文档库 最新最全的文档下载
当前位置:文档库 › 二、振幅、周期和频率

二、振幅、周期和频率

二、振幅、周期和频率
二、振幅、周期和频率

二、振幅、周期和频率

班级姓名

一.选择题(每小题中至少有一个选项是正确的)

1.关于振幅的各种说法,正确的是()A.振幅是振子离开平衡位置的最大距离

B.振幅大小表示振动能量的大小

C.振幅有时为正,有时为负

D.振幅大,振动物体的最大加速度也一定大

2.对简谐运动下述说法中正确的是()A.物体振动的最大位移等于振幅B.物体离开平衡位置的最大距离叫振幅

C.振幅随时间做周期性变化D.物体两次通过平衡位置的时间叫周期

3.振动的周期就是指振动物体()A.从任一位置出发又回到这个位置所用的时间

B.从一个最大偏移位置运动到另一个最大偏移位置所用的时间

C.从某一位置出发又以同一运动方向回到这个位置所用的时间

D.经历了两个振幅的时间

E.经历了四个振幅的时间

4.一个弹簧振子,第一次把弹簧压缩x后开始振动,第一次把弹簧压缩2x后开始振动,则两次振动的周期之比和最大速度之比为()A.2∶1,1∶2B.1∶1,1∶1 C.1∶1,1∶2 D.2∶1,1∶1

5.质点沿直线以O为平衡位置做简谐运动,A、B两点分别为正最大位移处与负最大位移处的点,A、B相距10cm,质点从A到B的时间为0.1s,从质点到O点时开始计时,经0.5s,则下述说法正确的是()A.振幅为5cm B.振幅为10cm C.通过路程50cm D.质点位移为50 cm *6.一质点做简谐运动,先后以相同的动量依次通过A、B两点,历时1s,质点通过B点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm

*7.做简谐运动的弹簧振子,其质量为m,最大速度为v,则下列说法中正确的是()A.从某时刻算起,在半个周期的时间内,弹力做功一定为零

B.从某时刻算起,在半个周期的时间内,弹力做的功可能是零

C.从某时刻算起,在半个周期的时间内,弹力的冲量一定为零

D.从某时刻算起,在半个周期的时间内,弹力的冲量可能是零到2mv之间某一个值

二、填空题

8.质点做简谐运动的周期为0.4s ,振幅为0.1m ,从质点通过平衡位置开始计时,则经5s ,质点通过的路程等于________m ,位移为_________m .

*9.质点以O 为平衡位置做简谐运动,它离开平衡位置向最大位移处运动的过程中,经0.15s 第一次通过A 点,再经0.1s 第二次通过A 点,再经___________s 第三次通过A 点,此质点振动的周期等于_________s ,频率等于___________Hz .

10.甲、乙两个弹簧振子,甲完成12次全振动过程中,乙恰好完成8次全振动,求甲、乙的振动周期比为 ;甲、乙振动频率之比 。

11.如图所示,弹簧振子以O 点为平衡位置,在弹性限度内,于B 、C 间作简谐运动,若BC 两点间距为20厘米,振动频率为0.5赫兹,则振子的振幅为 ,振子从B 到C 经历的时间为 ;取右方向为正,

由振子在B 位置时开始计时,经过3秒钟,振

子的位置在 ,这时振子的位移

是 ,速度是 。

12.如图所示为在光滑水平面上的弹簧振子,O 是平衡位置,

使物体向右移动拉长弹簧,然后把物体从静止释放,振子做

简谐振动,第一次使弹簧伸长的长度为l ,释后振动的振幅

为A 1,周期为T 1,第二次使弹簧伸长的长度为2l ,释放后

振动的振幅为A 2,周期为T 2,则:A 1:A 2= ,T 1:T 2= 。

*13.物体A 与滑块B 一起在光滑水平面上做简谐振动,如图所示,A 、B 之间无相对滑动,已知轻质弹簧的劲度系数为k ,A 、B 的质量分别为m 和M ,则A 、B (看成一个振子)的回复力由 提供,回复力跟位移的比为 ,

物体A 的回复力由 提供,其回复力跟位移的比

为 ,若A 、B 之间的最大静摩擦因数为μ,则A 、B

间无相对滑动的最大振幅为 。

三、论述、计算题

14.弹簧振子的固有周期为0.4s ,振幅为5cm ,从振子经过平衡位置开始计时,经2.5s 小球的位置及通过的路程各多大?

二、振幅,周期和频率 参考答案

一、选择题

1.ABD 2.B 3.CE 4.C 5.AC 6.B 7. AD

二、填空题

8.5, 0 ; 9.0.7 0.8 1.25 ;10.

23, 32; 11.10厘米,1秒,C 点,-10厘米,0; 12.1:2,1:1 。

13.弹簧弹力,k ,B 对A 摩擦力提供,

k

g m M m M mk )(,++μ 三、论述、计算题

14.125cm ,最大位移处

正弦振动加速度与速度与振幅与频率关系

正弦振动一共有四个参数来描述,即: 加速度(用a表示)m/s^2 速度(用v表示) m/s 位移(用D表示)行程(2倍振幅)m频率(用f表示)Hz 公式: a=2πfv v=2πfd(其中d=D/2) a=(2πf)2d(2为平方) 说明: 以上公式中物理量的单位均为国际单位制 例如频率为10HZ,振幅为10mm 正弦运动振幅5mm频率200HZ 我想你是在做一个弹簧振子,加速度是变化的,我想你需要的应该是弹簧的弹性系数k 首先写出振动方程Y=5sin(x/200) 根据设计要求,弹簧要使振子在的时候运动距离达到5mm,速度由最大的V0变为0, 在这个过程中属于变力做功,(不知道你会积分不?)如果不会也没有关系,我们知道弹簧的弹性势能为 0.5kH^2(式中H是弹簧的伸长量),在达到振幅时,H=5mm=5×10^(-3)m 应用动能定理:

同时,应满足时间频率要求,应用动量定理,就必须用积分了,弹力在完成周期需要的时间)时间内的冲量为I,I是以函数kHt为被积函数,对H由0到5,t由0到的定积分,即I= 6.25×10^(-5)k 由动量定理I=mV1-mV0,得,mV0= 6.25×10^(-5)k 联立两式解得: k=256m(式中m不是单位,是振子得质量) 而且初速度为400米每秒 振动台上放置一个质量m=10kg的物体,它们一起上下作简谐振动,其频率ν=10Hz、振幅A=2×10-3m,求: (1)物体最大加速度的大小; (2)在振动的最高位置、最低位置,物体分别对台面的压力。 解: 取x轴竖直向下,以振动的平衡位置为坐标原点,列运动方程 x=Acos(2πνt+φ) 于是,加速度 22 a=-4πνAcos(2πνt+φ) (1)加速度的最大值 |a m|=4π2ν2A=

2017高三物理复习知识点:振幅、周期和频率

2017高三物理复习知识点:振幅、周期和频率 2017高三物理复习知识点:振幅、周期和频率 基础目标 1知道什么是一次全振动、振幅、周期和频率 2理解周期和频率的关系。 3知道什么是振动的固有周期和固有频率 4掌握用秒表测弹簧振子周期的操作技能 拔高目标: 1、知道位移和振幅的区别 2、知道周期(频率)和振幅无关 3、知道弹簧振子的周期公式 4、能利用弹簧振子的周期性解决相应问题。 【教学重难点】 1振幅和位移的联系和区别 2通过实验说明周期和振幅无关 【教学内容】 一、新引入 观察表明:简谐运动是一种周期性运动,与我们学过的匀速圆周运动相似,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等物理量,本节我们就学习描述简谐运动的几个物理量[板书:振幅、周期和频率]

二、振幅 1引入振幅。 在铁架台上悬挂一竖直方向的弹簧振子,分别用大小不同的力把弹簧振子从平衡位置拉下不同的距离 ①两种情况下,弹簧振子振动的范围大小不同; ②振子振动的强弱不同 为了方便我们描述物体振动的强弱,我们引入振幅 ①振幅是描述振动强弱的物理量; ②振动物体离开平衡位置的最大距离叫振幅; ③振幅的单位是米 2分析振幅与位移的区别 问题:振幅越大,物体的振动越强,能否说物体的位移越大? 物体在远离平衡位置的过程中,振幅逐渐增大? a振幅是指振动物体离开平衡位置的最大距离;而位移是振动物体所在位置与平衡位置之间的距离 b对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的位移是矢量,但振幅是标量 d振幅等于最大位移的数值 三、周期和频率 1、全振动 由于简谐运动具有周期性,故只要研究一次完整的运动就可以反应全部的情况。

高中物理选修3-4“波长、频率(周期)和波速的关系 ”知识点

高中物理选修3-4知识点 波长、频率(周期)和波速的关系 λλ?===f T t s v (ν由介质决定,f 由波源决定) ①波形向前匀速平移,质点本身不迁移,x 可视为波峰(波谷)移动的距离 ②在波的图象中,无论时间多长,质点的横坐标一定不变 ③介质中所有质点的起振位置一定在平衡位置,且起振方向一定与振源的起振方向相同 ④注意双向性、周期性 ⑤注意坐标轴的单位(是m ,还是cm ;有无×10-n 等等) 注意同时涉及振动和波时,要将两者对应起来 关于振动与波 ⑴质点的振动方向判断: 振动图象(横轴为时间轴):顺时间轴“上,下坡” 波动图象(横轴为位移轴):逆着波的传播方向“上,下坡” 共同规律:同一坡面(或平行坡面)上振动方向相同,否则相反 ⑵一段时间后的图象 a 、振动图象:直接向后延伸 b 、波动图象:不能向后延伸,而应该将波形向后平移 ⑶几个物理量的意义: 周期(频率):决定振动的快慢,进入不同介质中,T (f )不变 振幅:决定振动的强弱 波速:决定振动能量在介质中传播的快慢 ⑷几个对应关系 ①一物动(或响)引起另一物动(或响)———受迫振动→共振(共鸣) ②不同位置,强弱相间———干涉(要求:两波源频率相同) 干涉:a 、振动加强区、减弱区相互间隔; b 、加强点始终加强(注意:加强的含义是振幅大,千万不能误认为这些点始终位于波峰或波谷处)、减弱点始终减弱. c 、判断:若两振源同相振动,则有加强点到两振源的路程差为波长的整数倍,减弱点到两振源的路程差为半波长的奇数倍. ③绕过障碍物———衍射(要求:缝、孔或障碍物的尺寸与波长差不多或小于波长) 缝后的衍射波的振幅小于原波 ★波的多解题型 ⑴方向的多解:考虑是否既可以向左,也可以向右 ⑵波形的多解: ★几种典型运动 不受力:静止或匀速直线运动 受恒力: 方向都不变 直线→匀加速、匀减速直线运动 曲线→(类)平抛运动

