文档库 最新最全的文档下载
当前位置:文档库 › 空气声隔声测量资料

空气声隔声测量资料

空气声隔声测量资料
空气声隔声测量资料

空气声隔声测量

一、实验目的和要求

了解如何减少外界的声音传入室内,或者室内的噪声传入邻室形成干扰。通过实验加强对墙体、楼板、和门窗等构件的隔声性能的认识,有利于合理的进行隔声设计和施工。

二、实验内容

测试办公室隔墙的空气声隔声性能。

三、测试原理

根据建筑声学原理,判断隔墙降低房间噪声实际效果的最终指标是:隔墙一边的噪声发声室的声压级与另一边受声室的声压级差D (21p p L L D -=)。因此,对隔墙空气声隔绝量的测试就归结为测量隔墙一边的噪声发声室与另一边的受声室的声压级差。再根据空气声隔声量 R :

A S D A S L L R p p lg 10lg 1021+=+-= 计算出各频率的隔声量。

最后绘出隔墙的空气声隔声量的频率特性曲线,并按国家标准《建筑隔声评价标准》GB/T50121-2005求得计权隔声R w 。 A :受声室吸声量 60

161.0T V

A =

(T 60 :混响时间,实验(6) 室内混响时间测定中测得) 1P L :声源室的平均声压级

2P L :受声室的平均声压级

D :声源室与受声室平均声压级差

四、测试设备

实验室(声源室、受声室)、噪声信号源、滤波器、GZ021-A 功率放大器、全指向声源、 JT121声学分析仪、HS5671A 型噪声频谱分析仪、卷尺

五、实验步骤

1、测试对象:由于测试环境限制,因此选择墙体两侧的房间,一为声源室,另一为受声室,两 房间中间隔墙为测试试件。

2、按要求布置好声源和测点位置,关闭好门窗,接好仪器设备。仪器应事先做好核对工作,并 作必要的预热。

3、将传声器放在规定的测点处,声源室和受声室的测点数都不少于3个。

4、调整信号源,发出100—3150HZ中心频率的1/3倍频程的白噪声。

5、测量并计算平均声压级L p1和L p2,每一个测点的每一频率直接读取其声压级平均值或读取几个值后再求其平均值。最后再求每一频率几个测点的平均声压级值,则为该频率的声压级。

6、受声室吸声量的测量,该数据已由“实验(6) 室内混响时间测定”中测得其混响时间而算出了。

六、注意事项

1、声源系统应稳定,在测量的频率范围内具有连续的频率。

2、声源应具有足够的声功率,保证受声室内任何一频带的声压级比环境噪声声压级至少高10dB。

3、受声室的混响时间不能太长,最好不大于2s。

4、传声器放置高度应距地面1.5m以上,各测点之间距离不小于1.5m。

5、HS5671A型噪声频谱分析仪在测量之前应进行校准。

6、测量时房间的门窗必须关闭,防止外界的噪音干扰。

七、实验数据及处理

接收室:容积V:4.1×5.5×6.9=155.595m2 试件面积S:(2+1.5)×5.5=19.25m2

八、实验结果分析

结果显示:空气声计权隔声R w =46dB 比实际的隔声量偏低(隔墙为24砖墙,隔声量为54dB ) 分析原因:

1、吸声量A 的数据采用的是“实验(6) 室内混响时间测定”中测得其混响时间而得出的数据,因实验(6)所得的各频率混响时间存在误差而导致所算出的相应的隔声量也存在着误差,导致结

果存在一定的误差。

2、受声室与声源室未互相脱开,存在刚性连接,存在侧向传声的影响。同时也存在基础和地基连接的传声,外部走廊人员活动的震动与噪声等的影响,使得受声室的声压级相对实际偏高,导致最终测得的隔墙的隔声量偏低。简言之,受声室除被测试件外其它部分未做隔声处理,使得外部的噪声通过除被测试件外的其它部分绕射进入受声室内,使得受声室声压级偏高。

空气声隔声计算书

北京XX中心 维护结构空气声隔声量 设计计算书 沈阳YY幕墙装饰工程有限公司二〇〇九年五月十二日

目录 1 计算引用的规范、标准及资料 (1) 2 建筑围护结构的隔声概述 (1) 3 隔声计算基本定律 (1) 4 隔声量计算方法、公式的选择 (1) 5 本项目实际计算参数 (2) 6 玻璃构件隔声量计算 (2) 7 组合墙板的隔声计算 (3) 7.1 隔声量计算公式: (3) 7.2 隔声量实际计算: (3) 7.3 隔声性能总结说明: (4)

