循环作用压力较小,流速较低,水平干管中水的流速小于0.2m /s,而干管中空气气泡的浮升速度为0.1~0.2 m/ s ,立管中约为0.25 m / s ,一般超过了水的流动速度。此外,自然循环上供下回式热水供暖系统的供水干管应设沿水流方向下降的坡度,坡度值为0.5%~1.0%。散热器支管也应沿水流方向设下降坡度,坡度值为1%,因此空气能够逆着水流方向向高处聚集。自然循环上供下回式热水供暖系统可通过设在供水总 立管最上部的膨胀水箱排空气。

热电厂供热的新途径

热电厂增加对外供热量的新途径 随着我国城市化进程的加速发展,城镇人口快速增长,新建商业、住宅建筑以及旧房、棚户区的改造大规模展开,采暖面积和供热需求急剧增长,供热源和供热管网的改造已成为城市化发展的主要瓶颈之一。尽管有关方面都在为寻找发展环保高效的新能源和新的供热方式,如太阳能光热和光伏发电能源,分布式能源系统等,但是目前和今后较长一段时间热电厂仍然是主要供热源,而且鼓励新建热电机组单机容量300MW及以上机组。2009年底我国供热机组已达14464万KW,加上大型采暖锅炉房厂,仍是巨大的热源,但是热电厂一次能源的效率仅为45%左右,大量热量主要通过空冷机组的乏汽、水冷机组的循环冷却水和烟气排放损失。近年来在挖掘利用发(热)电厂余热,增加供热量扩大采暖面积和供热需求的研发工作中吸收式热泵技术被使用,并在单机100、200、300MW乃至500MW 的发(热)电厂的节能环保技改项目中实施。其具有增加供热量,减少建设集中供热小锅炉房,避免小锅炉效率低,燃料消耗量大,污染物排放量大的弊病;同时因吸收式热泵技术可以提高热源一次热源水、二次热源站热源水的供水温度,从而提高原有供热管网的供热能力,减少热网管线的改造。因此,受到政府、投资和发电企业的重视,正在迅速发展。 不增加电厂机组和锅炉容量情况下,采用吸收式热泵回收汽轮机乏汽余热、和循环水余热工程设计。有两项工程分别于2010年底和2011年3月投产,均收到了设计予想效果,达到节能减排目的,使汽轮机乏汽废热通过热泵将乏汽冷凝,回收这部分不能接利用的低品位热量,将其转换可为城市集中供热的高品位热量,不仅实现了电厂节能减排,而且可以使电厂的综合效率提高到70~80%,即利用1个单位蒸汽驱动热量,回收0.65~0.85个单位低品热量。该技术具有清洁环保、无污染、高效节能、符合国家政策、并可享受政策性国家补贴,目前该技术还刚刚起步,此项目已列入国家十二五期间节能减排名录,今年已开始在多个城市将实施,开始推广这项技术,我单位也为推广该技术作出微薄贡献。本文在此简介吸收式热泵技术在发(热)电厂余热节能环保技改项目的应用。 一、水冷机组的循环冷却水余热利用