正弦振动加速度与速度与振幅与频率关系

正弦振动一共有四个参数来描述,即:加速度(用a表示)m/s A2 速度(用v表示)m/s 位移(用D表示)行程(2倍振幅)m 频率(用f表示)Hz 公式:a=2 n v v=2 n d(其中d=D/2) a=(2 rf)2d (2 为平方) 说明:以上公式中物理量的单位均为国际单位制例如频率为10H Z,振幅为10mm V=2*3.1415926*10*10/1000=0.628m/s a=(2*3.1415926*10)A2*10/1000=39.478/m/sA2 正弦运动振幅5mm频率200HZ 我想你是在做一个弹簧振子,加速度是变化的,我想你需要的应该是弹簧的弹性系数k 首先写出振动方程Y= 5sin(x/200) 根据设计要求,弹簧要使振子在1/200s的时候运动距离达到5mm速度由最大的V0变为0, 在这个过程中属于变力做功,(不知道你会积分不?)如果不会也没有关系,我们知道弹簧的弹性势能为0.5kHA2 (式中H是弹簧的伸长量),在达到振幅时, H= 5mm= 5X10A(-3)m 应用动能定理:0.5kHA2=1/2mV0A2 同时,应满足时间频率要求,应用动量定理,就必须用积分了,弹力在1/800(完 成1/4周期需要的时间)时间内的冲量为I ,1是以函数kHt为被积函数,对H 由0到5,t由0到1/800的定积分,即I = 6.25 乂10八(-5沐 由动量定理I = mV1-mV0得,mV0= 6.25 乂10八(-5沐 联立两式解得: k = 256m (式中m不是单位,是振子得质量) 而且初速度为400米每秒振动台上放置一个质量m= 10kg的物体,它们一起上下作简谐振动,其频率v = 10Hz振幅A= 2 X 10-3m,求:(1)物体最大加速度的大小;⑵在振动的最高位置、最低位置,物体分别对台面的压力。 解:取x轴竖直向下,以振动的平衡位置为坐标原点,列运动方程 x = A cos (2 nvt + ?) 于是,加速度 2 2 a= — 4 n v A cos (2 nvt + ?) (1)加速度的最大值 . . , 2 2 人「c -2 I a m |= 4 n v A = 7.9 m?s ⑵由于物体在振动过程中仅受重力mg及竖直向上的托力f,按牛顿第二定律在最高位置m g —f = m| a m I f= m(g—| a m|)= 19.1N

振幅周期和频率

振幅周期和频率 各种不同的机械运动都需要用位移、速度、加速度等物理量来描述,但是不同的运动具有不同的特点,需要引入不同的物理量表示这种特点.描述圆周运动就引入了角速度、周期、转速等物理量.描述简谐运动也需要引入新的物理量,这就是振幅、周期和频率. 振动物体总是在一定范围内运动的.在图9-1中,振子在水平杆上的 A点和A′点之间做往复运动,振子离开平衡位置的最大距离为OA或者OA′.振动物体离开平衡位置的最大距离,叫做振动的振幅.在图9-1中,OA或OA′的大小就是弹簧振子的振幅.振幅是表示振动强弱的物理量. 简谐运动具有周期性.在图9-1中,如果振子由A点开始运动,经过O点运动到A′点,再经过O点回到A点,我们就说它完成了一次全振动.此后振子不停地重复这种往复运动.实验表明,弹簧振子完成一次全振动所用的时间是相同的.做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期.单位时间内完成的全振动的次数,叫做振动的频率.

周期和频率都是表示振动快慢的物理量.周期越短,频率越大,表示振动越快.用T表示周期,用f表示频率,则有 在国际单位制中,周期的单位是秒,频率的单位是赫兹,简称赫,符号是Hz.1Hz=1s-1. 上面我们说过,振子完成一次全振动所用的时间是相同的.如果改变弹簧振子的振幅,弹簧振子的周期或频率是否改变呢? 观察弹簧振子的运动可以发现,开始拉伸(或压缩)弹簧的程度不同,振动的振幅也就不同,但是对同一个振子,振动的频率(或周期)却是一定的.可见,简谐运动的频率与振幅无关.简谐运动的频率由振动系统本身的性质所决定.如弹簧振子的频率由弹簧的劲度和振子的质量所决定,与振幅的大小无关,因此又称为振动系统的固有频率.

09.2.振幅、周期和频率(初中 物理教案)

振幅、周期和频率 一、教学目标: 1.知道什么是振幅、周期和频率 2.理解周期和频率的关系 3.知道什么是振动的固有周期和固有频率 二、教学重点: 1.简谐运动的振幅、周期和频率的概念. 2.关于振幅、周期和频率的实际应用. 三、教学难点: 1.振幅和位移的联系和区别. 2.周期和频率的联系和区别. 四、教学方法: 1.通过分析类比引入描述简谐运动的三个物理量:振幅、周期和频率. 2.运用CAI课件使学生理解振幅和位移、周期和频率的联系和区别. 3.通过演示、讲解、实践等方法,加深对三个概念的理解. 4.通过实验研究,探索弹簧振子的固有周期的决定因素. 五、教学过程 导入新课 1.讲授:前边我们学过了直线运动,我们知道:对于匀速直线运动,所受合外力为零,描述该运动的物理量有位移、时间和速度,对于匀变速直线运动,物体所受的合外力是恒量, 描述它的物理量有时间、速度、位移和加速度,而上节课我们研究了合外力为回复力的简谐 运动,那么描述简谐运动需要哪些物理量呢? 2.类比引入 我们知道:简谐运动是一种往复性的运动,而我们学过的匀速圆周运动也是一种往复性的运动,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等物理量,本节课我们就来学习描述简谐运动的几个物理量[板书:振幅、周期和频率] 新课教学 (一)振幅 1.在铁架台上悬挂一竖直方向的弹簧振子,分别用大小不同的力把弹簧振子从平衡位置拉下不同的距离. 2.学生观察两种情况下,弹簧振子的振动有什么不同. 3.学生代表答: ①两种情况下,弹簧振子振动的范围大小不同; ②振子振动的强弱不同. 4.教师激励评价,并概括板书: 同学们观察得很细,得到了正确的结论,在物理中,我们用振幅来描述物体的振动强弱. ①振幅是描述振动强弱的物理量; ②振动物体离开平衡位置的最大距离叫振幅; ③振幅的单位是米.

