文档库 最新最全的文档下载
当前位置:文档库 › DSP微控制器技术介绍(精)

DSP微控制器技术介绍(精)

DSP微控制器技术介绍(精)
DSP微控制器技术介绍(精)

DSP微控制器技术介绍

DSP微控制器技术介绍

类别:单片机/DSP

DSP微控制器(DSP microcontroller是同时需要DSP技术的高效能与微控制器的低价位之应用系统之最佳选择。以往DSP以及微控制器的市场是互相分开且具有明显区隔的:DSP代表高效能与高价位;而微控制器却被视为高产量且低价位的产品。目前越来越多的客户要求微控制器价位的DSP晶片,使得这两个市场的区隔逐渐模煳。如何以微控制器的低成本来实现高效能的DSP 技术呢?有两种方式,一是缩小晶片颗粒的大小;二是减少晶片封装的接脚数目。透过缩小晶粒来减低成本的方式,某种程度上已经透过次微米技术的使用而达成,尽管次微米技术并不是最尖端的技术,但效能上仍维持良好的水准。另外,若晶片的架构达到最佳化的程度,即使晶粒缩小了,也能够保有一般标准但较昂贵晶片之重要功能。DSP微控制器之所以能够降低晶片的封装成本,大部份是因为此晶片弹性的I/O(输入/输出)架构。另外透过系统成本与能源消耗的降低来减少成本的方式。 DSP微控制器成功地克服了传统微控制器应用系统因需使用DSP演算法所呈现的障碍,底下将会一一呈现这些障碍,并讨论DSP微控制器为了克服这些障碍,在架构上所持有的特殊设计。 SP与微控制器市场比较文目前的市场中,以微控制器为主的应用系统,正面临着对DSP 演算法控制器逐渐增加的需求,因为DSP演算法所带来效能的提升与新功能的增加,使得DSP演算法的应用系统正在大量的增加,尤其是在磁条读取机、来电显示、马达控制器、保全与玩具等应用市场当中最为显着。表一列举了DSP 技术较传统的微控制器设计的优越之处。

表一除此之外,许多应用系统使用的装置中,包含了同时拥有DSP与微控制器核心技术的晶粒,如数位电话答录机、无线电话机与光碟机等装置即属此类。市场对成本降低的需求第一颗DSP处理器是为了高规格的军事应用所开发的,而今日大多数的DSP应用系统也跟随着这种高规格的走向,将重点放在需要高科技、高效能的应用市场。每颗DSP处理器的平均成本约在美金10元到50元之间,比起微控制器介于美金1至10元的单位平均成本来说,价位可以说是偏高。不过价格当然也会随着需求量的大小而变化,而微控制器目标市场的特性就是需求量大,这种高需求量自然而然地就会造成制造成本的降低与成本效益的提升,进而降低微控制器的价格。今日的消费性市场已对DSP处理器产生了大量的需求,而大多数的高价DSP处理器对量高的消费性市场来说是无法接受的,尤其是对于需要DSP演算法来增新产品功能的传统微控制器应用来说,将晶片价格维持在微控制器的价格范围中,是一个很重要的诉求。DSP 微控制器的架构,是为了迎合两个相互冲突的需求–高效能与低成本–而设计,在提供DSP架构优点的同时,却不牺牲原本微控制器的好处,所以DSP微控制器的优势之一,就是其晶片的价格维持在传统微控制器的价格范围内。但是如何以微控制器的低价位来达到DSP技术的高效能呢?接下来将会讨论如何将DSP微控制器的架构最佳化,来获得DSP技术所能提供的高效能,并同时降