维护结构空气声隔声量计算书 1 计算引用的规范、标准及资料 《建筑外窗空气声隔声性能分级及其检测方法》 GB8485-2008 《建筑隔声评价标准》 GB/T50121-2005 《铝合金结构设计规范》 GB50429-2007 《玻璃幕墙工程技术规范》 JGJ102-2003 《民用建筑隔声设计规范》 GBJ118-88 《建筑幕墙》 GBT21086-2007 2 建筑围护结构的隔声概述 建筑围护结构构件的隔声,单指质量定律下空气声的隔绝。声音通过围护结构的传播,按传播规律有两种途径,一种是振动直接撞击围护结构,并使其成为声源,通过维护结构的构件作为媒介介质使振动沿固体构件传播,称为固体传声、撞击声或结构声;另一种是空气中的声源发声以后激发周围的空气振动,以空气为媒质,形成声波,传播至构件并激发构件振动,使小部分声音等透射传播到另一个空间,此种传播方式也叫空气传声或空气声。而无论是固体传声还是空气传声,最后都通过空气这一媒质,传声入耳。门窗、幕墙等结构工程,需要计算的是空气声隔声,撞击声隔声是建筑结构楼板等构件产生的,因此,本计算书中计算的是前者。 3 隔声计算基本定律 声的源头是振动,20Hz的声音对人耳的感觉叫“听阈”,20Hz以下振动频率的声音叫“次声”,20000Hz的声音对人耳的感觉叫“痛阈”,20000Hz以上振动频率的声音叫“超声”,次声及超声人耳都感觉不到!在实际隔声研究中最常用的是六个倍频程,中心频率是125Hz、250Hz、500Hz、1000Hz、2000Hz、4000Hz,基本上代表了常用的声频范围! 维护结构构件的面密度越大,声频越高,构件的隔声量就越大,理论证实面密度增加一倍或噪声频率增加一倍,即提高一个频程,隔声量都会相应的增加6dB,这就是质量定律。 入射于构件的声频是客观的,欲被隔离的噪声,其频率的组成、各声频的声压级的大小,建筑师是无法变更的。所以实际计算主要是考虑面密度m,亦即:质量是决定构件隔声效果的主要因素。 4 隔声量计算方法、公式的选择 隔声量的计算有多种方法,其中有:1.公式计算法;2.图线判断法;3.平台

噪声测量仪器的选用

噪声测量仪器的选用 一、前言 声级计,又叫噪声计,是一种用于测量声音的声压级或声级的仪器,是声学测量中最基本而又最常用的仪器,随着国民经济的发展和人们物质文化生活水平的提高,噪声普查和环境保护工作全面开展,机器制造行业已把噪声作为产品的重要质量指标之一,礼堂和体育馆等建筑物不仅仅要求造型美观,也追求音响效果,这些都使得声级计的应用越来越广泛。现在它不仅应用于声学和电声学测量,而且已经广泛应用于机器制造、建筑设计、交通运输、环境保护、医疗卫生以及国防工程等各个领域,成为几乎所有部门都必须具备的声学测量仪器。二、声级计的类型 声级计是一种按照一定的频率计权和时间计权测量声音的声压级和声级的仪器,它是声学测量中最常用的基本仪器。声级计可用于环境噪声、机器噪声、车辆噪声以及其它各种噪声的测量,也可用于电声学、建筑声学等测量.为了使世界各国生的声级计的测量结果互相可以比较,国际电工委员会(IEC)制定了声级计的有关标准,并推荐各国采用,1979年5月在斯德哥尔摩通过了IEC651《声级计》标准,我国有关声级计的国家标准是GB3785一83《声级计电、声性能及测试方法》。1984年IEC又通过了IEC804《积分平均声级计》国际标准,我国与1997年颁布了GB/T17181-1997《积分平均声级计》。它们与IEC标准的主要要求是一致的。

