文档库 最新最全的文档下载
当前位置:文档库 › 光纤通信实验报告

光纤通信实验报告

光纤通信实验报告
光纤通信实验报告

一、实验目的

1.了解数字光发端机平均输出光功率的指标要求

2.掌握数字光发端机平均输出光功率的测试方法

3.了解数字光发端机的消光比的指标要求

4.掌握数字光发端机的消光比的测试方法

二、实验仪器

1.ZYE4301G型光纤通信原理实验箱1台

2.光功率计1台

3.FC/PC-FC/PC单模光跳线1根

4.示波器1台

5.850nm光发端机1个

6.ST/PC-FC/PC多模光跳线1根

三、实验原理

四、实验内容

1.测试数字光发端机的平均光功率

2.测试数字光发端机的消光比

3.比较驱动电流的不同对平均光功率和消光比的影响

五、实验步骤

A、1550nm数字光发端机平均光功率及消光比测试

1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。

2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。

3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。

4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。

5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。

6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。

B、1310nm数字发端机平均光功率及消光比测试

8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。

9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。

10.将BM1拨至数字,BM2拨至1310nm。

11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。

12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。

13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。

14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

1016. 重复9-15步,调节电位器W101,调节驱动电流大小为下表中数值时,测得的平均光功率及消光比填入下表。

六、 实验报告

1. 记录光发端机的平均光功率。(拍照)

2. 通过实验数据计算光发端机的消光比。

根据公式2-1: 1

0lg 10P P EXT ,得1550nm 数字光纤传输系统消光比为: -31.80(dB)

当驱动电流约为额定值25mA 时,根据公式2-1: 1

0lg

10P P EXT =,得1310nm 数字光纤传输系统消光比为: (dB)

当驱动电流约为10mA 时,得平均光功率如左图所示;1P 如右图所示. 根据公式2-1: 1

0lg 10P P EXT =,得1310nm 数字光纤传输系统消光比为: (dB)

当驱动电流约为20mA 时,得平均光功率如左图所示;1P 如右图所示. 根据公式2-1: 1

0lg 10P P EXT ,得1310nm 数字光纤传输系统消光比为: (dB)

整体电路图如上图所示.

一、 实验目的

1. 了解光无源器件,Y 型分路器以及波分复用器的工作原理及其结构

2. 掌握它们的正确使用方法

3. 掌握它们主要特性参数的测试方法

二、 实验仪器

1. ZYE4301G 型光纤通信原理实验箱 1台

2. 光功率计 1台

3. 示波器 1台

4. FC-FC 法兰盘 1个

5. Y 型分路器 1个

6. 波分复用器 2个

三、 实验原理

测试方法为:先测试出光源输出的光功率P 0,将Y 型分路器接入其中组成图4-1所示测试系统后,分别

测出Y 型分路器输出端的光功率P 1和P 2,分别代入4-1,4-2,4-3式即可得到待测Y 型分路器的性能指标。

波分复用器性能指标有耦合比CR 、插入损耗L t 、附加损耗L e 、光串扰(隔离度)DIR 等。这里只讨论光串扰。

光串扰是指一个输入端的光功率和由耦合器反射到其他输出端口的光功率的比值。其测试原理图如图

4-2所示。

上图中波长为λ1=1310nm 、λ2=1550nm 的光信号经波分复用器复用以后输出的光功率分别为P 01、P 02,解复用后分别输出光信号,此时从1310窗口输出1310nm 的光功率为P 11,输出1550nm 的光功率为P 12;从1550窗口输出1550nm 的光功率为P 22,输出1310nm 的光功率为P 21。将各数字代入下列公式。

21

01

12lg 10P P L = (4-4) 1202

21lg

10P P L = (4-5) 上式中L 12 、L 21即为相应的光串扰。

由于便携式光功率计不能滤除波长1310nm 只测1550nm 的光功率,同时也不能滤除1550nm 只测1310nm 的光功率。所以改用下面的方法进行光串扰的测量。

图4-1 Y 型分路器性能测试实验框图

测量1550nm 的光串扰的方框图如4-3(b )所示:

在这种方法中,光串扰计算公式为:

12

112lg

10P P L = (4-6) 21221lg 10P P L = (4-7) 上式中L 12,L 21即是光波分复用器相应的光串扰。

四、 实验内容

1. 测量Y 型分路器的插入损耗

2. 测量Y 型分路器的附加损耗

3. 测量波分复用器的光串扰

五、 实验步骤

A、Y 型分路器性能测试

1. 用FC-FC 光跳线将1310nm 光发端机与光功率计相连,组成简单光功率测试系统。

2.信号源的产生:信号源由CPLD 下载模块产生,请参看系统简介中的CPLD 下载模块,将PCM 编译码模块中的4.096MH Z 时钟信号由T661输入到CPLD 下载模块的NRZ 信号产生电路的时钟输入端983,这样在输出