低传统应用DSP技术时所需的高成本。缩小晶片颗粒晶粒的缩小需要透过以下两个方式来达成:一、使用更深层的次微米技术来缩小晶粒,二、使用更有效率的晶片架构设计。然而,使用更深层的次微米技术来缩小晶粒并不一定会降低晶粒成本,因此我们需要选择一种不像最尖端的深层次微米技术一样昂贵,但却能满足高效能需求的技术。DSP微控制器一般使用0.8微米的制程技术,同时提供高效能与低成本两个优势。一旦选定了这个低成本的技术,下一个考验就是如何将晶片的架构提升到最佳的状态,使该晶片不但拥有低价格,也保有传统DSP晶片的主要功能。以下是几个为了将DSP微控制器架构最佳化,在晶片架构上所做的决定:乘法器/累加器运算在DSP的核心功能之中,此功能所佔的晶粒面积比例最大,因此有效率地设计是非常重要的。DSP 微控制器使用16位元的固点DSP运算法,两个16位元的二进位制补数(two’s compliment)之乘积是一个31位元的二进位制补数(其中一位元为符号位元,剩下的30位元代表运算结果的二进位数值),而DSP微控制器架构将运算结果的最右边七个最低有效位元(LSBs)截掉,仅以24位元的二进位补数来表示运算的部份结果,这种部份表示法的目的是为了避免溢位的发生。截掉这七个最低有效位元不会对运算结果造成极大的影响,且大多数的应用都可以接受此24位元的部份结果所给予的精确度,而且在应用需要使用31位元的运算结果的时候,可以使用双精度运算法来运算。此设计不但满足应用的需求,在缩小晶粒方面的优势为此乘法/累加器使用较小的乘法器,在乘法器与累加器之间的资料匯流排从32位元减少到24位元,且累加器的大小也从32位元降到24位元。多位元移位器(Barrel shifter)另外一个也佔颇大晶粒面积的功能是一个16位元可程式化的多位元移位器,此移位器可支援16位元内右移与左移的运算,而DSP微控制器只支援乘法器的一位元左/右移运算、无位移运算、或是三位元右移运算,决定捨弃既复杂又昂贵的多位元移位器,只使用简单小型的移位器来缩小晶粒。而需要乘法器做多位元移位的时候,可以透过执行多次左移指令的方式来完成。其他为了缩小晶粒而捨弃的DSP处理器功能如下:环境切换功能遮蔽暂存器(Shadow Registers)与环境切换(Context Switching)等功能是用以加速对中断的反应,但是因为环境切换功能对大多数的应用来说并不重要,所以DSP微控制器并不支援此功能,不过缺少此功能所带来的影响是对暂存器存取资料时所需的时间变得较长。额外的算术与逻辑运算单元一些高规格的DSP处理器中,使用额外的算术与逻辑运算单元(ALU)来获得平行运算的加速效果,但是因为此功能对大多数应用并不特别重要,所以DSP微控制器不支援此项功能。硬体迴圈使用DSP演算法的技术,如有限脉冲回应(FIR)及无限脉冲回应(IIR)等数位滤波器,都需要使用硬体迴圈才能有效地运作,而DSP微控制器只支援部份迴圈,支援数目为二的幂数(2n)之硬体迴圈。以两个资料匯流排支援单一运算週期之乘法指令一般DSP处理器只使用单一资料匯流排,另外有些DSP处理器也支援两个分开的资料匯流排,用以支援单一运算週期的乘法、乘/加法或是乘/减法的运算指令。降低封装成本晶粒的成本只是影响晶片成本的因素之一,另外一个因素就是封装的成本。晶片接脚数的减少对降低晶片成本的影响极大,而且当晶粒成本已经降低的时候,封装的成本就显得格外重要。晶片封装的价格对整个晶片来说算是偏高的,所以对于在微控制器价格范围内的晶片来说,降低封装的成本变得非常重要。 DSP微控制器拥有一个非常弹性的I/O架构(见图一与表二),若应用对I/O的需求少于21个I/O接脚的时候,可以使用44-pin 的

PLCC (塑料无铅晶片承载封装)封装技术,或是使用44-pin的PQFP封装技术;另外一些较复杂的应用可能会需要高达40个I/O接脚,此时即可使用80-pin的PQFP封装技术。这个弹性的I/O架构最大的优点是:既可以使用21个I/O接脚的应用系统,也可以使用80-pin的PQFP封装技术。DSP微控制器的I/O架构还提供了另外一个弹性设计,亦即特殊的I/O功能,例如:中断、计数/计时器输出或输入、序列介面接脚与时脉等,与一般的I/O功能共同分享I/O接脚。因为当一些特殊的I/O功能未被使用的时候,这些接脚仍然可以被一般的I/O功能所利用,这种弹性的I/O架构,使得DSP微控制器的运作和微控制器晶片相似。

