文档库 最新最全的文档下载
当前位置:文档库 › 六大定理互相证明总结

六大定理互相证明总结

六大定理互相证明总结
六大定理互相证明总结

六大定理的相互证明总结

XXX 学号

数学科学学院 数学与应用数学专业 班级

指导老师 XXX

摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.

关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理

1 确界定理

1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]

n b }适合下面两个条件:

(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )

n a }所成的数列收敛于零,即()0lim =-∞

→n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞

→n n n a b ∴βα=

即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]

证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界

{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .

由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理

2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理

在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}

k n x ,则引理已证明;

⑵若{}n x 中无递增子序列,那么?1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.

于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}

k n x . 引理得证.

下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]

由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞

→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞

→lim 也存在,

且极限等于{}n b 的下确界.亦即对任何正整数k ,有

n n k n n k b b a a ∞

→∞

→≥≤lim ,lim (*)

由定理的另一条件: ()0lim =-∞

→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,

则有()0lim lim lim =-=-∞

→∞

→∞

→n n n n n n n a b a b .

从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,

即有 n k b a ≤≤ξ(3,2,1=k …)

也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有

ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:

()ξξ-≥-∞

→'lim n n n a b

由于()0lim =-∞

→n n n a b ,故有

0'≤-ξξ

从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理

3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:

(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞

→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim

=-∞

→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公

共点.

3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.

取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列

{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.

以此方法,得区间列{[,n a ]

n b }.

由区间套定理,ξ是所有区间的唯一公共点.

显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε?>0,?*N N ∈,当n >

N 时,有ξ-n x <ε.

所以ξ=∞

→n n x lim 定理得证.

3.3 区间套定理证明致密性定理[1]

证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]

n b },这个区间列显然适合下面两个条件:

(1)[][][]???2211,,,b a b a b a … (2)02

→-=

-n

n n a

b a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).

每一[]k k b a ,中均含有{}n y 的无穷个元素.

在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}

k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故

ξ→k n y .这就是定理所要的结果. 4 致密性定理

4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理

证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}

k n x . 令a x k n k =∞

→lim .于是,对ε?>0,?0k ,当k >0k 时,有

a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞

→lim

4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:

设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2

ε

从而当n m ,>N 时,有

m n m n x a a x x x -+-≤-<2ε+2

ε

=ε 其次证明条件的充分性:

首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1

特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x

这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}

k n x ,设a x k n k =∞

→lim .

根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε

取一正整数()1,1max 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以

a x x x a x k k n n n n -+-≤-00<ε+ε=2ε

即 a x n n =∞

→lim

5 柯西收敛原理

5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理

证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε?>0,对*N N ∈?,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理

证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.

由子列收敛的定义,则ε?>0,对*N N ∈?,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x …………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理

6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理

证明:在这里我们只说明定理的上确界部分.

设不为空集的区间E ?R ,?x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么?x ∈[0x ,M ]:

ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域?x ,其中每一点均为E 的上界,称其为第一类区间;

ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域?x ,其中每点均不是E 的上界,称其为第二类区间.

∴ 当x 取遍[0x ,M ]上每一点找出一个邻域?x .

显然?x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间?x 有公共点.

所以?x ∈?x ,x 均为E 的上界.而与?x 相邻接的开区间?'x 有公共点,所以

?x ∈?'x ,x 均为E 的上界.

依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.

同理,E 有下确界.

6.3 有限覆盖定理证明致密性定理

证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.

(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==k n x … 因而子列{}k n x 收敛于ξ.

(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b

在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:

{=μ(,x x δ-)

x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中

的有限多个区间.

()11111,x x x x δδ+-=?,…,()

n n x n x n n x x δδ+-=?,,他们也覆盖了[]b a ,,并且在每一个i ?(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾.

于是,对于k δ=k

1

(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就

得到{}n x 的子列{}

k n x 满足:0x x k n -<k

k 1

=δ(,3,2,1=k …)从而∞→k lim 01x x n =得

证.

总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.

实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.

本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.

参考文献:

[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

勾股定理毕达哥拉斯定理及各种证明方法

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么 。 勾股定理的逆定理 命题2如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每 个直角三角形的面积等于2 1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB. ∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o, ∴ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵EF=FG=GH=HE=b―a,∠HEF=90o. ∴EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴. 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等. 即,整理得. 【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC. ∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o. ∴ΔDEC 是一个等腰直角三角形,它的面积等于 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ ABCD 是一个直角梯形,它的面积等于

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 ,整理得. 【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于. ∴. ∴. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED,

