文档库 最新最全的文档下载
当前位置:文档库 › 量子力学基本概念讨论_661207186

量子力学基本概念讨论_661207186

量子力学基本概念讨论_661207186
量子力学基本概念讨论_661207186

《近代物理新进展(第一讲)》(2011年春季学期)

量子力学基本概念讨论

考虑电子的双缝干涉实验。

实验过程和观察结果的动画演示(doubleslit_exp.wmv)。

一幅有趣的漫画。

BTW, New Yorker还发表过另一幅著名的漫画“On the internet, nobody knows you're a dog.”

讨论题:

1、为什么说在电子的双缝干涉实验中电子是自己和自己发生了干涉?

2、在电子的双缝干涉实验中,电子是怎样穿过狭缝的?(A )穿过了其中的某一条狭缝;(B )同时穿过了两条狭缝;(C )不知道是怎么穿过去的;(D )这个问题没意义。

3、下面是观察电子穿过了哪个狭缝的实验(which-way experiments )。

实验的结果如何?(A )仍然出现干涉条纹;(B )不再出现干涉条纹。由此你得到什么推论?

用电子的双缝干涉不难说明Feynman 的 path integral 的基本原理,即

1122.x s x s x s =+

4、考虑电子带有自旋。让自旋向上的电子射向双缝,并且在双缝处加一个磁场,使电子在穿过缝的时候自旋方向可能发生翻转,设自旋不翻转的几率振幅是a ,自旋翻转的几率振幅是b (假设都是实数)。问自旋向上和自旋向下的电子在观察屏上的几率分布各是什么?如果磁场只加在缝1处,所以当电子穿过缝1的时候自旋有可能翻转,其中不翻转的几率振幅是a ,翻转的几率振幅是b ,但穿过缝2的时候电子的自旋总不翻转。那么自旋向上和自旋向下的电子在观察屏上的几率分布又各是什么?(用12,P P 和12P 表出)

5、用单光子光源进行光的双缝干涉实验(光子一个一个地射向双缝),会看到什么现象?(A )和电子的双缝干涉现象类似;(B )不出现干涉条纹。由此你得到什么推论?

6、所以,对于微观粒子的“波粒二象性”(particle-wave duality )的涵义,下面的哪一种说法更合适一些?(A )既是波也是粒子;(B )既不是波也不是粒子;(C )在一些实验中表现为波,在另一些实验中表现为粒子;(D )有些特征像波,有些特征像粒子。

7、为什么必须假设波函数是复函数而不能限定它为实函数?(不要从波函数满足Schr?dinger 方程出发)

8、波函数的单值性是对谁的要求?(A )波函数本身就必须是单值的;(B )只要波函数的模平方是单值的就够了。

关于量子测量的讨论。

9、量子力学中的几率与经典几率(数学的概率论)在哪些地方相同,哪些地方不同?

10、“波函数的模平方代表粒子的坐标测量几率密度”是不是波函数的几率解释的全部内容?

(A )是全部;(B )不是全部。

11、众所周知,若电子的自旋向上(/2)z s =+=的态记为+,自旋向下(/2)z s =?=的态记为?,则电子自旋的一般状态为a b ψ=++?。问:测量在这个状态下电子的z s 的几率分布能够(或不能)得到关于a 和b 的什么信息?为了得到更多的信息,可以再测量什么量(几率分布)?我们最多能得到关于a 和b 的哪些信息?类似的分析用于波函数()x ψ的时候,结论是什么?

12、什么是量子测量中的波包坍缩(wave-packet collapse )?为什么说量子测量的过程会导致波包坍缩?

13、对于“量子测量意味着人对微观世界的主观介入”你有什么看法?

14、量子测量的过程能够用Schr?dinger方程描写吗?

15、什么是量子态不可克隆(no cloning)定理?

关于量子纠缠的讨论。

16、什么是量子纠缠(quantum entanglement)?

17、什么是薛定谔猫(Schr?dinger’s cat)?

18、EPR(Einstein-Podolsky-Rosen)佯谬的双光子版本如下。设自旋0

=的电子偶素(电子和正电子的束缚态)湮灭成两个光子,在质心系中观察,动量守恒要求两个光子的动量大小相等、方向相反,角动量守恒要求这两个光子要么都是右旋圆极化RHC,要么都是左旋圆极化LHC,因此它们处于纠缠态

.