图一

表二降低系统成本系统成本的降低可能比降低DSP晶片成本来得重要。除DSP处理器以外,系统成本还包含所有周边装置之成本,例如:输出入埠、记忆体…等。石英器时脉源与振盪器时脉源尽管对微控制器来说,具有石英器(crystal)时脉源是很普遍的,但在DSP处理器上却颇为少见。一般来说石英器比振盪器(oscillator)至少便宜1美金以上,因此支援石英器时脉源对降低系统成本来说是极为重要的。DSP微控制器支援较低价位的32 kHz 石英器,另外使用一个锁相迴路(PLL)将系统时脉从32 kHz提高至20 MHz。为较低速的周边装置所设的等候状态 DSP处理器运作的频率高达20 MHz(20 MIPS),但为了降低系统成本,DSP处理器时常需要与价格较低而速度较慢的记忆体或其他低价低速的周边装置一起运作,因此DSP微控制器可将外部週边装置分别映射到外部暂存器的适当位置,并将其所需的等候状态(wait-state insertion)的时间加入处理週期中。单晶片系统整合另外一个降低系统成本的方式是单一晶片系统整合,亦即将週边的功能一同整合到控制器晶片上,以减去外部週边装置的成本。一般的DSP微控制器晶片就整合了以下的週边功能:4通道,8位元的类比数位转换器(A-D)、序列週边介面(SPI)、两个脉宽调变器(PWM)、三个一般用途的计时/计数器、两个看门狗计时器(Watch-Dog Timers)、以及可程式化的锁相迴路(PLL)。类比数位转换器的解析度决定类比数位转换器所需的解析度是非常重要的,而此解析度取决于系统要求的讯号杂讯比值(SNR),此值可用以下公式计算其概值:6*b - 1.24 分贝(dB),其中的b为类比数位转换器为了提供系统要求的讯号杂讯比值所需之位元数。DSP微控制器有一个8位元的类比数位转换器和具有支援12至13位元解析度的脉码调变编解码(PCM CODEC)介面。降低能源消耗许多微控制器与DSP的应用系统都以电池为其能量来源,因此能源消耗量的降低也是很重要的。DSP微控制器以32 kHz 的石英器,加上可程式化锁相迴路,将系统频率提升至20 MHz,因为此锁相迴路是可程式化的,所以能够轻易地在4 MHz 与 20 MHz 的范围内调整系统时脉。表三列举了不同的时脉模式所达之不同的能源降低程度,能源消耗量最低的是振盪器与电压控制振盪器(VCO)都同时停止的时脉停止模式(stop clock mode);睡眠模式的回復可以透过中断或使用者输入的I/O接脚;而在DSP微控制器需要于省电模式下低速运作时,便可以使用

32-kHz 的低速模式。

表三与微控制器指令集的相似性 DSP微控制器的指令集与一般微控制器的指令集相似,同样使用LD指令将资料移动于暂存器或暂存器指标之间,暂存器指标指向资料或程式的记忆体位址,此外它们的数学运算指令也相同;DSP和控制器的架构以及8或16位元的处理器之间的不同在于:指令集无

法完全相容。尽管如此,因为它们的指令集类似,可以让具有开发微控制器应用经验的软体工程师,也能够很轻易地开发DSP处理器的应用软体。结语目前市场中的微控制器应用系统,对于需要DSP技术之产品功能的需求越来越高,而这种对高效能的需求也连带地要求DSP技术的使用具有高成本效益,并完全地符合微控制器的价格标准。DSP微控制器以富创意及高效率的方式将晶片的架构提升到最佳的状态,使得晶粒的大小、封装的晶片接脚数、系统的成本或能源的消耗都大幅地降地。DSP微控制器让微控制器的应用系统在使用DSP 演算法的同时,也能提供传统微控制器晶片上所有的週边功能,且其价格也维持在微控制器的价格范围内,比起其他传统的DSP晶片,DSP微控制器因为拥有高度平衡的架构,因此能够提供更卓越的MIPS/价格比。本文来自:我爱研发网(https://www.wendangku.net/doc/4117618009.html,) 详细出处:

https://www.wendangku.net/doc/4117618009.html,/S_TXT/2006_3/TXT3637.htm

dsp概述(精)