端T980将输出4M 速率24-1位的伪随机信号,将其作为信号源接入到1310nm 光发端机信号输入端T101。并

用示波器检测此信号。

1. 拨码开关BM1拨到数字,BM2和BM3拨到1310nm 。

2. 接通PCM 编译码模块、CPLD 下载模块、光发模块的电源。

3. 用万用表监控R110两端电压,用W101调节半导体激光器驱动电流,使之为25mA 。万用表示值为25mV 。

4. 用光功率计测得此时光功率为P 0。

5. 拆除FC-FC 光纤跳线,将Y 型分路器按照图4-1中方法组成测试系统。

6. 用光功率计分别测出Y 型分路器输出两端光功率P 1和P 2。

B 、波分复用器性能测试

7. 信号源的产生同步骤2。

8. 按图4-3(a )连接波分复用器:将波分复用器(A )标有“1310nm ”的光纤接头插入“1310nm ”光发端(1310nmT )。将标有“1550nm ”的光纤接头用保护帽遮盖起来;用FC-FC 法兰盘将两个波分复用器

(A )和(B )的“IN ”端相连。

9. 将拨码开关BM1拨到数字,BM2和BM3均拨到1310nm 。

10. 接通PCM 编译码模块、CPLD 下载模块、1310nm 光发模块的电源。

12.用光功率计测得此时波分复用器(B)标有“1310nm”端光功率为P11,测得标有1550nm端光功率为P12。

13.拆除波分复用器“IN”端FC-FC法兰盘,测得波分复用器(A)标有“IN”端输出光功率为P1。

14.代入上式计算1310nm光串扰。

15.根据4-3(b)测试框图和上述波分复用器1310nm光功率串扰步骤,设计步骤并测试1550nm光串扰。

16.将所得光功率数据代入公式4-6和4-7计算波分复用器的光串扰。

六、实验报告

1.记录各实验数据,根据实验结果计算Y型分路器插入损耗和附加损耗。(拍照)

P;上右图为实验电路图)

(上左图为光功率

1 22. 根据实验结果,计算获得波分复用器光串扰。

(1310nm 光发端):

(上左图为波分复用器(B)标有1310nm 端光功率为P 11;上右图为波分复用器(B)标有1550nm 端光功率为P 12) (下右图为1550nm 光发端):

(上左图为波分复用器(A)标有IN 端光功率为P 1;上右图为波分复用器(B)标有1310nm 端光功率为P 21)

(上左图为波分复用器(B)标有1550端光功率为P 22;上右图为波分复用器(A)标有IN 端光功率为P 2)

(右图为实验电路图)

一、实验目的

1. 了解模拟信号光纤系统的通信原理

2. 了解完整的模拟信号光纤通信系统的基本结构

二、实验仪器

1.ZYE4301G型光纤通信原理实验箱1台

2.20MHz双踪模拟示波器1台

3.万用表1台

4. FC/PC-FC/PC单模光跳线1根

5. 850nm光发端机和光收端机1套

6. ST/PC-ST/PC多模光跳线1根

三、实验原理

LD模拟信号调制实验中,有兴趣时可采用预失真补偿电路对模拟信号波形进行失真补偿,可观察出补偿后的传输效果与补偿前的效果的不同。关于预失真补偿可参见附录。

本实验箱850nm为LED光源,1310nm和1550nm为LD光源。

图5-3 模拟信号光纤传输系统框图

四、实验内容

1. 各种模拟信号LED模拟调制:三角波、正弦波、方波。

2. 各种模拟信号LD模拟调制:三角波,正弦波、方波。

五、实验步骤

本实验采用模拟信号源模块输出的信号做为待传输的模拟信号。

A、LD模拟信号调制实验

1.模拟信号源用模拟信号源模块的1K正弦波信号,将输出端T303与1310nm光发模块模拟信号输入端T111连接。

2. 用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,K121置2、3通。

3. 将拨码开关BM1拨到模拟,BM2和BM3拨到1310nm。

4. 用K30打开模拟信号源模块电源;用K10打开光发模块电源。

5. 将K31置中间两脚通,调节1K正弦波信号幅度调节电位器W306,用示波器CH1通道从TP303观测,使波形幅度约为2V,且无明显失真。

6. 调节输入模拟信号幅度调节电位器W111、模拟信号驱动电流调节电位器W112和1310nm光收模块输出信号幅度调节电位器W121,用示波器CH2通道从TP121观测,使得输出信号波形幅度为2V且无明显失真,画出两信号的波形。再用示波器从TP112观察驱动电流信号;观察模拟信号光纤传输调制过程。