2002年国际电工委员会(IEC)发布了IEC61672-2002《声级计》新的国际标准。该标准代替原IEC651-1979《声级计》和IEC804-1983《积分平均声级计》。我国根据该标准制定了JJG188-2002《声级计》检定规程。新的声级计国际标准和国家检定规程与老标准比较作了较大的修改。按新标准将声级计分为:测量指数时间计权的通用声级计,测量时间平均声级的积分平均声级计,测量声暴露的积分声级计。该准按其精度将声级计分为1级和2级。两种级别的声级计的各种性能指标具有同样的中心值,仅仅是容许误差不同,而且随着级别数字的增大,容许误差放宽。按体积大小可分为台式声级计、便携式声级计和袖珍式声级计.按其指示方式可分为模拟指示(电表、声级灯)和数字指示声级计。 根据IEC651标准和国家标准,二种声级计在参考频率、参考人射方向、参考声压级和基准温湿等条件下,测量的准确度(不考虑测量不确定度)如下表所示: 声级计级别12准确度±0.7dB±1.0dB 三、声级计的选用 标准号及名称 测量内容 对仪器的要求 GB/T14623-93 城市区域环境噪声测量方法

建筑隔声量计算

建筑隔声计算 声音传播的两种途径:一种是振动直接撞击围护结构,并使其成为声源,通过维护结构的构件作为媒介介质使振动沿固体构件传播,称为固体传声、撞击声或结构声;另一种是空气中的声源发声以后激发周围的空气振动,以空气为媒质,形成声波,传播至构件并激发构件振动,使小部分声音等透射传播到另一个空间,此种传播方式也叫空气传声或空气声。 根据《民用建筑隔声设计规范》GBJ118-88,建筑隔声划分为四个等级(适用于住宅类建筑):

根据《绿色建筑评价标准》GB/T50378-2006第4.5.3条: 墙体、门窗只需要计算空气声的隔声量即可,楼板则需同时分别计算空气声及撞击声的隔声量。 所有的理论计算公式由于都是在许多不同假设条件下推导出来的,所以计算值偏差普遍偏大,并不符合实际工程情况,无法直接应用在工程实际中,《建筑隔声设计——空气声隔声技术》一书中,推荐我们在工程中一般采用如下经验公式: R=23Logm-9 (适用于m≥200kg/m2,m为构件的综合面密度)R=13.5Logm+13 (适用于m≤200kg/m2,m为构件的综合面密度)面密度:指固定厚度的情况下,单位面积的重量,单位:kg/m2。 综合面密度:指单位面积内,构件各构造材料的重量之和。 例,某建筑外墙的构造为:水泥砂浆(20mm)+轻质保温砂浆(30mm)+砂加气制品(200mm)+石灰水泥砂浆(20mm),各构造层对应密度分别为1800kg/m3、350kg/m3、760kg/m3、1700kg/m3。 则外墙的综合面密度为m=20*1.8+30*0.35+200*0.76+20*1.7 =232.5kg/m2>200kg/m2 该外墙的综合面密度大于200kg/m2,则采用以下公司计算: R=23Logm-9=23Log(232.5)-9=45.43dB 玻璃窗及幕墙的隔声量计算 (1):计算单层构件时采用: R=13.5 Log m+13 (公式一) 上面公式中: R:单层玻璃的隔声量; m:构件的面密度; (2):计算中空或夹层构件时采用: R=13.5 Log (m1+m2)+13+ΔR1 (公式二) 上面公式中:

噪声测量的有关概念术语的定义

噪声测量的有关概念术语的定义 一声音与噪声 声音的本质是波动。受作用得空气发生振动,当震动频率在20-20000Hz时,作用于人的耳鼓膜而产生的感觉称为声音。声源可以是固体、也可以是流体(液体和气体)的振动。声音的传媒介质有空气。水和固体,它们分别称为空气声、水声和固体声等。噪声监测主要讨论空气声。 人类是生活在一个声音的环境中,通过声音进行交谈、表达思想感情以及开展各种活动。但有些声音也会给人类带来危害。例如,震耳欲聋的机器声,呼啸而过的飞机声等。这些为人们生活和工作所不需要的声音叫噪声,从物理现象判断,一切无规律的或随机的声信号叫噪声;噪声的判断还与人们的主观感觉和心理因素有关,即一切不希望存在的干扰声都叫噪声,例如,在某些时候,某些情绪条件下音乐也可能是噪声。 环境噪声的来源有四种:一是交通噪声,包括汽车、火车和飞机等所产生的噪声;二是工厂噪声,如鼓风机、汽轮机,织布机和冲床等所产生的噪声;三是建筑施工噪声,像打桩机、挖土机和混凝土搅拌机等发出的声音;四是社会生活噪声,例如,高音喇叭,收录机等发出的过强声音。 二、声音的发生、频率、波长和声速 频率:声源在一秒中内振动的次数,记作f。单位为Hz。 周期:声源振动一次所经历的时间,记作T,单位为s。T=1/f。 波长:沿声波传播方向,振动一个周期所传播的距离,或在波形上相位相同的相邻两点间距离,记为λ,单位为m。 声速:声波每秒在介质中传播的距离,记作c,单位为m/s。声速与传播声音的介质和温度有关。在空气中,声速(c)和温度(t)的关系可简写为:c = 331.4+0.607t常温下,声速约为345m/s。 频率f、波长λ和声速c三者之间的关系是: c = λf当物体在空气中振动,使周围空气发生疏、密交替变化并向外传递,且这种振动频率在20-20000Hz之间,人耳可以感觉,称为可听声,简称声音,噪声监测的就是这个范围内的声波。频率低于20Hz的叫次声,高于20000Hz的叫超声,它们作用到人的听觉器官时不引起声音的感觉,所以不能听到。 三、声功率、声强和声压 (一)声功率(W) 声功率是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。在噪声监测中,声功率是指声源总声功率。单位为W。 (二)声强(I) 声强是指单位时间内,声波通过垂直于传播方向单位面积的声能量。单位为W / s2。 (三)声压(P) 声压是由于声波的存在而引起的压力增值。单位为Pa。声波在空气中传播时形成压缩和稀疏交替变化,所以压力增值是正负交替的。但通常讲的声压是取均方根值,叫有效声压,故实际上总是正值,对于球面波和平面波,声压与声强的关系是: I= P2 / ρc式中:ρ-空气密度,如以标准大气压与20℃的空气密度和声速代入,得到ρ·c =408 国际单位值,也叫瑞利。称为空气对声波的特性阻抗. 四、分贝、声功率级、声强级和声压 (一)分贝 人们日常生活中遇到的声音,若以声压值表示,由于变化范围非常大,可以达六个数量级以上,同时由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。N = 10lg(A1/A0) 分贝符号为"dB",它是无量纲的。式中A0是基准量(或参考量),A是被量度量。被量度量和基准量之比取对数,这对数值称为被量度量的"级"。亦即用对数标度时,所得到的是比值,它代表被量度量比基准量高出多少"级"。

隔声测试报告

隔墙隔声测试报告 TJ-RE-DB-1187 检测单位: 上海东园建筑装饰工程有限公司第三分公司 检测项目: 隔墙隔声测试 检测类别: 一般检测 上海东园建筑装饰工程有限公司第三分公司

检试结果 共1页第1页 测试地址:天津市和平区南京路219号天津中心8层 产品名称: 隔墙隔声测试 检测内容: 空气声现场隔声量测试 检测仪器:丹麦B&K公司 4418建筑声学分析仪 检测依据规范:《建筑隔声测量规范》GBJ75-84;《建筑隔声评价标准》GB/T50121-2005; 《建筑外窗空气声隔声性能分级及检测方法》GB/T 8485-2002 检测隔声量及隔声性能分级: 检测条件 ㈠实验室条件:①发声室内体积: 6200mm*3974mm*2400mm 受声室内体积: 4663mm*4260mm*2400mm ②发声室内体积:3570mm*2770mm*2400mm 受声室内体积: 3370mm*2479mm*2400mm ③发声室内体积:3700mm*2330mm*2400mm 受声室内体积: 3700mm*1930mm*2400mm ④发声室内体积:3570mm*2770mm*2400mm 受声室内体积: 3370mm*2450mm*2400mm ㈡环境: 受声室内空气温度:21℃;受声室内空气相对湿度:80%. ㈢试件:检测固定隔墙尺寸:6200mm*3974mm*100mm;3570mm*2770mm*100mm 3700mm*2330mm*100mm; 3570mm*2770mm*100mm 检测人员: 检测日期:2012年4月22日 审核人: 报告签发: 报告签发日期: 2012年4月24日 上海东园建筑装饰工程有限公司第三分公司