ψ=

设想我们在Z

+轴方向上很远的地方测量光子1的圆偏振状态。一次测量的结果是无法预言的,可能测得RHC也可能测得LHC,统计地来说RHC和LHC各占一半。现在有另一位实验者在Z

?轴方向上很远的地方测量光子2的圆偏振状态,但稍晚于我们的测量,情况会如何?两个光子的圆偏振状态必定相同,否则就违反角动量守恒,所以,假如这边测量光子1得到RHC,我们就可以预言那边测量光子2也一定得到RHC,或者说,那边测得光子2是RHC的几率是100%,而不再是50%。

所以,在我们进行了测量以后,这个双光子系统的状态变成了纯的

12

R R,这就是测量导致的波包坍缩。但奇妙之处在于,我们是在这边完成对光子1测量的,并没有对光子2做任何事情,但是却使那边的光子2(根据这边对光子1的测量结果)进入了RHC状态,它是怎么“知道”自己应该进入这个状态的呢?

你怎么看这个问题?

19、什么是量子力学的非定域性(non-locality)?

20、什么是贝尔(Bell)不等式?对它的实验检验的结果如何?

21、什么是量子力学的隐参数(hidden variables)理论?隐参数理论是否得到了实验的支持?

22、量子状态是否包含信息?你认为可以如何度量这个信息?

23、Einstein说上帝不掷骰子(Gott würfelt nicht, God does not play dice)。物理学的根本规律有可能是几率性的吗?

24、你是否认为量子力学是包罗万象的理论(theory of everything)或者是最终的理论(the final theory)?

量子力学习题

量子力学复习题量子力学常用积分公式 (1) (2) (3) (4) (5) (6) (7 ) ( ) (8) (a<0) ( 正偶数) (9) =

( 正奇数) ( ) (10) ( ) (11)) ( ) (12) (13) (14) (15) (16) ( )

( ) 一、简答题 1. 束缚态、非束缚态及相应能级的特点。 2. 简并、简并度。 3. 用球坐标表示,粒子波函数表为 ,写出粒子在立体角 中被测到的几率。 4. 用球坐标表示,粒子波函数表为 ,写出粒子在球壳 中被测到的几率。 5. 一粒子的波函数为 ,写出粒子位于 间的几率。 6. 写出一维谐振子的归一化波函数和能级表达式。 7. 写出三维无限深势阱 中粒子的能级和波函数。 8. 一质量为 的粒子在一维无限深方势阱 中运动,写出其状态波函数和能级表达式。 9. 何谓几率流密度?写出几率流密度

的表达式。 10. 写出在 表象中的泡利矩阵。 11. 电子自旋假设的两个要点。 12. 的共同本征函数是什么?相应的本征值又分别是什么? 13. 写出电子自旋 的二本征态和本征值。 14. 给出如下对易关系: 15. 、 分别为电子的自旋和轨道角动量, 为电子的总角动量。证明: ,[ ]=0,其中 。 16. 完全描述电子运动的旋量波函数为 , 准确叙述 及 分别表示什么样的物理意义。 17. 二电子体系中,总自旋 ,写出(

)的归一化本征态(即自旋单态与三重态)。 18. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应? 19. 给出一维谐振子升、降算符 的对易关系式;粒子数算符 与 的关系;哈密顿量 用 或 表示的式子; (亦即 )的归一化本征态。 20. 二粒子体系,仅限于角动量涉及的自由度,有哪两种表象?它们的力学量完全集分别是什么?两种表象中各力学量共同的本征态及对应的本征值又是什么? 21. 使用定态微扰论时,对哈密顿量 有什么样的要求? 22. 写出非简并态微扰论的波函数(一级近似)和能量(二级近似)计算公式。 23. 量子力学中,体系的任意态 可用一组力学量完全集的共同本征态 展开: , 写出展开式系数 的表达式。 24. 一维运动中,哈密顿量

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

量子力学论文

量子力学论文 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

量子理论及技术的发展 【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。 【关键词】量子力学激光半导体扫描隧道显微镜量子信息 回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。 一、从“光量子假说”到激光技术 1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到 论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验 偏离较大。1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。从1913年玻尔提出半 经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。最终,美国休斯研究所的梅曼于1960年成功制造并运转了第一台激光器——红宝石脉冲激光器,同年12月贾万研制出第一台气体激光器——氦氖激光器。 这两种激光器的相继问世引起了全世界科技界研究激光的热潮,各种激光器陆续出现。其中有可获得大功率脉冲的钕激光器,连续输出大功率的二氧化碳激光器,可在室温下工作的小型半导体激光器,从化学反应获得能量的化学激光器,光谱线很宽的可以连续改变激光输出波长的染料激光器。后来,还出现了自由电子激光器、准分子激光器、离子激光器等等。激光的波长范围已扩展到从红外到紫外以至x射线的所有波段,激光的应用更涉及到从日常生活到高新科技各个领域.如工业上的激光切割、焊接、打孔、表面改性、测距、大气污染分析;生物上的激光育种、水产养殖、品种改良、生命活细胞的全息照相;医疗上的激光外科手术、诊断;军事上的激光制导炸弹、强激光武器;此外,激光还应用于通信、光盘、分离同位素、激光核聚变等许多方面。 激光技术是以量子理论为主的现代物理学和现代技术相结合孕育出来的一门科学技术,它的发展历史不仅充分显示出物理科学理论对技术发明的预见性,而且它本身又作为现代科学技术家族中的一个优等生,大大促进和推动着现代物理学和现代科学技术的发展。 二、从“费米统计”到半导体技术 继黑体辐射和光电效应之后,固体比热的研究是量子论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学发展史