下面给出了以正弦波为例TP111、TP112、TP121各点的波形,

7. 将T303换成T302(三角波)或T301(方波),观察各测试点波形效果。

B 、LED 模拟信号调制实验

根据LD 模拟信号调制实验步骤,设计LED 模拟信号调制步骤,并通过实验实现。

六、 实验报告

1. 记录并画出各模拟信号的波形,对模拟信号光传输前后的波形进行比较。

(拍照)

(电路图如图所示)

2. 比较LD 与LED 模拟信号调制的效果。

TP111 TP112

TP121

一、实验目的

1.了解数字信号光纤传输系统的通信原理

2.掌握完整数字光纤通信系统的基本结构

二、实验仪器

1.ZYE4301G型光纤通信原理实验箱1台

2.20MHz双踪模拟示波器1台

3.万用表1台

4.FC/PC-FC/PC单模光跳线1根

5.850nm光发端机和光收端机1套

6.ST/PC-ST/PC多模光跳线1根

三、实验原理

数字信号光纤传输系统组成框图如图6-3所示:

对原始数字信号产生模块的信号进行各种不同方式的编码和处理,然后通过光纤传输,在接收端

经译码后从测试端口观测输出端的信号波形,并且比较发光二极管的数字驱动与半导体激光器数字驱

动效果的异同。

四、实验内容

本实验用1310nm和850nm光纤传输系统直接传输数字信号源的NRZ码信号。关于光发、收端机参见实验

二、三;数字信号源参见系统简介。

1.观察各种数字信号在LD(1310nm)光纤传输系统中的波形

2.观察各种数字信号在LED(850nm)光纤传输系统中的波形

五、实验步骤

A、LD数字信号调制实验

1.用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,K121置2、3通,组成1310nm光纤传输系统。

2.信号源用数字信号源模块产生的NRZ码信号,将其输出端T504与光发模块数字信号输入端T101连接,K511置2、3通(1、2通速率为64K,2、3通为256K),用示波器CHI通道观测此信号。

3.将拨码开关BM1拨到数字数字,BM2和BM3拨到1310nm。

4.用K50接通数字信号源模块电源,用K10接通光发模块电源。

5.用万用表监控R110两端电压,用W101调节半导体激光器驱动电流,使之小于25mA。

信号波形幅度为3.5V 且无明显失真。记录以上两信号波形;再从TP102观测驱动电流波形;从而观察数字信号光纤传输调制过程。下面给出了以方波为例TP101、TP102、TP121各点的波形示意图

7. 改变数字信号源模块拨码开关状态,观察各测试点波形变化。

8. 有兴趣者可改用实验箱中其他码型的数字信号进行上述步骤,观察各种码型的波形(PCM 编码信号,CMI 编码信号,脉冲信号等)。

B 、LED 数字信号调制实验

根据1310nm 光纤通信系统数字信号调制实验步骤,设计850nmLED 光纤通信系统数字调制实验步骤并进行实验。

六、 实验报告

1. 记录并画出LD (1310nm

)数字信号调制过程中各测试点波形。

(拍照)

TP101

TP102

TP121

一、 实验目的

1. 了解电话及语音信号通过光纤传输的全过程

2. 掌握数字电话光纤传输的工作原理

二、 实验仪器

1. ZYE4301G 型光纤通信原理实验箱 1台

2. 20MHz 双踪模拟示波器 1台

3. FC/PC-FC/PC 单模光跳线 1根

4. 电话单机 2部

5. 万用表 1台

6. 850nm 光发端机和光收端机 1套

7. ST/PC-ST/PC 多模光跳线 1根

三、 实验原理

电话语音信号的光纤传输分为两种方式,一种方式为模拟电话光纤传输,即电话用户接口输出的模拟信号直接送入光纤模拟信号传输信道,从而实现两部电话的通话。由于模拟信号无法直接进行时分复用,因此模拟电话光纤传输只能传输一路电话语音信号,另一路电话语音信号直接用连接导线代替光纤,实验方框图如图7-1所示。

图中,只有电话乙通过光纤传输,电话甲则通过导线传输。

另一种方式为数字电话光纤传输,将电话用户接口输出的模拟信号经过PCM 编码,利用时分复用的方式,将PCM 数字信号调制成一路信号,然后送入光发端机中进行光纤传输,光收端机接收的信号通过时分解复用,实现信号的分离,分别送入电话用户接口电路中,实现电话的全双工通话。本实验系统只设置了两部电话,