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

噪声测量实验

实验1 噪声测量实验 目 的 1.掌握声压级的测量方法。 2.掌握噪声的测量方法。 原 理 声音是大气压上的压强波动,这个压强波动的大小简称为声压,以p 表示,其单位是Pa (帕)。从刚刚可以听到的声音到人们不堪忍受的声音,声压相差数百万倍。显然用声压表达各种不同大小的声音实属不太方便,同时考虑了人耳对声音强弱反应的对数特性,用对数方法将声压分为百十个等级,称为声压级。 声压级的定义是:声压与参考声压之比的常用对数乘以20,单位是dB (分贝)。其表达式为: L p =20lg 0 p p 式中,p 为声压,p 0是参考声压,它是人耳刚刚可以听到的声音。值得注意的是两个声压级或多个声压级相加不是dB 的简单算术相加,是按照对数的运算规律相加。 声压级只反映声音的强度对人耳的响度感觉的影响,而不能反映声音频率对响度感觉的影响。利用具有一个频率计权网络的声学测量仪器,对声音进行声压级测量,所得到的读数称为计权声压级,简称声级,单位为dB 。声学测量仪器中,模拟人耳的响度感觉特性,一般设置A 、B 和C 三种计权网络。声压级经A 计权网络后就得到A 声级,用L A 表示,其单位计作dB(A)。经大量实验证明,用A 声级来评价噪声对语言的干扰,对人们的吵闹程度以及听力损伤等方面都有很好的相关性。另外,A 声级测量简单、快速,还可以与其它评价方法进行换算,所以是使用最广泛的评价尺度之一。如金属切削机床通用技术条件规定:高精度机床噪声容许小于75dB(A);精密机床和普通机床噪声容许小于85dB(A)。 实际测量中,除了被测声源产生噪声外,还有其它噪声存在,这种噪声叫做背景噪声。背景噪声会影响到测量的准确性,需要对结果进行修正。初略的修正方法是:先不开启被测声源测量背景噪声,然后再开启声源测量,若两者之差为3dB ,应在测量值中减去3dB ,才是被测声源的声压级;若两者之差为4~5dB ,减去数应为2dB ;若两者之差为6~9dB ,减去数应为1dB ;当两者之差大于10dB 时,背景噪声可以忽略。但如果两者之差小于3dB ,那么最好是采取措施降低背景噪声后再测量,否则测量结果无效。 测量环境中风、气流、磁场、振动、温度、湿度等因素都会给测量结果带来影响。特别是风和气流的影响。当存在这些影响时,应使用防风罩或鼻锥等测量附件来减少影响。 声级计一般都是由传声器单元、放大分析单元、显示仪表单元三大部分组成。其工作原理方框图见图00-1。 图1-1 声级计原理方框图 1.传声器单元。传声器单元由传声器和前置放大器组成。传声器是将声信号转换成电信号的换能器,要求频率范围宽、频率响应平直、失真小、动态范围大、尤其是稳定性要好。前置放大器起阻抗变换作用,要求具有输入阻抗高,输出阻抗低,以便与长延伸电缆连接。

建筑幕墙空气声隔声性能分级及检测方法(标准状态:即将实施)

I C S91.060.10 P32 中华人民共和国国家标准 G B/T39526 2020 建筑幕墙空气声隔声性能分级及 检测方法 C l a s s i f i c a t i o na n d t e s tm e t h o d f o r a i r b o r n e s o u n d i n s u l a t i o n p e r f o r m a n c e o f c u r t a i nw a l l 2020-12-14发布2021-11-01实施 国家市场监督管理总局

目 次 前言Ⅰ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 分级3 5 检测方法4 6 检测报告11 附录A (规范性附录) 直接传声隔声性能检测实验室的填隙墙间接传声对隔声量检测影响的 检验与修正13 附录B (规范性附录) 侧向传声隔声性能检测实验室最大规范化侧向声压级差D 'n ,f , m a x 的验证与检测结果修正14 附录C (资料性附录) 检测结果的表述格式16 参考文献19 G B /T 39526 2020