∵∠EGF + ∠GEF = 90°, ∴∠BED + ∠GEF = 90°, ∴∠BEG =180o―90o= 90o. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴∠ABC + ∠CBE = 90o. ∵ RtΔABC ≌ RtΔEBD, ∴∠ABC = ∠EBD. ∴∠EBD + ∠CBE = 90o. 即∠CBD= 90o. 又∵∠BDE = 90o,∠BCP = 90o, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴. 【证法4】(1876年美国总统Garfield证明) 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴∠ADE = ∠BEC. ∵∠AED + ∠ADE = 90o, ∴∠AED + ∠BEC = 90o. ∴∠DEC = 180o―90o= 90o. ∴ΔDEC是一个等腰直角三角形, 它的面积等于. 又∵∠DAE = 90o, ∠EBC = 90o, ∴ AD∥BC. ∴ ABCD是一个直角梯形,它的面积等于. ∴. ∴. 【证法5】(辛卜松证明)

初中数学几何定理汇总

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。学习几何,需要证明,这时定理就很重要! 点的定理: 1、过两点有且只有一条直线 2、两点之间线段最短 角的定理: 1、同角或等角的补角相等 2、同角或等角的余角相等 直线定理: 1、过一点有且只有一条直线和已知直线垂直 2、直线外一点与直线上各点连接的所有线段中,垂线段最短 平行定理:经过直线外一点,有且只有一条直线与这条直线平行 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行 证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行 两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补 定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边 三角形内角和定理:三角形三个内角的和等于180° 定理:全等三角形的对应边、对应角相等 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 边边边定理(SSS):有三边对应相等的两个三角形全等 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等 定理1:在角的平分线上的点到这个角的两边的距离相等 定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角) 推论1: 等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

最好的勾股定理五种证明方法

勾股定理五种证明方法 1证法】【abba aacaabc c ab bccbbb ca b 个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为做8c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 ,整理得.

证法2证明)(】【 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab 2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵RtΔHAE ≌RtΔEBF, CGDab∴∠AHE = ∠BEF. , o∠AHE = 90∵∠AEH + abc. o∠BEF = 90∴∠AEH + c. = 90o HEF = 180o―90o∴∠H c的四边形EFGH是一个边长为F它的面积等于

c2. 正方形.b HAE, RtΔ≌∵RtΔGDH .HGD = ∠EHA∴A, o∠GHD = 90∵∠HGD + . GHD = 90∠o∴∠EHA + , GHE = 90o又∵∠. o= 180o+ 90o∴∠DHA = 90. 是一个边长为a + b的正方形,它的面积等于∴ABCD .∴∴. 证法3证明)(】【做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵D、E、F在一条直线上, 且RtΔGEF ≌RtΔEBD, ∴∠EGF = ∠BED,

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

平衡微分方程与切应力互等定理

第二章应力状态分析 一. 内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。 应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二. 重点

1.应力状态的定义:应力矢量;正应力与切应力;应力分量; 2.平衡微分方程与切应力互等定理; 3.面力边界条件; 4.应力分量的转轴公式; 5.应力状态特征方程和应力不变量 三.知识点 体力、应力矢量、应力分量、平衡微分方程、面力边界条件、主平面与主应力、主应力性质、截面正应力与切应力、三向应力圆、八面体单元、偏应力张量不变量、面力、正应力与切应力、应力矢量与应力分量、切应力互等定理、应力分量转轴公式、平面问题的转轴公式、应力状态特征方程、应力不变量、最大切应力、球应力张量和偏应力张量 §2.1 体力和面力 学习思路: 本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

《建筑力学》2019年春季

1、圆形截面最大弯曲剪应力是平均剪应力的( )倍 . 2 . 1.25 . 1.33 . 1.5 2、 点的速度合成定理的适用条件是() .牵连运动只能是平动 .牵连运动为平动和转动 .牵连运动只能是平面平动 .牵连运动不限 3、刚体受三不平行的力作用而处于平衡状态,则此三力的作用线() .必汇交于一点 .必互相平行 .必皆为零 .必位于同一平面 4、作用在一个刚体上的两个力如果满足等值反向,则该二力可能是() .作用力和反作用力或一对平衡力 .一对平衡力或一个力偶 .一对平衡力或一个力和一个力偶 .作用力与反作用力或一个力偶 5、平面内一非平衡共点力系和一非平衡共点力偶系最后可能合成的情况是()

.一合力偶 .一合力 .相平衡 .无法进一步合成 6、 工程中常见的组合变形是().斜弯曲及拉压与弯曲的组合.弯曲与扭转的组合 .拉压及弯曲与扭转的组合.ABC 7、关于脆性断裂的强度理论是().第一和第四 .第三和第四 .第一和第二 .第二和第三 8、 下列结论中哪个是正确的? .内力是应力的代数和 .应力是内力的平均值 .应力是内力的集度 .内力必大于应力 9、 关于屈服的强度理论是()