其方框图如图7-

2所示。

图7--2 电话数字光纤传输

实验系统的PCM 编译码电路见系统简介。 在PCM 编译码中,帧同步信号为8KHz ,一

帧信号分为四个时隙,分别为时隙0、时隙1、时隙2和时隙3;时隙0为帧同步信号,其同步码为固定的码流“0 1 1 1 0 0 1 0”,时隙1和时隙2分别为两路电话语音调制数据,时隙3为空时隙,在本实验中没有用到(用低电平表示),T601为电话甲模拟语音信号输入端,T603为电话甲译码输出端,T611为电话乙模拟语音信号输入端,T613为电话乙译码输出端,T621(TP621)为PCM 编码输出测试点,T631(TP631)为PCM 译码输出测试点,图7-3为PCM 编码一帧的结构示意图。

四、 实验内容

图7-1 电话模拟光纤传输

2.数字电话光纤传输系统实验

五、实验步骤

A、模拟电话光纤传输系统实验

1.参考实验五, 调整1310nm光纤通信系统使能够正常传输模拟信号。

2.按图7-1连接导线:电话用户接口模块的甲方模拟语音信号输出端T401与光发模块模拟信号输入端T111连接,乙方模拟语音信号输入端T412与光收模块信号输出端T121连接,甲方模拟语音信号输入端T402与乙方模拟语音信号输出端T411用导线连接,并在电话甲、电话乙口分别接上电话单机。

3.用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,K121置2、3通,组成1310nm光纤传输系统。

4.将拨码开关BM1拨到模拟, 、BM2和BM3均拨到1310nm。

5.用K40,K41接通电话用户接口模块电源,用K10接通光发模块电源。

6.摘机进行两人通话实验,用示波器测试并比较TP401,TP412的波形(由于话音信号的波形比较复杂,所以可选用双音多频信号的按键音来观察测试点的波形),并做记录。

7.根据上述步骤,设计并执行850nm光纤传输系统模拟电话传输实验。

B、数字电话光纤传输系统实验

1.参考实验六, 调整1310nm光纤通信系统使能够正常传输数字信号。

2.按图7-21连接导线,将K601,K602,K603置1、2通,以便使用本地位同步信号。

3.接通电话用户接口模块、PCM编译码模块和光发模块的直流电源。

4.分别从TP650、TP651、TP652、TP653观测0时隙、1时隙、2时隙、帧同步码信号,比较它们时间上的关系。

5.摘机进行两人通话实验,用示波器测试并比较TP411,TP402,TP401、TP412的波形(可选用双音多频信号的按键音来观察测试点的波形),并做记录。

6.用示波器从TP101观察PCM编码输出信号波形,从TP121观察经信道传输后的PCM 信号波形。

7.根据上述步骤,设计并执行850nm光纤传输系统数字电话传输实验。

六、实验报告

1.记录实验过程中各点的波形。(拍照)

(组成1310nm光纤传输系统模拟电话传输):

(上左图为无杂音时的波形;上右图为有按键音时的波形)

(组成850nm光纤传输系统模拟电话传输):

(上左图为无杂音时的波形;上右图为有按键音时的波形)

(电路图如左图所示)

(分别从TP650、TP651、TP652、TP653观测到的0时隙、1时隙、2时隙、帧同步码信号):

(组成1310nm 光纤传输系统数字电话传输):[TP101]

(上左图为无杂音时的波形;上右图为有按键音时的波形) [TP121]:

(上左图为无杂音时的波形;上右图为有按键音时的波形)

(组成850nm 光纤传输系统数字电话传输):[TP101]

(上左图为无杂音时的波形;上右图为有按键音时的波形)

[TP121]:

(上左图为无杂音时的波形;上右图为有按键音时的波形)

(电路图如左图所示)

2.评估模拟电话通话和数字电话通话的质量。

3.评估850nm电话光纤传输系统和1310nm电话光纤传输系统的性能。

七、注意事项

1 .若模拟电话光纤传输时有噪声,可根据模拟信号光纤传输步骤进行调试,使系统传输2K正弦波,当输出(T121)幅度为2V且无明显失真时即可。

2 .若数字电话光纤传输时有噪声,可根据数字光纤传输步骤进行调试,使系统传输普通伪随机码信号,若输出(T121)与输入波形相同,幅度大于3.5V且无误码即可。

一、实验目的

1.学习模拟视频信号光纤传输系统组成

2.熟悉图象信号在光纤系统中的传输过程

二、实验仪器

1.ZYE4301G光纤通信原理实验箱1台

2.双踪模拟示波器1台

3.万用表1台

4.小摄像头(电视信号发生器)1个

5.小电视机(视频监视器)1台

6.视频信号线2根

7.850nm光发端机和光收端机1套

8.ST/PC-ST/PC多模光跳线1根

9.FC/PC-FC/PC单模光跳线1根

三、实验原理

视频信号的传输量日益增长,尤其是有线电视(CATV),需要将几十路电视信号送到千家万户。视频信号的光纤传输也是人们非常关注的课题。

本实验主要采用模拟信号直接调制的方法进行视频信号的光纤传输。系统主要由小摄像头(电视信号发生器)、小型电视机(视频监视器)和模拟光纤通信系统组成。通过观察视频信号的光纤传输,测试光纤传输模拟信号的性能。该实验实质上就是光纤传输模拟信号。实验框图如图8-1所示。