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由中华人民共和国住房和城乡建设部提出三 本标准由全国建筑幕墙门窗标准化技术委员会(S A C/T C448)归口三 本标准起草单位:中国建筑科学研究院有限公司二广东省建筑科学研究院集团股份有限公司二江苏省建筑工程质量检测中心有限公司二上海建科检验有限公司二江苏省建筑科学研究院有限公司二嘉特纳幕墙(上海)有限公司二南京工大建设工程技术有限公司二北京嘉寓门窗幕墙股份有限公司二广东坚朗五金制品股份有限公司二北京市建设工程质量第一检测所有限责任公司二广州建设工程质量安全检测中心有限公司二广东稳固检测鉴定有限公司二广东世纪达建设集团有限公司二珠海兴业绿色建筑科技有限公司二王力安防科技股份有限公司二昆山市建设工程质量检测中心二安徽众锐质量检测有限公司二合肥元正质量技术服务有限公司二北京万达文旅规划设计院有限公司二沈阳紫微机电设备有限公司二河南龙旺钢化真空玻璃有限公司三 本标准主要起草人:闫国军二王洪涛二刘会涛二周荃二许国东二谢晓东二钱嘉伟二陆震宇二林杰二吴伟斌二赵启元二郝志华二张昌佳二廖志红二赵斌二任杰二韩坤二刘凯二吴永昌二刘立创二蔡卫勇二罗多二徐建阳二崔咏军二汝辉二郑爱芬二石红蓉二陈显华二李宏彦二赵如一三

维护结构空气声隔声量计算书

维护结构空气声隔声量计算书 1 计算引用的规范、标准及资料 《建筑外窗空气声隔声性能分级及其检测方法》 GB8485-2008 《建筑隔声评价标准》 GB/T50121-2005 《铝合金结构设计规范》 GB50429-2007 《玻璃幕墙工程技术规范》 JGJ102-2003 《民用建筑隔声设计规范》 GBJ118-88 《建筑幕墙》 GBT21086-2007 2 建筑围护结构的隔声概述 建筑围护结构构件的隔声,单指质量定律下空气声的隔绝。声音通过围护结构的传播,按传播规律有两种途径,一种是振动直接撞击围护结构,并使其成为声源,通过维护结构的构件作为媒介介质使振动沿固体构件传播,称为固体传声、撞击声或结构声;另一种是空气中的声源发声以后激发周围的空气振动,以空气为媒质,形成声波,传播至构件并激发构件振动,使小部分声音等透射传播到另一个空间,此种传播方式也叫空气传声或空气声。而无论是固体传声还是空气传声,最后都通过空气这一媒质,传声入耳。门窗、幕墙等结构工程,需要计算的是空气声隔声,撞击声隔声是建筑结构楼板等构件产生的,因此,本计算书中计算的是前者。 3 隔声计算基本定律 声的源头是振动,20Hz的声音对人耳的感觉叫“听阈”,20Hz以下振动频率的声音叫“次声”,20000Hz的声音对人耳的感觉叫“痛阈”,20000Hz以上振动频率的声音叫“超声”,次声及超声人耳都感觉不到!在实际隔声研究中最常用的是六个倍频程,中心频率是125Hz、250Hz、500Hz、1000Hz、2000Hz、4000Hz,基本上代表了常用的声频范围! 维护结构构件的面密度越大,声频越高,构件的隔声量就越大,理论证实面密度增加一倍或噪声频率增加一倍,即提高一个频程,隔声量都会相应的增加6dB,这就是质量定律。 入射于构件的声频是客观的,欲被隔离的噪声,其频率的组成、各声频的声压级的大小,建筑师是无法变更的。所以实际计算主要是考虑面密度m,亦即:质量是决定构件隔声效果的主要因素。 4 隔声量计算方法、公式的选择 隔声量的计算有多种方法,其中有:1.公式计算法;2.图线判断法;3.平台