DSP概述[转] 默认分类2006-11-12 12:12:12 阅读44 评论1 字号:大中小订阅 引言: DSP(digital singnal processor)是一种微处理器,它接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。DSP最突出的两大特色是强大数据处理能力和高运行速度,加上具有可编程性,实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,有业内人士预言,DSP将是未来集成电路中发展最快的 电子产品,并成为电子产品更新换代的决定因素。 DSP的发展历程: 在DSP出现之前,MPU(微处理器)承担着数字信号处理的任务,但它的处理速度较低,无法满足高速实时的要求。70年代时, DSP的理论和算法基础被提出。但当时DSP仅仅局限于在教科书,即使是研制出来的DSP系统也是由分立组件组成的,其应用领域仅限于军事、航空航大部门。 到了20世纪60年代,计算机和信息技术的飞速发展为DSP提供了长足进步的机会。1982年美国德州仪器公司(TI公司)生产出了第一代数字信号处理器(DSP)TMS320C10,这种DSP器件采用微米工艺NMOS技术制作,虽功耗和尺寸稍大,但运算速度却是MPU的几十倍,这种数字信号处理器一面世就在 语音合成和编码解码器中得到了广泛应用。 接下来,随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度成倍提高,成为语音处理、图像硬件处理技术的基础。80年代后期,第三代DSP芯片问世,运算速度得到进一步提高,这使其应用范围逐步扩大到了通信和计算机领域。 90年代是DSP发展的重要时期,在这段时间第四代和第五代DSP器件相继出现。目前的DSP属于第五代产品,与第四代相比,第五代DSP系统集成度更高,它已经成功地将DSP芯核及外围组件综合集成在单一芯片上。这种高集成度的DSP芯片在通信、计算机领域大行其道,近年来已经逐渐渗透到人们日常消 费领域,前景十分看好。 2 特点及优势: 图示为一个典型的DSP系统。图中的输入信号可以有各种各样的形式,例如,它可以是麦克风输出的语音信号或是电话线来的已调数据信号,也可以是编码后在数字链路上传输或存储在计算机里的摄像机图像信 号等。 输入信号进行带限滤波和抽样后,进行A/D(Analog to Digital)变换将信号变换成数字比特流。根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。 DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号,它对输入的数字信号进行某种形式的处理,如进行一系列的乘累加操作(MAC)。数字处理是DSP的关键,这与其他系统(如电话交换系统)有很大的不同,因为在交换系统中,处理器进行路由选择,它并不对输入数据进行修改。因此虽然两者都是实时系统,但两者的实时约束条件却差异很大。最后,经过处理后的数字样值再经D/A(Digital to Analog)变换转换为模拟样值,之后再进行内插和平滑滤波就可得到连续的模拟波形。 上面的DSP系统模型是一个典型模型,并非所有的DSP系统都必须具有模型中的所有部件。例如语音识别系统在输出端并不是连续的波形,而是识别结果,如数字、文字等;有些输入信号本身就是数字信号(如 CD:Compact Disk),因此就不必进行模数变换了。

DSP概述DSP芯片的应用

DSP概述 1.1 引言 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。数字信号处理在理论上的发展推动了数字信号处理应用的发展。反过来,数字信号处理的应用又促进了数字信号处理理论的提高。而数字信号处理的实现则是理论和应用之间的桥梁。 数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 数字信号处理的实现方法一般有以下几种: (1) 在通用的计算机(如PC机)上用软件(如Fortran、C语言)实现; (2) 在通用计算机系统中加上专用的加速处理机实现; (3) 用通用的单片机(如MCS-51、96系列等)实现,这种方法可用于一些不太复杂的数字信号处理,如数字控制等; (4) 用通用的可编程DSP芯片实现。与单片机相比,DSP芯片具有更加适合于数字信号处理的软件和硬件资源,可用于复杂的数字信号处理算法; (5) 用专用的DSP芯片实现。在一些特殊的场合,要求的信号处理速度极高,用通用