人教版高二物理选修3-4第十二章3波长、频率和波速学案Word版

3波长、频率和波速 同学们游泳时,耳朵在水中听到的音乐与在岸上听到的一样吗?这说明什么?与水中同学到音箱距离相同的同学站在地面上时与水中同学同时听到音乐声吗? 提示:声波的特色由其频率决定,机械波从一种介质进入另一种介质时,频率并不改变,故水中听到的音乐与岸上听到的一样,但因为声波在不同介质中传播速度不同,故岸上的同学与水中的同学听到的音乐不同步. 【例1】(多选)下图所示的是一列简谐波在某一时刻的波形图象,下列说法中正确的是() A.质点A、C、E、G、I在振动过程中位移总是相同 B.质点B、F在振动过程中位移总是相等 C.质点D、H的平衡位置间的距离是一个波长 D.质点A、I在振动过程中位移总是相同,它们的平衡位置间的距离是一个波长 【解析】从图象中可以看出质点A、C、E、G、I在该时刻的位移都是零,由于波的传播方向是向右的,容易判断出质点A、E、I的速度方向是向下的,而质点C、G的速度方向是向上的,因而这五个点的位移不总是相同,A项错误;质点B、F是同处在波峰的两个点,它们的振动步调完全相同,在振动过程中位移总是相等,B项正确;质点D、H是处在相邻的两个波谷的点,它们的平衡位置之间的距离等于一个波长,C项正确;虽然质点A、I在振动过程中位移总是相同,振动步调也完全相同,但由于它们不是相邻的振动步调完全相同的两个点,它们的平衡位置之间的距离不是一个波长(应为两个波长),D项错误.【答案】BC (多选)关于波的周期下列说法正确的是(ABD) A.质点的振动周期就是波源的周期 B.波的周期是由波源驱动力的频率决定的 C.波的周期与形成波的介质的密度有关 D.经历整数个周期波形图重复出现,只是波峰向前移动了一段距离 解析:波的周期性是由质点振动的周期性决定的,故A选项正确;波的周期等于波源驱动力的周期,与介质无关,故B选项正确,C选项错误;D选项正是波的周期性的体现,故D正确.

振幅、加速度、振动频率三者的关系式

振动加速度、振幅、频率三者关系 在低频范围内,振动强度与位移成正比;在中频范围内,振动强度与速度成正比;在高频范围内,振动强度与加速度成正比。因为频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对较小且变化量更小,因此振动位移能够更清晰地反映出振动强度的大小;而频率高,意味着振动次数多、过程短,速度、尤其是加速度的数值及变化量大,因此振动强度与振动加速度成正比。 也可以认为,振动位移具体地反映了间隙的大小,振动速度反映了能量的大小,振动加速度反映了冲击力的大小。 振动加速度的量值是单峰值,单位是重力加速度[g]或米/秒平方[m/s2],1[g] = 9.81[m/s2]。 最大加速度20g(单位为g)。 最大加速度=0.002×f2(频率Hz的平方)×D(振幅p-pmm)f2:频率的平方值 举例:10Hz最大加速度=0.002×10*10×5=1g 在任何頻率下最加速度不可大于20g 最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×100*100)=1mm 在任何频率下振幅不可大于5mm 加速度与振幅换算1g=9.8m/s2

A = 0.002 *F2 *D A:加速度(g) F:頻率(Hz) 2是F的平方D:位移量(mm) 2-13.2Hz 振幅为1mm 13.2-100Hz 加速度为7m/s2 A=0,002X(2X2)X1 A=0.002X4X1 A=0.008g 单位转换1g=9.81m/s2 A=0.07848 m/s2, 也就是2Hz频率时。它的加速度是0.07848m/s2. 以上公式按到对应的参数输入计算套出你想要的结果

机械振动、振幅周期和频率

机械振动、振幅周期和频率 一、教学目标 1.在物理知识方面的要求: (1)知道什么是机械振动;(2)知道怎样描述机械振动。 2.通过观察演示实验,让学生明确机械振动的共同特点,从而总结出机械振动的定义,进而引出表示机械振动的物理量。 3.在物理方法的教学中,由于这部分内容在教材中只介绍一个轮廓,把定 量的讨论放低,只做定性的研究,要用定性的语言来叙述和分析比较复杂的物理现象,因此在教学过程中要注重学生用语言来叙述和分析比较复杂物理过程的培养。 二、重点、难点分析 1.重点 (1)明确产生机械振动的条件。 (2)对表示机械振动的位移、速度、加速度等物理量特点的理解。 (3)对回复力概念的理解和判断。 (4)对表示机械振动的物理量(振幅、周期、频率)的掌握。 2.难点是机械振动这种复杂运动形式的理解和描述。 三、教具 演示机械振动的弹簧振子、单摆、大口瓶与鱼漂等。 四、主要教学过程

(一)引入新课 演示几种振动:弹簧振子,单摆,在大口水瓶中上下振动的鱼漂。让学生观察上述运动的共同特点——往复性。 (二)教学过程设计 1.机械振动 (1)机械振动的定义:物体或物体的一部分在平衡位置附近来回做往复运动叫做机械振动,常常简称振动。 (2)产生机械振动的条件 平衡位置:振动停止时物体所在的位置。 回复力:使振动物体回到平衡位置的力。 分析水平的弹簧振子的振动过程,可以请学生说:当振子离开平衡位置时,能够使振子回到平衡位置的力是哪个力?这个力的特点是怎样的? 再分析图1弹簧下端的物体的振动。将物体由平衡位置向下拉下一小段距离 后释放,当物体在平衡位置下方时,重物所受合外力向上指向平衡位置;当重物在平衡位置上方时,重物所受合外力向下指向平衡位置。就是说,重物偏离平衡位置后,总受到一个指向平衡位置的力的作用,在这个力的作用下,重物将回到平衡位置,这个合力就是回复力,在这个实验中回复力是由重力和弹簧的合力来充当的。回复力是根据力的效果来命名的。

高中物理--波长、频率和波速练习

高中物理-波长、频率和波速练习 基础夯实 一、选择题(1~5题为单选题,6题为多选题) 1.简谐机械波在给定的介质中传播时,下列说法中正确的是( D ) A.振幅越大,则波传播的速度越快 B.频率越大,则波传播的速度越快 C.在一个周期内,振动质点走过的路程等于一个波长 D.振动的频率越高,则波传播一个波长的距离所用的时间越短 解析:波速与振幅和频率没有直接的因果关系,所以A、B错误;质点在一个周期内的运动路程只与振幅有关,与波速无关,并不一定等于波长,故C错误;质点振动频率与波的频率相同,又f =1 T ,故D正确。 2.下表给出30℃时,声波在不同介质中的传播速度。显然当声波由空气进入纯水中时,波速 增大,则下列说法中正确的是( B ) 介质空气纯水盐水橡胶软木铜铁 波速(m/s)332 1 490 1 53130~50480 3 800 4 900 C.频率和波长都不变D.频率和波长都变大 解析:波在传播过程中频率不变,一列波从空气进入水中时,频率f不变,波速v增大,则由公式v=λf知波长增大。 3.如图所示是某一时刻的波形图象,波沿x轴正方向传播,波速是12m/s,则波长和频率分别是( B ) A.3cm;200Hz B.6cm;200Hz C.2cm;400Hz D.12cm;50Hz 解析:由波形图可知,波长λ=6cm,则周期为:T=λ v = 1 200 s,所以频率为:f= 1 T =200Hz,故 B正确。 4.(北京大学附中河南分校高二下学期期中)一列简谐波沿x轴传播,t=0时刻的波形如图甲所示,此时质点P正沿y轴负方向运动,其振动图象如图乙所示,则该波的传播方向和波速分别是