图8-1 图象光纤传输系统

小摄像头产生视频信号(模拟信号),经过模拟调制送入光发端机,经光纤传输后,由光收端机监测到视频信号并输出到电视机接收端,观测光纤传输视频信号的效果以及特点,以了解光纤传输电视信号的特点。在实验过程中图象效果越好说明光纤传输的性能越好。在进行光纤传输视频信号之前,先调节正弦波模拟传输,使得Vp-p=2V的正弦波正常传输,此时视频信号传输效果最佳。

实验时可以比较半导体激光器和发光二极管光纤通信系统传输视频信号的效果。

四、实验内容

1.模拟视频信号进行LED调制光纤传输

2.模拟视频信号进行LD调制光纤传输

五、实验步骤

1.连接导线:摄像头(或电视信号发生器)视频输出端与光发模块视频输入端T131连接,再用连接导线将T132与T111连接,电视机的视频输入端与光接收模块视频输出端T133连接,再用连接导线将T134与T121连接。

2.装上850nm光发端机HFBR-1414T和光收端机HFBR-2416T,用ST-ST光纤跳线连接1310nmT和1310nmR,组成850nm光纤传输系统。

3.将拨码开关BM1拨到模拟, BM2和BM3均拨到850nm。

4.用万用表监控R110两端电压,用W112调节光发端机驱动电流,使小于30mA。既万用表示值小于30mV。

5.接通光发模块(用K10)的直流电源和摄像头电源、电视机电源。

6.调节电位器W111、W112和W121,使光纤视频传输效果达到最佳。

7.根据LED光纤通信系统视频传输实验步骤,设计并执行LD光纤通信系统视频传输实验步骤。

六、实验报告

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

光纤通信实验报告汇总(参考)

实验一用户电话接口实验 一、实验目的 1、掌握用户电话接口电路的主要功能 2、了解实现用户接口电路功能芯片Am79R70的主要性能和特点 二、实验内容 1、掌握用户线接口电路的主要功能 2、了解Am79R70的结构和工作原理 3、了解电话接续的原理及其各种语音控制信号的波形 三、实验仪器 1、ZY1804I型光纤通信原理实验系统 1台 2、20MHz 双踪数字示波器 1台 3、电话机 2部 4、连接导线 20根 四、实验原理 1、用户线接口电路功能及其作用 在现代通信设备与程控交换中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些功能放到“用户电路”来实现。 在程控交换机中,用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。根据用户电话机的不同,用户接口电路可分为模拟用户电话接口电路和数字用户电话接口电路。模拟用户电话接口电路与模拟电话相连,数字用户电话接口电路和数字终端相连(如ISDN),而在此实验箱中采用模拟用户电话接口电路。 模拟用户线接口电路在实现时最大的压力应是能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器、继电器等分立元件构成,但随着微电子技术的发展,各种集成的SLIC相继出现,他们大都采用半导体工艺或是薄膜、厚膜会合工艺,性能稳定,价格低廉,已实现了通用化。 在程控交换机中模拟用户接口电路一般要具有B(馈电),R(振铃),S(监视),C(编译码),H(混合),

T(测试),O(过压保护)七项功能。具体含义是: 1、馈电(B-Battery feeding):向用户话机馈送直流电流。通常要求馈电电压为-48V,环路电流不小于18mA。 2、过压保护(O-Overvoltage protection):防止过压过流冲击损坏电路和设备。 3、振铃控制(R-Ringing Control):向用户话机馈送铃流,通常为25Hz/75Vrms正弦波。 4、监视(S-Supervision):监视用户线的状态,检测话机摘机、挂机与拨号脉冲灯信号已送往控制网络和交换网络。 5、编解码与滤波(C-CODEC/Filter):在数字交换中,它完成模拟话音与数字码间的转换。编译码通常采用PCM码的方式,其编码器(Coder)和译码器(Decoder)统称为CODEC。相应的防混叠与平滑低通滤波器的带宽范围为:300Hz~3400Hz,编码速率为64Kb/s。 6、混合(H-Hybird):完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送和接收数字四线信号之间的分离。 7、测试(T-Test):对用户电路进行测试。 模拟用户接口电路的结构如图所示: 图1-1 模拟用户接口电路框图 2、用户线接口电路 在本实验箱中,用户线接口电路芯片选用Legerity公司生产的模拟用户线接口芯片Am79R70。Am79R70是一种功能较强的用户线接口芯片,它除了拥有用户接口电路常用的7种功能中的6种外,还拥有电流限制、挂机传输、极性反转、tip开路和环路检测等功能。其内部电路结构原理框图如下:

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验报告

光纤通信实验报告 课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。 二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平

均光功率的测试。 1、半导体光源的P -I 特性 I(mA) LD 半导体激光器P -I 曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P -I 的线性关系。 P -I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,没有扭折点, P -I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P -I 特性可以清楚地看出消光比的物理概念,如下图所示。

光纤光学大学物理实验讲义

光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 因此构成光纤通信的基本要素是光源、光纤和光检测器。 半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。 【实验目的】 1. 了解和掌握半导体激光器的电光特性和测量阈值电流 2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。 3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。 4. 了解光纤通信的基本原理。 【实验仪器】 导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。 【实验原理】 一、半导体激光器的电光特性 实验采用的光源是半导体激光器,由于它的体积小、重量 轻、效率高、成本低,已进入了人类社会活动的多个领域。 因此对半导体激光器的了解和使用就显得十分重要。本实验 对半导体激光器进行一些基本的实验研究,以掌握半导体激

光纤通信实验报告思考题

1、不考虑非线性效应,无啁啾的脉冲经过光纤的正常色散区和反常色散区传输后分别具有什么样的啁啾?为什么? 答:不考虑非线性效应,无啁啾的脉冲经过光纤的正常色散区后具有正啁啾和反常色散区传输后具有负啁啾。无啁啾的脉冲工作在正常色散区后,低频比高频传播得快,造成脉冲后沿传播速度比前沿传播速度快,从而产生正啁啾。无啁啾的脉冲工作在反常色散区后,高频比低频传播得快,造成脉冲前沿传播速度比后沿传播速度快,从而产生负啁啾。 2、低峰值功率的脉冲(不考虑非线性效应)在什么情况下,经过光纤传输会产生压缩效应? 答:脉冲要发生压缩的情形,应满足 2C<0,且。但一般的半导体激光器光源在直接强度调制时产生的光脉冲是负啁啾C<0,因此必须采用β2>0的单模光 1、传输光纤为G.652光纤,工作波长为C波段,如传输系统采用光纤光栅进行色散补偿,则需要什么类型的光纤光栅?其工作原理是什么? 传输光纤为G.652光纤,工作波长为C波段,如传输系统采用光纤光栅进行色散补偿,则需要啁啾光纤光栅。啁啾光纤光栅(Chirped FBG)的光栅周期(空间频率)随光纤长度有变化的光纤布拉格光栅,主要用于光纤色散补偿。 其工作原理是,普通单模光纤在1550nm波长时为色散值D>0(反常色散区)。光脉冲的高频分量(蓝移)较低频分量(红移)传输得快,导致脉冲展宽。经啁啾光纤光栅传输以后的入射光中的长波长分量(低频)位于脉冲后沿,使其在光栅的起始端就反射,而短波长分量位于脉冲的前沿,使其在光栅的末端才被反射,于是就补偿了色散效应,使脉冲宽度被压缩甚至还原。 1、有两个脉冲,其宽度不同,但峰值功率相同,通过相同的光纤后(不考虑光纤的色散),由自相位调制效应所展宽的光谱是否相同? 答:不相同。脉冲频谱的展宽程度还与脉冲形状有关。 2、脉冲在光纤中的自相位调制效应跟什么因素有关系?如何增强自相位调制效应? 答:自相位调制效应与输入光功率、传输距离、材料非线性折射率、光纤的型号、信号光的波长、输入脉冲的形状等因素有关。信道设置在非零色散波长附近将有利于增强自相位调制效应的影响;通过增强输入光功率的方法来增加自相位调制效应的影响;增加光纤传输距离来增大自相位调制效应;使用高非线性折射率的材料。

光纤通信实验报告

实验1 数字发送单元指标测试实验 一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验一

实验报告 课程名称无源光实验 实验项目实验1.1、实验1.2、实验1.3、 实验1.4、实验1.5

第一部分无源光实验 实验1.1 单模光纤特性测量 一、实验目的 1、能够熟练测量光的特性 2、掌握单模光纤特性 二、实验仪器 1、 ZH7002型光纤通信多功能综合实验系统一台 2、光功率计一台 3、单模光纤跳线一根 三、实验原理 光纤是光波的传输媒质,按光纤中传输模式的多少,光纤可分为多模光纤和单模光纤两类。在单模光纤中只能传输一个模式,多模光纤则能承载成百上千个模式。 一般的光纤通信系统中,对光纤的要求为:(1)低传输损耗;(2)高带宽和高数据传输速率;(3)与系统元件(光源、光检测器等)的耦合损耗低;(4)高的机械稳定性;(5)在工作条件下光和机械性能的退化慢;(6)容易制造。 单模光纤的结构、参数和各组成部分的作用与多模光纤是类似的,它们的不同之处在于:单模光纤有模场直径和截止波长两个特殊参数。单模光纤的典型几何参数如表1所示。 表1 单模光纤的典型几何参数 参数指标 模场直径,μm (8.6~10.5)±0.7 包层直径,μm 125±1 芯/包层同心度误差,μm ≤0.8 包层不圆度,%≤2%