2DSP芯片(TMS320DM642)概述

第 2 章TMS320C6000 DSP 芯片概述 本章介绍了TI公司是DSP芯片和DSP芯片的命名规则,并着重介绍了TMS320DM642的器件特性及总体原理框图。本章的知识要点为理解TMS320DM6 4的原理框图构成,本章 建议安排 2 个课时进行学习。 2.1 DSP 芯片概述 随着信息技术的高速发展,数字信号处理器(Digital Signal Processor,DSP)的应用 范围越来越广,普及率越来越高。DSP的应用领域主要包括:图形图像领域(如图形变换、 图像压缩、图像传输、图像增强、图像识别等)、自动化控制领域(如导航和定位、振动分析、磁盘驱动、激光打印、机器人控制等)、消费电力领域(如智能玩具、扫描仪、机顶盒、VCD/DVD 可视电话、传真机等)、电子通信领域(如蜂窝电话、IP电话、无线调制解调器、数字语音嵌入等)、语音处理领域(如语音综合、语音增强、语音识别、语音编码等)、工 业应用领域(如数字控制、机器人技术、在线监控等)、仪器仪表领域(如数字滤波器、函数发生器、瞬时分析仪、频谱分析仪、数据采集仪器等)、医疗器械领域(如诊断设备、助听器、病情监控器、心电图设备、超声设备等)、军事领域(如导弹制导、导航、雷达、保密通信等)。因此,DSP 在当今电子通信类产品中起到了不可或缺的作用。 2.1.1 主要类型 DSP 芯片主要分为以下两大类: (1)专用DSP芯片。这类芯片被设计和加工成独立的电路模块,只能完成功能单一的任 务,它们的使用场合比较特殊,通常应用于高速信号处理环境中,如执行FFT运算、数值 滤波运算、卷积运算等,专用DSP芯片通过硬件逻辑实现信号处理算法,而不是采用内部 编程的方法,这种机制保证了专用DSP芯片的执行效率、提高了其运算速度,专用DSP芯 片在应用中无须程序设计。只要根据其功能设计外围电路即可。 (2)通用可编程数字信号处理器(Programmable Digital Signal Processor)。这类芯片通过嵌入内部的程序来调用自身的硬件资源,使用起来更加灵活,应用领域也更加广泛。 狭义上讲DSP是一种“更高”级别的单片机,它有着和单片机类似的输入输出引脚、定时器、计数器、外设接口、数据地址总线等,两者在功能组织方面存在着很多类似之处。DSP 和单片机在应用领城中也有重叠的区域,比如二者均可以用在自动控制、信号处理和通信等领域,它们在这些领域中所起的作用.扮演的角色也类似。但是,从深层次上分析,DSP和单片机之间又存在本质上的不同,表现为以下几个方面。 硬件资源方面的不同之处 DSP具有较高的主频,DSP主频一般为几百兆赫,单片机的主频通常为几兆赫到几十兆赫,DSP主频远远高于单片机主频,DSP和单片机在主频上的差异决定了两者在处理数据 速度上的巨大差距。在硬件结构方面,DSP具有更多的数据总线和地址总线,并行处理数

DSP技术概述

1 引言 2 DSP 微处理器 3 DSP 技术的应用 4 DSP 发展轨迹 5 DSP 未来发展 1 引言 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又 广 泛应用于许多领域的新兴学科。 20 世纪 60 年代以来,随着计算机和信息技术 的飞速发展, 数字信号处理技术应运而生并得到迅速的发展。 数字信号处理是一 种通过使用数学技巧执行转换或提取信息, 来处理现实信号的方法, 这些信号由 数字序列表示。 在过去的二十多年时间里, 数字信号处理已经在通信等领域得到 极为广泛的应用。德州仪器、Freescale 等半导体厂商在这一领域拥有很强的实力。 2 DSP 微处理器 DSP (digital signal processo )是一种独特的微处理器,是以数字信号来处 转换为 0 或 1 的数字信号, 再 删除、强化,并在其他系统芯片中 把数字数据解译回模拟 它不仅具有可编程性, 而且其实时运行速度可达每秒数以 远远超过通用微处理器, 是数字化电子世界中日益重要的 电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。 DSP 技术概 述 理大量信息的器件。 其工作原理是接收模拟信号, 对数字信号进行修改、 数据或实际环境格式。 千万条复杂指令程序,