正弦振动加速度与速度与振幅与频率关系

正弦振动加速度与速度与 振幅与频率关系 Prepared on 24 November 2020

正弦振动一共有四个参数来描述,即:加速度(用a表示)m/s^2 速度(用v表示) m/s 位移(用D表示)行程(2倍振幅)m 频率(用f表示)Hz 公式:a=2πfv v=2πfd(其中d=D/2) a=(2πf)2d (2为平方)说明:以上公式中物理量的单位均为国际单位制 例如频率为10HZ,振幅为10mm V=2**10*10/1000=0.628m/s a=(2**10)^2*10/1000=m/s^2 正弦运动振幅5mm 频率200HZ 我想你是在做一个弹簧振子,加速度是变化的,我想你需要的应该是弹簧的弹性系数k 首先写出振动方程Y=5sin(x/200) 根据设计要求,弹簧要使振子在1/200s的时候运动距离达到5mm,速度由最大的V0变为0, 在这个过程中属于变力做功,(不知道你会积分不)如果不会也没有关系,我们知道弹簧的弹性势能为^2(式中H是弹簧的伸长量),在达到振幅时,H=5mm=5×10^(-3)m 应用动能定理:^2=1/2mV0^2

同时,应满足时间频率要求,应用动量定理,就必须用积分了,弹力在 1/800(完成1/4周期需要的时间)时间内的冲量为I,I是以函数kHt为被积函数,对H由0到5,t由0到1/800的定积分,即I=×10^(-5)k 由动量定理I=mV1-mV0,得,mV0=×10^(-5)k 联立两式解得: k=256m(式中m不是单位,是振子得质量) 而且初速度为400米每秒 振动台上放置一个质量m=10kg的物体,它们一起上下作简谐振动, 其频率ν=10Hz、振幅A=2×10-3m,求:(1)物体最大加速度的大 小;(2)在振动的最高位置、最低位置,物体分别对台面的压力。 解:取x轴竖直向下,以振动的平衡位置为坐标原点,列运动方程 x=Acos(2πνt+φ) 于是,加速度 a=-4π2ν2Acos(2πνt+φ) (1)加速度的最大值 |a m|=4π2ν2A=m·s-2 (2)由于物体在振动过程中仅受重力mg及竖直向上的托力f,按牛顿第二定律在最高位置mg-f=m|a m| f=m(g-|a |)= m 这时物体对台面的压力最小,其值即 在最低位置mg-f=m(-|a m|) f=m(g+|a |)=177N m 这时物体对台面的压力最大,其值即177N 频率为60HZ,振幅为0.15mm的正弦振动,换算成加速度是多少 只要了解一下其物理方法就不难得到结果了。1、先列出正弦振动信号的表达式:x(t)=Asin(ωt),ω=2πf。2、振动位移信号的两次微分就是加速度振动: a(t)=Bsin(ωt)。3、加速度幅值就等于:B=-A(ω^2)。其中要注意的就是物理单位应该准确。 把振动表达式写出来,就是位移=振幅sin(2πft+常数)。微分两次。 你说的振幅应该就是峰值拉,不会是指的峰峰值什么的,所以直接算就行了。

正弦振动加速度与速度与振幅与频率关系

正弦振动一共有四个参数来描述,即:加速度(用a表示)m/s^2 速度(用v表示) m/s 位移(用D表示)行程(2倍振幅)m 频率(用f表示)Hz 公式:a=2πfv v=2πfd(其中d=D/2) a=(2πf)2d (2为平方) 说明:以上公式中物理量的单位均为国际单位制 例如频率为10HZ,振幅为10mm V=2**10*10/1000=0.628m/s a=(2**10)^2*10/1000=m/s^2 正弦运动振幅5mm 频率200HZ 我想你是在做一个弹簧振子,加速度是变化的,我想你需要的应该是弹簧的弹性系数k 首先写出振动方程Y=5sin(x/200) 根据设计要求,弹簧要使振子在1/200s的时候运动距离达到5mm,速度由最大的V0变为0, 在这个过程中属于变力做功,(不知道你会积分不)如果不会也没有关系,我们知道弹簧的弹性势能为^2(式中H是弹簧的伸长量),在达到振幅时,H=5mm =5×10^(-3)m 应用动能定理:^2=1/2mV0^2 同时,应满足时间频率要求,应用动量定理,就必须用积分了,弹力在1/800(完成1/4周期需要的时间)时间内的冲量为I,I是以函数kHt为被积函数,对H 由0到5,t由0到1/800的定积分,即I=×10^(-5)k 由动量定理I=mV1-mV0,得,mV0=×10^(-5)k 联立两式解得: k=256m(式中m不是单位,是振子得质量) 而且初速度为400米每秒 振动台上放置一个质量m=10kg的物体,它们一起上下作简谐振动,其 频率ν=10Hz、振幅A=2×10-3m,求:(1)物体最大加速度的大小; (2)在振动的最高位置、最低位置,物体分别对台面的压力。 解:取x轴竖直向下,以振动的平衡位置为坐标原点,列运动方程 x=Acos(2πνt+φ) 于是,加速度 a=-4π2ν2Acos(2πνt+φ) (1)加速度的最大值 |a m|=4π2ν2A=m·s-2 (2)由于物体在振动过程中仅受重力mg及竖直向上的托力f,按牛顿第二定律在最高位置mg-f=m|a m| f=m(g-|a |)= m 这时物体对台面的压力最小,其值即 在最低位置mg-f=m(-|a m|)