单模光纤以其损耗低、频带宽、容量大、成本低、易于扩容等优点,作为一种理想的信息传输介质,得到了广泛的应用。 四、 实验步骤 准备工作:将实验箱左上端的跳线开关KE01和KJ02都设置在“5B6B ”工作方式下(右端:2-3),将5B6B 编码模块中的输入数据选择开关KB01设置在“m 序列”工作方式(右端:2-3),KX02设置在“正常”位置;用发送波长为1310nm 和1550nm 的光纤发送器作为光源;并准备好尾纤,为保证测试精度,测量前先用酒精棉将光纤头清洁一下。 1、 弯曲损耗测量 (1) 将单模光纤跳线的一端接入光纤收发模块中激光收发器UE01的发送端,然后 用光功率计测量该光源的光功率并记录结果。 1310nm :-8.06dBm 1550nm :-3.48dBm (2) 人为地抖动跳线,定量地观察光功率值的波动范围。(为什么变化比较小?) 1310nm :-8.03dBm~-8.12dBm 1550nm :-3.61dBm~-3.89dBm 因为光纤具有高机械稳定性。 2、 不同波长(1310nm 与1550nm )的光信号在光纤中衰减量的测量(连接方法可 参考图1.2) 1310/1550nmLD ZH7002 跳线 连接器 跳线 光功率计 图1.2 跳线连接示意图 (1) 将跳线的一端接到光发送波长为1310nm 的激光发送器的输出端,用光功 率计测出该点的光功率13p ,在此跳线的另一端通过连接器再接入一根跳 线,测光功率'13p ,计算出差值' 131313d p p =-。(注:此差值中包含有连 接器的损耗) 13p =-8.11dBm '13p =-8.79dBm ' 131313d p p =-=0.68dBm (2) 将跳线的一端接到光发送波长为1550nm 的激光发送器的输出端,用光功

光纤通信实验报告

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A203 实验时间 :2016年 6月 21日 一、实验目的 1、 了解光端机的工作原理 2、 掌握数字光发送机的功率测量方法 3、 理解平均光功率的含义 二、实验原理 光端机的平均发送光功率是指在正常工作条件下光端机输出的平均光功率,即光源尾纤输出的平均光功率。平均发送光功率指标与实际的光纤线路有关,在长距离光纤数字通信系统中,要求有较大的平均发送功率;在短距离的光纤数字通信系统中,要求较小的平均发送光功率。设计人员应根据整个光纤通信系统的经济性、稳定性和可维护性全面考虑该指标,提出合适的数值要求,而不是越大越好。 平均发送光功率测试框图如图一所示。 图一 光发送端光功率测试框图

说明: 1)平均光功率与PCM信号的码型有关,NRZ码与50%占空比的RZ码相比,其平均光功率要大3dB。 2)光源的平均输出光功率与注入它的电流大小有关,测试应在正常工作的注入电流条件下进行。 实验平台中,可以选择系统自身产生的2M伪随机序列来测试平均光功率,系统中PN序列的长度只有24-1,即15位。 三、实验设备、仪器及材料 光功率计、HD-GX-Ⅲ型光纤通信实验箱、光纤跳线 四、实验步骤(按照实际操作过程) 1、用短接帽将跳线XP401的1、2两脚连接,这样选择传输的是系统内部产生的2M伪随机序列。如果将 2、3两脚连接,则传输的将是外部输入的2M数据。 2、选择光发模块甲。用短接帽将跳线XP500的1、2脚相连,开关KS501选择传输数字信号。 3、从发送模块甲的光源组件连接器S中取出保护塑料套,用光纤跳线分别插入发送端连接器S与光功率计的输入连接器插头,连接光发送端的光输出与光功率计。 4、测试系统建立后,给实验平台加电,按复位键后,从键盘输入PN,以控制系统产生2M信号。从光功率计上读出平均光功率值。 5、从键盘输入方波或CMI码,测试不同的数字信号驱动光源时,所产生的平均光功率。思考一下他们为什么有差别?