DSP 微处理器(芯片)一般具有如下主要特点: ① ② ③ ④ ⑤ ⑥ ⑦在一个指令周期内可完成一次乘法和一次加法;程序和数据空间分开,可以同时访问指令和数据;片内具有快速RAM通常可通过独立的数据总线在两块中同时访问; 具有低开销或无开销循环及跳转的硬件支持;快速的中断处理和硬件I/O 支持; 具有在单周期内操作的多个硬件地址产生器; 可以并行执行多个操作;

DSP课程设计

DSP课程设计 计算机与信息工程学院 通信工程产业班 李盛 一、基本DSP硬件系统设计 硬件任务设计概述 要求: 1、基本DSP硬件系统以TMS320C54x系列为核心处理器,包括最小系统、存 储器扩展、显示器、键盘、AD、DA等电路模块; 2、硬件设计画出主要芯片及电路模块之间的连接即可,重点考查电路模块方 案设计与系统地址分配; 3、设计方案以电路示意图为主,辅以必要的文字说明。 总体方案设计 本次硬件电路大体如下 TMS320C54x 模块电路原理图设计 1,电源模块 C54X数字信号处理器电源包括内核电源和外部接口电源,其外部接口电

源为3.3V,内部则根据型号不同而采用了不同的电压。由于C54X处理器大多应用于低功耗场合,因此电源电路的设计需要注意电源的转换效率和电路的复杂程度,而高效率的DC-DC转换电路就十分适合这种应用。 TPS54110能够提供1.5A的连续电流输出,其输出电压可调,低电压输出范围覆盖0.9~3.3V,能够较好地满足C54X处理器的供电要求,具体内容如下图: 2,时钟电路模块 任何工作都按时间顺序。用于产生时间的电路就是时钟电路。实时时钟电路DS1302是一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。采用普通32.768KHz晶振。 3,JTAG仿真模块 JTAG仿真器 4,复位电路模块 在系统上电过程中,如果电源电压还没有不稳定,这时DSP进入工作状态可能造成不可预知的后果,甚至造成硬件的损坏,因此有必要在系统中加入上电复位电路,上电复位电路的作用可以保证上电可靠,并在需要时实现手工复位。 5,数码管电路模块 一共12个引脚,8个段选。从上面左边第一排开始,按顺时针顺序依次往下遍历所有引脚。 6,SRAM:IS61LV6416模块 如图,电路SRAM中的借口与DSP芯片借口相连接构成电路系统。 硬件设计结果与分析 利用protel分别完成了电源电路,时钟电路,复位电路等外设电路的绘制,完成了最小系统的schematic原理图,并生成了PCB图,PCB板及3D效果图。 电路原理图