热电厂供热范围的探讨

龙源期刊网 https://www.wendangku.net/doc/4b17596156.html, 热电厂供热范围的探讨 作者:于恒亮 来源:《城市建设理论研究》2013年第20期 摘要:扩大热电厂的供热范围可以扩大每一个热电厂的供热面积和供热量、减少供热区域内的热源点、简化布局、可以使热电厂厂址距市区较远、减轻环保压力。 关键词:热电厂供热范围探讨 中图分类号:TM621 文献标识码:A 文章编号: 前言 合理确定热电厂的供热范围对选择热电厂的设备、决定热电厂的运行工况以及对热电厂所能有的热经济指标具有决定性的影响。 一、热源布局 热源布局的含义是:在要求的城市供热区域内,根据城市供热规划的热负荷,规划出理想的热源布局。具体内容包括:热电厂的理想位置(对于新建热电厂),最终规模,分几期建设,每期投入运行的时间、每期容量,尖峰锅炉房的位置,设几个尖峰锅炉房,每个锅炉房的总容量和分几期建成。当整个供热系统达到 最终规模的运行方案时,热电厂就必须要进行合理的热源布局,充分考虑各种因素,确定热电厂的位置。 1热负荷 对热电厂的建设我国规定应坚持“以热定电”的原则,所以它必须建在需要供热的地方,每个热电厂为一定范围的供热区服务。因此该供热区域的热负荷大小、变化规律及供热调节方法等对选择热电厂的设备、决定热电厂的运行工况以及对热电厂所能有的热经济指标都会产生决定性的影响。热负荷的比重直接影响到热电厂规模、单机容量、供热参数、热网投资、运行效率、经济效益。因此,热负荷是热源布局最重要的基础数据。 2做好热电联产规划 在制定发展规划时,应坚持环境保护的基本国策,认真编制和审查城市供热规划。一般在供热规划的优化工作中主要是把热源、热网和热用户作为一个整体进行优化决策的。因此,在确定热电联产规划时,应与供热规划的优化配合进行,以使城市发展的总体规划更加合理和完善。

热电厂热力系统计算

热电厂热力系统计算

————————————————————————————————作者: ————————————————————————————————日期:

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 项目单位 采暖期非采暖期 最大平均最小最大平均最小 用户热负荷工业t/h 175 142 108 126 92 75采暖t/h 177 72 430 0 0 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.700.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985(3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

空气能热泵采暖系统膨胀罐的工作原理及安装注意事项(优.选)

空气能热泵采暖系统膨胀罐的工作原理及安装注意事项 1.膨胀罐的结构 膨胀罐是由罐体、气囊、法兰盘(进/出水口)及补气口四部分组成。 A. 罐体一般为碳钢材质,外面是防锈烤漆层或不锈钢材质; B. 气囊为EPDM(三元乙丙橡胶)环保橡胶; C. 气囊与罐体之间出厂时已充好气体,一般无需自己加气,除非系统需要更大的预充压力; D. 法兰盘为碳钢或不锈钢材质,通常膨胀罐容积越大接口会越大,一般在一寸左右,可以按照系统需求来选择接多少通的阀,以方便使用和维修; E. 外形有固定脚跟无固定脚、立式卧式之分,可按照系统安装的需求来选择。 隔膜式膨胀罐的罐体中间由隔膜将罐体分成二部分,上部分是罐体与隔膜之间预冲了一定压力的氮气,下部分是用来储水。气囊式膨胀罐则是气囊在罐体内,气囊用来储水,在气囊与罐体之间预冲有一定要的氮气。根据系统需求,可分别预冲不同压力的氮气。膨胀罐的最大工作压力8bar,最高工作温度为—10~140℃、预冲压力:2.5bar。 2.膨胀罐的工作原理 当膨胀罐用于系统中时,由于系统压力比预冲气体的压力高,所以会有一部分工作介质进到气囊内(对隔膜式来讲是进入罐体内),直至压力平衡。当系统压力再度升高,系统压力再次大于预冲气体的压力时,又会有一部分介质进入橡胶囊内来压缩橡胶囊和罐体之间的氮气,氮气被压缩后罐体内压力升高,当升高到跟系统压力一致时,气囊内的水会被气体挤出补充到系统内,使系统压力升高,知道系统介质压力同橡胶囊和罐体间的气体压力相等,橡胶囊内的水不再向系统补给,膨胀罐的主要作用是用于维持系统动态的平衡。 3.膨胀罐的作用 膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,起到缓冲系统压力波动,消除水锤起到稳压卸荷,保证系统的水压稳定的作用。 4.膨胀罐的安装注意事项 (1)膨胀罐在供暖系统中一般建议安装在系统水温相对低点的回水端或储热水箱的冷水入水端。24L以下的气压罐因自重较轻可直接连到系统管道上。为避免膨胀罐在工作时进水和自重对系统管道产生较大的荷载,对于24L以上的膨胀罐其自身带有三角支架,可以用金属软管把膨胀罐连接到系统,埋地螺钉固定膨胀管支脚,以确保使用过程中的平稳。 (2)膨胀罐附近要安装安全阀,以避免在系统压力异常时损坏气压罐和系统其他部件。(3)在供暖闭式循环系统上,不能把膨胀罐装在水泵的出水口,这样可能会造成水泵的气蚀。 (4)膨胀罐在热力系统中,如空调、锅炉、热泵等一般安装在系统的回水端。 (5)测试膨胀罐气囊时,建议直接用水压测试,严禁使用锐利器件碰触气囊。 (6)膨胀罐的工作介质一般为水或防冻液的混合物(水的比例不得小于50%)。 (7)膨胀罐应一年检查一次预冲压力,如果发现压力下降应及时补气,以免影响其正常使