振幅周期和频率例题解析

振幅、周期和频率例题解析 (1)对称法破解周期计算问题. 简谐运动具有对称性,如物体在平衡位置两侧的对称点上,回复力大小、加速度大小、位移大小、速度大小、动能和势能都各自分别相等.对称性还表现在过程量的相等上,如从某点到达最大位置和从最大位置再回到这一点所需要的时间相等;质点从某点向平衡位置运动时,到达平衡位置的时间和它从平衡位置再运动到这一点的对称点所用的时间相等;振动物体在关于平衡位置对称的任意两段上运动所需的时间相等. [例1] 一质点在平衡位置O 附近做简谐运动,从它经过平衡位置起开始计时,经 0.13 s 质点第一次通过M 点.再经0.1 s 第二次通过M 点,则质点振动周期的可能值为多大? 解析:将物理过程模型化.画出具体化的图景如图9—2—3所示.设质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为0.13 s ,再由M 经最右端A 返回M 经历时间为0.1 s ;如图9—2—4所示. 图9—2—3 图9—2—4 图9—2—5 另外有一可能就是M 点在O 点左方,如图9—2—5所示,质点由O 点经最右方A 点后向左经过O 点到达M 点历时0.13 s ,再由M 点向左经最左端A ′点返回M 点历时0.1 s . 根据以上分析,质点振动周期共存在两种可能性. 如图9—2—4所示,可以看出O →M →A 历时0.18 s ,根据简谐运动的对称性,可得到T 1=4×0.18 s =0.72 s . 另一种可能如图9—2—5所示,由O →A →M 历时t 1=0.13 s ,由M →A ′历时t 2=0.05 s .设M →O 历时t ,则4(t +t 2)=t 1+2t 2+t .解得t =0.01 s ,则T 2=4(t +t 2)=0.24 s . 所以周期的可能值为0.72 s 和0.24 s . 点评:本题考虑问题要全面,不要漏解,最常丢掉的那个可能周期值为0.24 s .另外,求解本题必须理解在实际振动过程中,哪一段上所用的时间为一个周期.并且为解问题形象直观,一般要画出过程示意图. (2)2倍振幅法破解振子路程的计算问题. 简谐运动的物体,在一个T 内的路程为4个振幅, 2T 内的路程为2个振幅,故当物体在Δt =n 2 T (n =1,2,3…)时间内通过的路程s 为:s =2nA (n =1,2,3…).这种计算质点振动中通过路程的方法,称作2倍振幅法. [例2]有一振动的弹簧振子,频率为5 Hz ,从振子经平衡位置开始计时,在1 s 内通过的路程为80 cm ,则振子的振幅为________ cm .

高二物理波长、频率和波速的关系

第三节波长、频率和波速的关系 新知预习 1.波长(λ):在波动中,振动__________总是相同的两个相邻质点间的距离叫做波长,在横波中,两个相邻__________或两个相邻__________之间的距离等于波长;在纵波中,两个相邻__________或两个相邻__________之间的距离等于波长. 2.频率(f):波的频率由__________决定,在任何介质中频率不变,等于波源振动频率. 3.波速(v):波速仅由__________决定,波速与波长和周期的关系为__________,即波源振动几个周期,波向前传播__________个波长. 典题·热题 知识点一波长、频率和波速 例1下列对波速的理解正确的是( ) A.波速表示振动在介质中传播的快慢 B.波速表示介质质点振动的快慢 C.波速表示介质质点迁移的快慢 D.波速跟波源振动的快慢无关 解析:机械振动在介质中传播的快慢用波速表示,它的大小由介质本身的性质决定,与介质质点的振动速度是两个不同的概念,与波源振动快慢无关,故A、D两项正确;波速不表示质点振动的快慢,介质质点也不随波迁移,因此B、C两项错误. 答案:AD 例2图12-3-2所示的是一列简谐波在某一时刻的波形图象,下列说法中正确的是( ) 图12-3-2 A.质点A、C、E、G、I在振动过程中位移总是相同 B.质点B、F在振动过程中位移总是相等 C.质点D、H的平衡位置间的距离是一个波长 D.质点A、I在振动过程中位移总是相同,它们的平衡位置间的距离是一个波长 解析:从图象中可以看出质点A、C、E、G、I在该时刻的位移都是零,由于波的传播方向是向右的,容易判断出质点A、E、I的速度方向是向下的,而质点C、G的速度方向是向上的,因而这五个点的位移不总是相同,A项错误;质点B、F是同处在波峰的两个点,它们的振动步调完全相同,在振动过程中位移总是相等,B项正确;质点D、H是处在相邻的两个波谷的点,它们的平衡位置之间的距离等于一个波长,C项正确;虽然质点A、I在振动过程中位移总是相同,振动步调也完全相同,但由于它们不是相邻的振动步调完全相同的两个点,它们的平衡位置之间的距离不是一个波长(应为两个波长),D项错误. 答案:BC 误区警示在理解波长的概念时,要注意切不可把“在波动中,振动相位总是相等的质点”与“在振动中某一时刻位移相等的质点”混为一谈,另外还要注意“相邻”二字,不要把波长的概念理解为“两个在振动中位移总是相等的质点间的距离”. 知识点二波长、频率和波速关系及其应用 例3如图12-3-3所示,沿波的传播方向上有间距均为1 m的六个质点a、b、c、d、e、f.均静