.第一和第二 .第三和第四 .第一和第四 .第二和第三 10、 以下说法错误的是() .构件材料的极限应力由计算可得 .塑性材料以屈服极限为极限应力 .脆性材料以强度极限作为极限应力 .材料的破坏形式主要有2种 11、 一个应力状态有几个主平面() .两个 .最多不超过三个 .无限多个 .一般情况下有三个,特殊情况下有无限多个 12、 对于一个微分单元体,下列结论中错误的是().正应力最大的面上剪应力必为零 .剪应力最大的面上正应力为零 .正应力最大的面与剪应力最大的面相交成45度 .正应力最大的面与正应力最小的面必相互垂直13、应力状态分为()

初中数学几何定理大全

初中数学公理和定理 一、公理(不需证明) 1、两直线被第三条直线所截,如果同位角相 等,那么这两条直线平行; 2、两条平行线被第三条直线所截,同位角相等; 3、两边和夹角对应相等的两个三角形全等; (SAS) 4、角及其夹边对应相等的两个三角形全等; (ASA) 5、三边对应相等的两个三角形全等; (SSS) 6、全等三角形的对应边相等,对应角相等. 7、线段公理:两点之间,线段最短。 8、直线公理:过两点有且只有一条直线。 9、平行公理:过直线外一点有且只有一条 直线与已知直线平行 10、垂直性质:经过直线外或直线上一点, 有且只有一条直线与已知直线垂直 以下对初中阶段所学的公理、定理进行分类: 一、直线与角 1、两点之间,线段最短。 2、经过两点有一条直线,并且只有一条直线。 3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等 二、平行与垂直 5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 6、经过已知直线外一点,有且只有一条直线与已知直线平行。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。 8、夹在两平行线间的平行线段相等 9、平行线的判定: (1)同位角相等,两直线平行;

(2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行. (5)如果两条直线都和第三条直线平行,那么这两条直线也平行 10、平行线的性质: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转) 11、角平分线的性质:角平分线上的点到这个角的两边的距离相等. 12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 15、轴对称的性质: (1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。 16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等 17、旋转对称: (1)图形中每一点都绕着旋转中心旋转了同样大小的角度 (2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 ? ? ? ? ? ? ? ? ? ? 做8 个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o . ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o . ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

初中数学(几何)知识点总结(北师大版)

初中数学(几何)知识点总结 考点六、投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。 2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。 主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。 俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。 左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。 第九章三角形 考点一、三角形 1三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接 三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类 三角形按边的关系分类如下: 不等边三角形 三角形底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形) 三角形锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形) 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 6、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形。②当已知两边时,可确定第三边的范围。③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。

初三数学几何知识点归纳总结

初三数学几何知识点归纳总结除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数学几何知识点归纳总结,希望对大家的学习有一定帮助。 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 初中几何公式:三角形

15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

第五讲中值定理的证明分析

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(')(') ()()()(ξξg f a g b g a f b f =--

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中10)1()()!1()()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公 式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ?f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++=ΛΛ212211)()()()(ξ 例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ 使得 )(2)()(222ξξf a f b b f a =+ 例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得 ???==b b a a dx x f dx x f dx x f ξξ )(2 1)()(。 例4、设)(),(x g x f 在[a,b]上连续,证明存在),(b a ∈ξ使得

勾股定理五种证明方法

勾股定理五种证明方法 This manuscript was revised on November 28, 2020

勾股定理五种证明方法 【证法1】 做 c ,再. .即 b a 22+【证法以 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE=∠BEF . ∵∠AEH+∠AHE=90o, ∴∠AEH+∠BEF=90o . ∴∠HEF=180o ―90o=90o . ∴四边形EFGH 是一个边长为c 的 正方形.它的面积等于c2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD=∠EHA . ∵∠HGD+∠GHD=90o, ∴∠EHA+∠GHD=90o . 又∵∠GHE=90o, ∴∠DHA=90o+90o=180o . ∴ABCD 是一个边长为a+b 的正方形,它的面积等于()2b a +. ∴()2 2214c ab b a +?=+.∴222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c .把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上.过C 作AC 的延长线交DF 于点P . ∵D 、E 、F 在一条直线上,且Rt ΔGEF ≌Rt ΔEBD, ∴∠EGF=∠BED , ∵∠EGF+∠GEF=90°, ∴∠BED+∠GEF=90°, ∴∠BEG=180o ―90o=90o . 又∵AB=BE=EG=GA=c , ∴ABEG 是一个边长为c 的正方形. ∴∠ABC+∠CBE=90o . ∵Rt ΔABC ≌Rt ΔEBD,

初中数学几何知识点总结大全

初中数学几何知识点总结大全 今天小编为大家整理了一篇有关初中数学几何知识点的相关内容,希望对大家有所帮助。 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1直角三角形的两个锐角互余 19、推论2三角形的一个外角等于和它不相邻的两个内角的和 20、推论3三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等 22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS)有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1在角的平分线上的点到这个角的两边的距离相等 28、定理2到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1三个角都相等的三角形是等边三角形 36、推论2有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1关于某条直线对称的两个图形是全等形

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

初中几何定理必背总结大全

1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半

相关文档
相关文档 最新文档