热电厂计算方法

热电厂产量及经济指标计算 一、主要产品产量 1、发电量(万kwh):#1~#8机发电量之与。 2、供电量(万kwh)=发电量-厂用电量 厂用电量(万kwh):#1~#8高厂变及#01、#02高备变之与。然后扣除扩建、大修及试运期间、食堂宿舍办公室等非生产用电量。(具体参照中石化电站竞赛指标计算说明) 3、供汽量(t):外供10条管线(新区43KS 、炼厂40KS 、15KS 、胶厂15KS 、新区40KS 、15KS 、15KS(550)、15KS(650)M 管、A1管)与厂自用汽流量之与。 4、售汽量(t):公司平衡后外管线总流量 5、外供除盐水量(t):外供一级与二级除盐水量之与。 6、锅炉蒸发量(t):#1~#8炉蒸发量之与。 二、主要经济指标计算方法 主要以供热比来分摊供热厂用电量及供热标煤耗量,剩余的则为发电厂用电量及发电标煤耗量。 1、 供热比(%)=(供热量/锅炉蒸发热量)×100% 供热量(百万千焦)=供汽量×供热平均汽焓(各压力级别蒸汽参数由流量的加权平均获得平均汽焓参数,压力与温度,然后查表得) 锅炉蒸发热量(百万千焦)=锅炉蒸发量×(锅炉蒸汽汽焓-锅炉给水水焓)(可查表得,压力与温度参数根据全月各炉的平均数值) 另:热电比公式:热电比就是指计算期内供热消耗热量与供电量的当量热量的 比率(%)。即: ()2 1036/?=g r E Q R 其中r Q —供热量,GJ ; g E —供电量,104kWh 。 热电比的计算公式有另外一种规定,即供热量(吉焦)与发电量(万度)的比值, 我厂六月份供热比为:36、48%;热电比为156、69%。 2、综合厂用电率(%)=(厂用电量/发电量)×100% 3、供热厂用电率(kwh/GJ)=供热用电量/供热量

热电厂主要能耗指标计算

热电厂主要能耗指标计算

————————————————————————————————作者: ————————————————————————————————日期:

一、热电厂主要能耗指标计算 绍兴热电专委会陈耀东 一、热电厂能耗计算公式符号说明 符号名称单位符号名称公式单位 1 E E g E z Ed E r E w 电量 总发电量 总供电量 总厂用电量 用于发电厂用电量 用于供热厂用电量 用于热网和其他厂用电 量 104kwh 104kwh 104kwh 104kwh 104kwh 104kwh e d er 发电厂用电率 单位供热厂用电 E=(Eg+Ez) E z=(Ed+E r+E w) e d=(Ed/E)*102 Ed=E z(1-α) er=(E r/Q r)*104 当Ew=0时,E R=E zα 104kwh 104kwh % 104kwh kwh/G J 104kwh 2 Qr Q h 供热量 总供热量 用于发电和供热总热量 GJ GJ α供热比α=Qr/Qh 3 B B d B r 标煤耗量 用于供热和发电总耗煤 量 用于发电总耗煤量 用于供热总耗煤量 T T T bg bd br 单位供电标煤耗 单位发电标煤耗 单位供热标煤耗 bg=bd/[1-(ed/10 0)] b d=(Bd/E)*102 B d=B(1-α) b r=(B r/Qr)*103 Br=Bα g/kwh g/kwh T Kg/GJ T 4 R热电比R=(Qr/36Eg)*102 5η0热效率η0=[(Qr+36Eg)/2 9.3B]*102(%)