DSP芯片概述

第2章TMS320C6000 DSP芯片概述 本章介绍了TI公司是DSP芯片和DSP芯片的命名规则,并着重介绍了TMS320DM642的器件特性及总体原理框图。本章的知识要点为理解TMS320DM642的原理框图构成,本章建议安排2个课时进行学习。 DSP芯片概述 随着信息技术的高速发展,数字信号处理器(Digital Signal Processor,DSP)的应用范围越来越广,普及率越来越高。DSP的应用领域主要包括:图形图像领域(如图形变换、图像压缩、图像传输、图像增强、图像识别等)、自动化控制领域(如导航和定位、振动分析、磁盘驱动、激光打印、机器人控制等)、消费电力领域(如智能玩具、扫描仪、机顶盒、VCD/DVD、可视电话、传真机等)、电子通信领域(如蜂窝电话、IP电话、无线调制解调器、数字语音嵌入等)、语音处理领域(如语音综合、语音增强、语音识别、语音编码等)、工业应用领域(如数字控制、机器人技术、在线监控等)、仪器仪表领域(如数字滤波器、函数发生器、瞬时分析仪、频谱分析仪、数据采集仪器等)、医疗器械领域(如诊断设备、助听器、病情监控器、心电图设备、超声设备等)、军事领域(如导弹制导、导航、雷达、保密通信等)。因此,DSP在当今电子通信类产品中起到了不可或缺的作用。 2.1.1主要类型 DSP芯片主要分为以下两大类: (1)专用DSP芯片。这类芯片被设计和加工成独立的电路模块,只能完成功能单一的任务,它们的使用场合比较特殊,通常应用于高速信号处理环境中,如执行FFT运算、数值滤波运算、卷积运算等,专用DSP芯片通过硬件逻辑实现信号处理算法,而不是采用内部编程的方法,这种机制保证了专用DSP芯片的执行效率、提高了其运算速度,专用DSP芯片在应用中无须程序设计。只要根据其功能设计外围电路即可。 (2)通用可编程数字信号处理器(Programmable Digital Signal Processor)。这类芯片通过嵌入内部的程序来调用自身的硬件资源,使用起来更加灵活,应用领域也更加广泛。 狭义上讲DSP是一种“更高”级别的单片机,它有着和单片机类似的输入输出引脚、定时器、计数器、外设接口、数据地址总线等,两者在功能组织方面存在着很多类似之处。DSP和单片机在应用领城中也有重叠的区域,比如二者均可以用在自动控制、信号处理和通信等领域,它们在这些领域中所起的作用.扮演的角色也类似。但是,从深层次上分析,DSP和单片机之间又存在本质上的不同,表现为以下几个方面。 硬件资源方面的不同之处 DSP具有较高的主频,DSP主频一般为几百兆赫,单片机的主频通常为几兆赫到几十兆赫,DSP主频远远高于单片机主频,DSP和单片机在主频上的差异决定了两者在处理数

DSP原理与应用考试重点

DSP原理与应用考试重点

DSP原理与应用考试重点 (仅供参考,祝大家考试顺利) 第一章 DSP概述 1.3 哈弗结构:采用双存储空间,程序存储器和数据存储器分开,有各自独立的程序总线和数据总线。独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大提高了数据的处理能力和指令的执行速度,非常适合实时的数字信号处理。 思考题与习题 1-1论述通用微处理器和DSP芯片之间的共同特点和主要区别。

答:共同特点:都具有高速运算和控制能力主要区别:DSP具有特殊结构,其芯片内部采用程序和数据分开的哈弗结构,同时能读取指令和数据。 1-2论述DSP芯片结构上的主要特点。 答:DSP芯片内部采用程序和数据分开的哈弗结构,采用双存储空间,有各自独立的程序总线和数据总线,使取指、译码、执行并行完成。 什么是DSP给记下。 第二章 CUP结构与指令集 2.1 CPU的结构 1.CPU部分结构:程序的取指、指令分配和译码机构:程序取指单元(由程序总线与片内程序存储器相连)、指令分配单元和指令译码单元。 2.程序执行机构:2个对称数据通道(A和B)、2个对称的通用寄存器组、2组对称的功能单元(每组4个)、控制寄存器、控制逻辑及中断逻辑等。 3.芯片测试、仿真端口及其控制逻辑。 取指包:如C67xx系列芯片的程序总线宽度为

256位,每次取8条指令,这8条指令就是取指包。 功能单元包括(L.S.M和D) 1、通用寄存器组(A和B)的作用: 1.存放数据,作为指令的源操作数和目的操作数。 2.作为间接寻址的地址指针。 3.A1 A2 B0 B1和B2可用做条件寄存器。 2、功能单元: M单元主要完成乘法运算 D单元是唯一能产生地址的功能单元。 L与S单元是主要的算术逻辑运算单元(ALU) 2.4 流水线 C67xx中所有的指令均按找:取指、译码和执行3级流水运行,其中,所有的取指指令有4个节拍,译码有2个节拍。执行对不同类型的指令有不同的数目节拍。 1.流水线取指级的4个节拍:1、程序地址产生(PG) 2.程序地址发送(PS) 3.程序访问等待(PW) 4.程序取指包接收(PR)

相关文档