光纤通信实验报告

光纤通信实验报告 1245711201 陈海霞 实验一光通讯系统WDM系统设计 一、实验目的 1.了解数字光纤通信系统的结构 2.了解新技术在光纤通信中的应用 3.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 4. 利用Optisystem的优化功能仿真计算光纤通信系统的各项性能参数,并进行分析。 二、实验原理 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。 在WDM系统中的关键组件 (1)光发射机、接收机 信号在发射端经过光发射机进行A/D转换、编码并调制到特定的波长转换为光信号.完成信号的调制。在接收端接收到的光信号经接收机进行D/A转换、解码并转换电信号,完成解调过程。 (2)滤波器在WDM系统中进行信道选择,只让特定波长的光通过.并阻碍其它光波长通过。可调谐光滤波器能从众多的波长中选出某个波长让其通过。在WDM系统的光接收机中.为了选择所需的波长,一般都需依赖于其前端的可调谐滤渡器。要求其有较宽的谱宽以传输需要的全部信号谱成分,且带宽要窄以减小信道间隔。 (3)复用器/解复用器(MUX/DEMUX)将多个光波长信号耦合到一路信道中.或使混合的信号分离成单个波长供光接收机处理。一般,复用/解复用器都可以进行互易.其结构基本是相同的。实际上即是一种波长路由器.使某个波长从指定的输入端口l到一个指定的输出端口。 三、实验内容 (1)基本组成 八组外部调变激光、WDM Mux8X1(八对一的分波多任务器)、马赫轮德尔调变器,使用光谱分析仪和WDM analyzer分波多任务分析仪获取每个信道的信号频谱和总功率。

光纤通信实验报告

第五章 光纤色散对传输性能影响实验 实验二、色散补偿光纤对传输性能的影响 一、 实验目的 学习色散补偿的原理和方法。 二、 实验原理 对于简单的两段光纤的模型,在其组合色散排布下,传输方程解为: 22112221(,)(0,)exp ()22m i U L t U L L i t d ωωββωωπ∞ -∞??=+-?????式中,12m L L L =+是色散排布周期,2j β是长为j L 的光纤的群色度色散系数(j=1, 2)。由2β与D 的关系可得,色散补偿条件可以写为:11220D L D L += 若上式能够满足,则(,)(0,)m A L t A t =,即经过每一排布周期后,脉冲恢复到其初始宽度,尽管在每个周期内脉宽可能显著改变。 三、 实验配置图 四、 实验步骤 1.按照图搭建实验拓扑图。 2.设置第一段光纤(G.652光纤)“结构参数”,长度设置为80km ,参考点色散系数17ps/nm.km ;设置光线仿真参数,将“考虑色散”选框选中,不选“考虑非线性”和“四波混频”;

3.根据色散补偿的原理,设置第二段光纤(色散补偿光纤)参数,色散补偿需满足D1L1+D2L2=0,L2=80*17/100=13.6Km。在“结构参数”页中将参考点色散系数设置为-100 ps/nm.km,长度设置为13.6km,在“仿真参数”页中将考虑色散复选框选中,不考虑非线性和四波混频; 4.设置发射机参数,在“结构参数”页中将发射信道数为1,中心频率设置为193.1THz。在“仿真参数”页中,设置发射速率为10Gb/s,发射功率为5mW; 5.点击仿真按钮开始仿真,记录原始信号和补偿前后两个眼图分析仪结果。 五、仿真结果 眼图1: 眼图2: 眼图3:

光纤通信实验报告

光纤通信实验报告课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。

二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。 1、半导体光源的P-I特性 I(mA) LD半导体激光器P-I曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P-I 的线性关系。 P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th尽可能小,没有扭折点,P-I曲线的斜率适当的半导体激光器:I th小,对应P值就小,这样的激光器工作

电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。 P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P ) 的关系,即P-I 特性可以清楚地看出消光比的物理概念,如下图所示。 由图可知,当输入信号为“0”时,光源的输出光功率为P 00,它将由直流偏置电流I b 来确定。无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。所以从接收机角度考虑,希望消光比越小越好。但是,应该指出,当I b 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其它特性产生不良影响,因此,必须全面考虑I b 的影响,一般取I b = (0.7~0.9)I th (I th 为激光器的阈值电流)。在此范围内,能比较好地处理消光比与其它指标之间的矛盾。考虑各种因素的影响,一般要求发送机的消光比不超过-1dB 。在光源为LED 的条件下,一般不考虑消光比,因为它不加直流偏置电流 I b ,电信号直接加到LED 上,无输入信号时的输出功率为零。因此,只有以LD 作光源的 光发射机才要求测试消光比。 四、实验步骤 1、关闭系统电源,按如下说明进行连线: (1)用连接线将2号模块TH7(DoutD )连至25号光收发模块的TH2(数字输入),并把2号模块的拨码开关S4设置为“ON ”,使输入信号为全1电平。 (2)用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块 Δ P EXT PIN 消光比对灵敏度的影响

相关文档