振幅、周期和频率5

精品资源 欢迎下载 第二节振幅周期和频率 一、教学目标; 1、知道什么是振幅周期和频率 2、理解周期 和频率之间的关系 3、知道 什么是振动的固有周期和固有频率 二、教学重点难点: 1、 振幅和位移的联系和区别 2、 周期和频率的联系和区别 三、新课教学: 1、 振幅 (A) m (1) 定 义 :动物体离开平衡位置的最大距离。 (2) 物理意义:描述振动强弱的物理量。 (3) 与位移的区别:(1)位移是矢量,振幅是标量。 (2)振幅是恒定的而位移是变化的。 (3)振幅等于最大位移的绝对值。 2、周期 (T) s (1)一次全振动:振子作一次完整的振动。 (2)定 义 :振子作一次全振动所用的时间。 (3)物理意义:描述振子振动快慢的物理量。 2、 频率(f )Hz (1) 振子在单位时间内完成全振动的次数。 (2) 频率和周期是互为倒数关系f = 四、巩固练习: 1、一个弹簧振子,第一次用力把弹簧压缩x 后开始振动,第二次把弹簧压缩2x 后开始振动,则两次振动的周期之比和最大加速度的大小之比分别为() A 、1:2,1:2 B 、1:1,1:1 C 、1:1,1:2 D 、1:2,1:1 2、下列关于简谐运动周期、频率、振幅的说法中哪些正确() A 、振幅是矢量,方向从平衡位置指向最大位移处 B 、周期和频率的乘积是一个常数 C 、振幅增加,周期也必然增加,而频率减小 D 、做简谐运动的物体,其频率是固定的,与振幅无关 3、甲乙两物体做简谐运动,甲振动20次时,乙振动了40次,则甲乙振动周期之比是__________,若甲的振幅增大了2倍而乙的振幅不变,则甲乙周期之比又是__________。 4、做简谐运动的弹簧振子的振幅是A ,最大加速度的值为a0,那么在位移x=A 处,振子的加速度值a=__________a0。 5、将一个水平方向的弹簧振子从它的平衡位置向旁边拉开5cm ,然后无初速释放,假如这振子振动的频率为5Hz ,则振子在0.8s 内一共通过多少路程?

第二节 振幅、周期和频率

第二节振幅、周期和频率 知识要点: 一、振幅 1、定义:振动物体离开平衡位置的最大距离,叫振幅,振幅是标量,振幅常用A表示, 其单位为长度单位:米(m), 位移:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。 2、物理意义:振幅表示振动强弱的物理量。对于同一个振动系统来说,物体的振幅越 大,振动越强,振幅越小,振动越弱。 二、周期和频率 1、一次全振动:振动物体从某一初始状态(位移x、速度v)开始,再次回复到初始 状态(即位移、速度均与初状态完全相同)所经历的过程,叫完成了一次全振动。 2、周期:振动物体完成一次全振动所用的时间,叫做周期,周期用T表示,单位是秒 (s)。 3、频率:单位时间内完成全振动的次数,叫做频率,频率用f表示,单位是赫兹(Hz), 1Hz=1s-1。 4、周期和频率的物理意义:都是表示振动快慢的物理量。 要注意运动快慢与振动快慢的区别,运动快慢可用速率大小来表示,振动快慢则需 用周期的长短或频率的大小来表示。 5、固有频率:简谐运动的频率由振动系统本身的性质所决定,与振幅的大小无关。我 们把由振动系统本身性质所决定的频率称为振动系统的固有频率。 三、三者的关系 1、振幅是标量,是指物体偏离平衡位置的最大距离,它总是正值。 2、在简谐运动中,振幅跟周期和频率无关,在稳定的振动中,振幅是不变的,而位移 是时刻变化的。 3、振动物体在一个全振动过程的路程等于4个振幅,在半个周期内通过的路程等于两 个振幅,但在四分之一周期内通过的路程不一定等于一个振幅,与振动的起始时刻 有关。 4、在一个周期内振动的路程s与振幅A的关系是s=4A,在时间Δt内质点通过的路 程为Δs=(Δt/T)·4A=[Δt/(T/4)]·A。 5、周期和频率都是表示振动快慢的物理量,二都互为倒数关系,即T=1/f,或f=1/T。 周期越长,频率越低,振动越慢。 典型例题 例1、如图9-11所示,弹簧振子以O为平衡位置在BC间振动,则()A.从B→O→C→O为一次全振动; B.从O→B→O→C→O为一次全振动; C.从C→O→B→O→C为一次全振动; D.振幅大小为OB。图9-11 解析:A答案中物体的初位置在B,末位置在O,初末状态不同,故从B→O→C→O不是一次全振动;在B选顶中,初末状态相同,且物体第一次回复到初状态,故是一次全振动,C与B完全类同,也是一次全振动;由定义可知,振幅即等于O、B之间的距离OB。故正确答案为BCD。 例2、在上题中,若BC间的距离为20cm,由C运动B的时间为1s,则振子的周期为____s 振幅是____cm,振子完成两次全振动所通过的路程是____cm,从振子经过B时开始计 高二物理讲义:赵春光 5

1、深刻理解简谐运动、振幅、周期和频率的概念

机械振动和机械波考点例析 一、夯实基础知识 1、深刻理解简谐运动、振幅、周期和频率的概念 (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复 力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ○ 1在平衡位置: 速度最大、动能最大、动量最大; 位移最小、回复力最小、加速度最小。 ○ 2在离开平衡位置最远时: 速度最小、动能最小、动量最小; 位移最大、回复力最大、加速度最大。 ○3振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位 置间的直线距离。 加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是 指向平衡位置。 (3)振幅A : 振动物体离开平衡位置的最大距离称为振幅。 它是描述振动强弱的物理量。 它是标量。 (4)周期T 和频率f : 振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒; 单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz )。 周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、深刻理解单摆的概念 (1)单摆的概念: 在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于 球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100时,单摆的振动是简谐 运动,其振动周期T=g L π2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=224T L π.