发电厂热力设备及系统1

发电厂热力设备及系统 07623班参考资料 一:锅炉设备及系统 1 有关锅炉的组成(本体、辅助设备) 锅炉包括燃烧设备和传热设备; 由炉膛、烟道、汽水系统以及炉墙和构架等部分组成的整体,称为锅炉本体; 供给空气的送风机、排除烟气的引风机、煤粉制备系统、给水设备和除灰除尘设备等一系列设备为辅助设备。 2 A 燃料的组成成份 化学分析:碳(C)、氢(H)、氧(O)、氮(N)、硫(S)五种元素和水分(M)、灰分(A)两种成分。 B 水分、硫分对工作的影响; 硫分对锅炉工作的影响:硫燃烧后形成的SO3和部分SO2,与烟气中的蒸汽相遇,能形成硫酸和亚硫酸蒸汽,并在锅炉低温受热面等处凝结,从而腐蚀金属;含黄铁矿硫的煤较硬,破碎时要消耗更多的电能,并加剧磨煤机的磨损。 水分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)影响煤的磨制及煤粉的输送(4)烟气流过低温受热面产生堵灰及低温腐蚀。 C 水分、灰分、挥发分的概念: 水分:由外部水和内部水组成;外部水分,即煤由于自然干燥所失去的水分,又叫表面水分。失去表面水分后的煤中水分称为内部水分,也叫固有水分。 挥发分:将固体燃料在与空气隔绝的情况下加热至850摄氏度,则水分首先被蒸发出来,继续加热就会从燃料中逸出一部分气态物质,包括碳氢化合物、氢、氧、氮、挥发性硫和一氧化碳等气体。 灰分:煤中含有不能燃烧的矿物杂质,它们在煤完全燃烧后形成灰分。 D 挥发分对锅炉的影响: 燃料挥发分的高低对对燃烧过程有很大影响。挥发分高的煤非但容易着火,燃烧比较稳定,而且也易于燃烧安全;挥发分低的煤,燃烧不够稳定,如不采取必要的措施来改善燃烧条件,通常很难使燃烧安全。 E 燃料发热量:发热量是单位质量的煤完全燃烧时放出的全部热量。煤的发热量分为高位发热量和低位发热量。1kg燃料完全燃烧时放出的全部热量称为高位发热量;从高位发热量中扣除烟气中水蒸气汽化潜热后,称为燃料的低位发热量。 F 标准煤:假设其收到基低位发热量等于29270kj/kg的煤。(书88页) G 灰的性质:固态排渣煤粉炉中,火焰中心气温高达1400~1600摄氏度。在这样的高温下,燃料燃烧后灰分多呈现融化或软化状态,随烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起冷却下来。如果液态的渣粒在接近水冷壁或炉墙以前已经因温度降低而凝结下来,那么它们附着到受热面管壁上时,将形成一层疏松的灰层,运行中通过吹灰很容易将它们除掉,从而保持受热面的清洁。若渣粒以液体或半液体粘附在受热面管壁或炉墙上,将形成一层紧密的灰渣层,即为结渣。 H 灰分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)烟气携带飞灰流过受热面产生结渣、积灰、磨损、腐蚀等有害现象。 3 热平衡: 输入锅炉的热量=有效利用热量(输出锅炉的热量)+未完全燃烧的热损失+其它热损失

相关文档
相关文档 最新文档