鬼话连篇:荒诞量子力学 原创2017-01-15小学僧老和山下的小学僧 先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:如果你第 一次学量子力学认为自己懂了,那说明你还没懂。” 为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从认识论'说起吧!中学僧请跳过,直接看后半篇。 人类为了生存,一直试图认识和解释这个世界。最早的认识论”充满了想象,后来逐渐演化成了宗教”,比如上帝创造了万物。过了一阵子,有些人发现这种认识论"不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考世界的本源是什么”、东西为什么往下掉”,如此云云。早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了哲学” 大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。 很长一段时间,大家就是这么靠拍脑袋研究世界。拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是伽利略”。伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是科学”的雏形,所以伽利略很伟大,属于一流伟大”这个范畴。 是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的无知”不是无知。 打个补丁,本文说的科学”是单纯的一门学科,而不是形容词。啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在科学' 就是真理”的代名词,很多地方可以把科学”和合理”两个词互换。你的做法很科学”,你的做法很合理”,这两句话有区别吗?再看英文版:你的做法很Scienee :这可就是语病了。本文说的科学”就是“Scienee, 是—门学科,而不是理:。

量子力学的基本概念

一、量子力学及其意义和作用 量子力学:是研究微观粒子运动、变化基本规律的科学。 由于宏观物质全部是由微观物质组成的,宏观世界全部建立在微观世界之上,量子力学便无处不在、普遍适用。“整个世界是量子力学的!” 物理学四大力学(理论力学、热力学与统计物理、电动力学、量子力学)之一。 自从量子理论诞生以来(1900年12月14日),它的发展和应用一直广泛深刻地影响、促进和触发人类物质文明的大飞跃。例如,可以把所有学科名称前面冠以“量子”————quantum二字,就会发现:已经形成或将要形成一门新的理论、新的学科。 光学—量子光学化学—量子化学 电子学—量子电子学生物学—量子生物学 电动力学—量子电动力学宇宙学—量子宇宙学 统计力学—量子统计力学网络—量子网络 经典场论—量子场论信息论—量子信息论 计算机—量子计算机 就连投机家所罗斯的基金会也时髦的冠以“量子”二字:“量子基金会”一百年(1901—2002)来总共颁发Nobel Prize 96 次(其中1916,1931,1934,1940,1941,1942共6年未颁奖)单就物理奖而言:直接由量子理论得奖或与量子理论密切相关而得奖的次数有57 次(直接由量子理论得奖25次 量子力学自20世纪20年代创立以来,直到现在,已逐步成为核物理、粒子物理、凝聚态物理、超流和超导物理、半导体物理、激光物理等众多物理分支学科的共同理论基础。自20世纪80年代以来,量子力学又有很大发展:量子信息科学(量子计算、量子通信)目前,它正在向材料科学、化学、生物学、信息科学、计算机科学大规模渗透。不久的将来它将会成为整个近代科学共同的理论基础。国家中长期科学技术发展规划:量子调控计划二、历史的回顾 19世纪末,一些物理学家认为:辉煌的物理学大厦已经建成! Kelvin勋爵:物理学的天空上漂浮着两朵乌云: 麦克尔逊—莫雷实验相对论 黑体辐射的“紫外灾难”量子力学 经典物理、近代物理 相对论:平地起高楼,伟大的头脑 量子力学:一点一滴的积累,Plank, Einstein, Bohr, Heisenberg, Born, Pauli, de Broglie, Schrodinger, Dirac 领袖:Niels Bohr, 哥本哈根学派