振幅、周期和频率3

第二节振幅、周期和频率 教学目标: 1.知道什么是振幅、周期和频率 2.理解周期和频率的关系 3.知道什么是振动的固有周期和固有频率 教学重点: 1.简谐运动的振幅、周期和频率的概念. 2.关于振幅、周期和频率的实际应用. 教学难点: 1.振幅和位移的联系和区别. 2.周期和频率的联系和区别. 教学方法: 1.通过分析类比引入描述简谐运动的三个物理量:振幅、周期和频率. 2.运用CAI课件使学生理解振幅和位移、周期和频率的联系和区别. 3.通过演示、讲解、实践等方法,加深对三个概念的理解. 4.通过实验研究,探索弹簧振子的固有周期的决定因素. 教学用具:CAI课件、劲度系数不同的弹簧、秒表、铁架台、质量不同的小球. 教学过程 一、导入新课 1.讲授:前边我们学过了直线运动,我们知道:对于匀速直线运动,所受合外力为零,描述该运动的物理量有位移、时间和速度,对于匀变速直线运动,物体所受的合外力是恒量,描述它的物理量有时间、速度、位移和加速度,而上节课我们研究了合外力为回复力的简谐运动,那么描述简谐运动需要哪些物理量呢? 2.类比引入 我们知道:简谐运动是一种往复性的运动,而我们学过的匀速圆周运动也是一种往复性的运动,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等物理量,本节课我们就来学习描述简谐运动的几个物理量[板书:振幅、周期和频率] 二、新课教学 (一)振幅 1.在铁架台上悬挂一竖直方向的弹簧振子,分别用大小不同的力把弹簧振子从平衡位置拉下不同的距离. 2.学生观察两种情况下,弹簧振子的振动有什么不同. 3.学生代表答: ①两种情况下,弹簧振子振动的范围大小不同; ②振子振动的强弱不同. 4.教师激励评价,并概括板书: 同学们观察得很细,得到了正确的结论,在物理中,我们用振幅来描述物体的振动强弱. ①振幅是描述振动强弱的物理量; ②振动物体离开平衡位置的最大距离叫振幅; ③振幅的单位是米. 5. 取一段琴弦,使其两端固定且被张紧,用实物投影仪进行投影. ①第一次使琴弦的振幅小些,听它发出的声音的强弱; ②第二次使琴弦的振幅大些,听它发出的声音的强弱. 比较后,加深对振幅的理解.

地震波的频率和振幅

地震波的频率和振幅 时间:2010-06-05 20:18来源:unknown 作者:wowglad 点击:7次 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t)变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t) ------------------(1.3.1)--

--傅氏正变换 --------------------(1.3.2)-- --傅氏反变换 这两式是等价的,即A(f)与a(t)是一一对应的。 ① δ脉冲函数Aδ(t) ② 函数: ③ 函数: 可以看出:不同时间函数具有不同的频谱。 图1.3.52、地震波的频率特征 地震波是人工激发的振动,具有连续的频谱,如图1.3.6所示。

图1.3.6主频f0:振幅谱曲线极大值所对应的频率。 频带的宽度:若|A(f)|最大值为1,则可找|A(f)|=0.707的两个频率f1和f2,两者之差△f=f2-f1为频带宽度。 大量的实际观测和分析,各种不同类型的地震波的能量主要分布频带是不同的。如图1.3.7所示。 图1.3.7 3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ① 激发条件。 ② 地震波在传播过程中受到影响。 ③ 接收条件的影响。 ④ 其它如地下岩层界面的形态和平滑状态。

地震波的频率和振幅

地震波的频率和振幅 Prepared on 24 November 2020

地震波的频率和振幅 时间:2010-06-05 20:18来源:unknown 作者:wowglad 点击:7次 2008年12月19日地震波的频率和振幅1、地震波的频谱及其分析频谱: 谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。频 谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t)变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t) --傅氏正变换

--傅氏反变换 这两式是等价的,即A(f)与a(t)是一一对应的。 ① δ脉冲函数Aδ(t) ② 函数: ③ 函数: 可以看出:不同时间函数具有不同的频谱。

频带的宽度:若|A(f)|最大值为1,则可找|A(f)|=的两个频率f1和f2,两者之差△f=f2-f1为频带宽度。 图 3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ① 激发条件。 ② 地震波在传播过程中受到影响。 ③ 接收条件的影响。 ④ 其它如地下岩层界面的形态和平滑状态。 地震波在传播过程中随着距离(或深度)的增加,高频成分会很快地损失,而且波的振幅按指数规律衰减。实际地层对波的这种改造,称之为大地低通滤器效应。

高中物理振幅周期和频率练习试卷

二、振幅、周期和频率 班级姓名 一.选择题(每小题中至少有一个选项是正确的) 1.关于振幅的各种说法,正确的是()A.振幅是振子离开平衡位置的最大距离 B.振幅大小表示振动能量的大小 C.振幅有时为正,有时为负 D.振幅大,振动物体的最大加速度也一定大 2.对简谐运动下述说法中正确的是()A.物体振动的最大位移等于振幅B.物体离开平衡位置的最大距离叫振幅 C.振幅随时间做周期性变化D.物体两次通过平衡位置的时间叫周期 3.振动的周期就是指振动物体()A.从任一位置出发又回到这个位置所用的时间 B.从一个最大偏移位置运动到另一个最大偏移位置所用的时间 C.从某一位置出发又以同一运动方向回到这个位置所用的时间 D.经历了两个振幅的时间 E.经历了四个振幅的时间 4.一个弹簧振子,第一次把弹簧压缩x后开始振动,第一次把弹簧压缩2x后开始振动,则两次振动的周期之比和最大速度之比为()A.2∶1,1∶2B.1∶1,1∶1 C.1∶1,1∶2 D.2∶1,1∶1 5.质点沿直线以O为平衡位置做简谐运动,A、B两点分别为正最大位移处与负最大位移处的点,A、B相距10cm,质点从A到B的时间为0.1s,从质点到O点时开始计时,经0.5s,则下述说法正确的是()A.振幅为5cm B.振幅为10cm C.通过路程50cm D.质点位移为50 cm *6.一质点做简谐运动,先后以相同的动量依次通过A、B两点,历时1s,质点通过B点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm *7.做简谐运动的弹簧振子,其质量为m,最大速度为v,则下列说法中正确的是()A.从某时刻算起,在半个周期的时间内,弹力做功一定为零 B.从某时刻算起,在半个周期的时间内,弹力做的功可能是零 C.从某时刻算起,在半个周期的时间内,弹力的冲量一定为零 D.从某时刻算起,在半个周期的时间内,弹力的冲量可能是零到2mv之间某一个值

相关文档
相关文档 最新文档