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

附录A:量子力学中常用的数学工具

附录A :量子力学中常用的数学工具 1. 常用数学符号 1.1 克雷内克符号 克雷内克(Kronecker )符号i j δ在物理中有广泛应用,其定义为 1,0,i j i j i j δ=?=? ≠? (A1-1) 可以用来简洁地表示基矢量或本征函数之间的正交归一性关系 *i j i j dx ψψδ=? (A1-2) 1.2 列维·西维塔符号 列维·西维塔(Levi-Civita )符号i j k ε又称为三阶反对称张量,其定义为 1,123,231,312 1,132,213,3210,i j k i jk i jk ε+=?? =-=??? 其它 (A1-3) 可以用来简洁地表示矢量积的分量关系 ,,,(), k i j k i j i j k i j k i j i j k A B A B A B C A B C εε?=??=∑∑v v v v v (A1-4) 1.3. 微分算符 在坐标表象下,动量对应梯度算符,梯度算符在直角坐标和球坐标中的表示形式为 11 sin x y z r e e e e e e x y z r r r θ?θθ? ???????=++=++??????v v v v v v (A1-5) 利用球坐标表达式r r re =v v ,得到 1sin r e e ?θθθ? ????=-??v v v (A1-6) 上式决定了角动量在球坐标中的表示形式。 (A1-6)式的平方为球面拉普拉斯算符 2 22 11sin sin sin θθθθθ?Ω????=+ ??? (A1-7) 与角动量平方相对应。拉普拉斯算符在直角坐标和球坐标中的表示形式为 22222 22222 11 r x y z r r r Ω?????=?=++=+????? (A1-8) 与动能相对应。

量子力学的发展综述

量子力学的发展综述 量子力学是对经典物理学在微观领域内的一次革命,是现代物理学的基础,它从根本上否定了牛顿物理学。本文带大家再次回到那个伟大的年代,再次简要回顾下那场史诗般壮丽的革命。 标签:量子力学发展量子多世界解释 量子理论的中心思想是一切东西都是由不可预言的量子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。简简单单的一句话,深入研究起来确实那样令人困惑,整个20世纪的物理学家们就是在不断的量子的迷雾中摸索着。现在我们也要沿着他们的航线领略一下量子理论奇。 一、量子的创生 19世纪末,物理学界取得了一系列举世瞩目的成就,当人们为所谓的物理学大厦已经根深蒂而感到皆大欢喜时,几个悬而未决的谜题却一直困扰着高瞻远虑的物理学家们[1]。“在物理学阳光灿烂的天空中飘浮着两朵小乌云”这句话在几乎每一本关于物理学史的书籍中被反复提到,具体一些的话,指的是人们在迈克尔—莫雷实验和黑体辐射研究中的困境。这两朵乌云带来的狂风暴雨,远远超出了人们的想象:第一朵乌云,最终导致了相对论革命的爆发;第二朵乌云,最终导致了量子论革命的爆发。1900年,普朗克在解决黑体辐射问题时,做了一个假定,“必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。”普通的一个假设,却推翻自牛顿以来200多年,曾被认为坚固不可摧毁的物理世界。这与有史以来的一切物理学家的观念截然相反,自牛顿和伽利略以来,一切自然的过程都被当成是连续不间断的,是微积分的根本基础,牛顿、麦克斯韦那庞大的体系,都是建立在这个基础之上,从没有人怀疑过这个物理学的根基。1900年12月14日,量子的诞辰,这一天,量子这个幽灵从普朗克的方程中脱胎而出。这个幽灵拥有彻底的革命性和无边的破坏力,物理学构成的精密体系被摧毁成断壁残垣,甚至推动量子论的某些科学家最终也站到了它的对立面。量子论这场前所未有的革命,从这个叫马克思·普朗克的男人这里开始了。 二、量子力学的建立和论战 量子这个概念已经诞生了,然而他的创造者普朗克却抛弃了它,不断地告诫人们,不到万不得已不要使用,不要胡思乱想。不怪普朗克本人畏首畏尾,实在是量子这个概念太过惊世骇俗,但是接下来一系列的成就证明了它的价值:1.为了解释光电效应,1905年爱因斯坦提出光量子论,揭示了光的波粒二象性;2.玻尔结合原子的核式结构模型和量子论,1913年提出了氢原子理论;3.德布罗意从光量子理论得到启发,于1923年提出物质波假说;4.海森堡抛弃了玻尔的轨道概念,建立了矩阵力学(1925年)[2]。海森堡建立矩阵力学标志着量子力学的建立,但是刚诞生的矩阵力学立刻受到了挑战:薛定谔于1926年把物质波的思想加以发展,建立了波动力学。矩阵力学?波动力学?全新的量子论建立不到一

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 — 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

量子力学基础概念题库

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将 ψ(,)?r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0, 其中(1)∧ ) (H 0的本征值) (n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很小,称 为加在∧ ) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4η。 一、概念题:(共20分,每小题4分) 1、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

量子力学基本原理

量子力学基本原理 量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。 状态函数 物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。(一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。 根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。 状态函数可以表示为展开在正交空间集里的态矢比如 ,其中|i>为彼此正交的空间基矢, 为狄拉克函数,满足正交归一性质。态函数满足薛定谔波动方程, ,分离变数后就能得到不显含时状态下的演化方程 ,En是能量本征值,H是哈密顿算子。 于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

量子力学主要知识点复习资料全

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(22=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其 中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z ) 2 (,,)x y z ψ(,,) c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

相关文档