维护结构空气声隔声量计算书

维护结构空气声隔声量计算书 1 计算引用的规范、标准及资料 建筑外窗空气声隔声性能分级及其检测方法》 建筑隔声评价标准》 铝合金结构设计规范》 玻璃幕墙工程技术规范》 民用建筑隔声设计规范》 建筑幕墙》 2 建筑围护结构的隔声概述 建筑围护结构构件的隔声, 单指质量定律下空气声的隔绝。 声音通过围护结 构的传播, 按传播规律有两种途径, 一种是振动直接撞击围护结构, 并使其成为 声源,通过维护结构的构件作为媒介介质使振动沿固体构件传播, 称为固体传声、 撞击声或结构声; 另一种是空气中的声源发声以后激发周围的空气振动, 以空气 为媒质, 形成声波, 传播至构件并激发构件振动, 使小部分声音等透射传播到另 一个空间, 此种传播方式也叫空气传声或空气声。 而无论是固体传声还是空气传 声,最后都通过空气这一媒质,传声入耳。门窗、幕墙等结构工程,需要计算的 是空气声隔声, 撞击声隔声是建筑结构楼板等构件产生的, 因此, 本计算书中计 算的是前者。 3 隔声计算基本定律 声的源头是振动,20Hz 的声音对人耳的感觉叫“听阈” ,20Hz 以下振动频率 的声音叫“次声”,20000Hz 的声音对人耳的感觉叫“痛阈” ,20000Hz 以上振动 频率的声音叫“超声” ,次声及超声人耳都感觉不到!在实际隔声研究中最常用 的是六个倍频程,中心频率是 125Hz 、250Hz 、500Hz 、1000Hz 、2000Hz 、4000Hz , 基本上代表了常用的声频范围! 维护结构构件的面密度越大, 声频越高, 构件的隔声量就越大, 理论证实面 密度 增加一倍或噪声频率增加一倍,即提高一个频程,隔声量都会相应的增加 6dB,这就是质量定律。 入射于构件的声频是客观的, 欲被隔离的噪声, 其频率的组成、 各声频的声 压级 的大小,建筑师是无法变更的。所以实际计算主要是考虑面密度 质量是决定构件隔声效果的主要因素。 4 隔声量计算方法、公式的选择 隔声量的计算有多种方法,其中有: 1.公式计算法; 2.图线判断法; 3.平台 做图 法; 4. 隔声指数法; 5. 实测图表法。软件采用公式计算法进行计算,下面对 这种方法进行一些介绍。 GB8485-2008 GB/T50121-2005 GB50429-2007 JGJ102-2003 GBJ118-88 GBT21086-2007 m 亦即:

噪声测量方法

监测方法 按GB 12349执行。 工业企业厂界噪声标准测量方法 GB 12349-90 Method of measuring noise at boundary of industrial enterprises 本标准为执行GB 12348《工业企业厂界噪声标准》而制订。 本标准适用于工厂及有可能造成噪声污染的企事业单位的边界噪声的测量。 1 名词术语 1.1 A声级用A计权网络测得的声级,用LA表示,单位dB(A)。 1.2 等效声级 在某规定时间内A声级的能量平均值,又称等效连续A声级,用Leq表示,单位为dB(A)。 按此定义此量为: Leq=10Lg() 式中:LA-t时刻的瞬时A声级。 T-规定的测量时间。 当测量是采样测量,且采样的时间间隔一定时,式(1)可表示为: Leq=10Lg() 式中:Li-第i次采样测得的A声级; n-采样总数。 1.3 稳态噪声,非稳态噪声在测量时间内,声级起伏不大于3dB(A)的噪声视为稳态噪声,否则称为非稳态噪声。 1.4 周期性噪声 在测量时间内,声级变化具有明显的周期性的噪声。 1.5 背景噪声 厂界外噪声源产生的噪声。 2 测量条件 2.1 测量仪器 测量仪器精度为Ⅱ级以上的声级计或环境噪声自动监测仪,其性能符合GB 3875《声级计电声性能及测量方法》之规定,应定期校验。并在测量前后进行校准,灵敏度相差不得大于0.5dBA,否则测量无效。测量时传声器加风罩。 2.2 气象条件测量应在无雨、无雪的气候中进行,风力为5.5m/s以上时停止测量。

2.3 测量时间 测量应在被测企事业单位的正常工作时间内进行。分为昼、夜间两部分,时段的划分可由当地人民政府按当地习惯和季节划定。 2.4 采样方式 2.4.1 用声级计采样时,仪器动态特性为“慢”响应,采样时间间隔为5s。 2.4.2 用环境噪声自动监测仪采样时,仪器动态特性为“快”响应,采样时间间隔不大于1s。2.5 测量值2.5.1 稳态噪声测量1min的等效声级。 2.5.2 周期性噪声测量一个周期的等效声级。 2.5.3 非周期性非稳态噪声测量整个正常工作时间的等效声级。 2.6 测点位置的选择 2.6.1 测点(即传声器位置。下同)应选在法定厂界外1m,高度1.2m以上的噪声敏感处。如厂界有围墙,测点应高于围墙。 2.6.2 若厂界与居民住宅相连,厂界噪声无法测量时,测点应选在居室中央,室内限值应比相应标准值低10dB(A)。 3 测量记录及数据处理 3.1 测量记录围绕厂界布点。布点数目及间距视实际情况而定。在每一测点测量,计算正常工作时间内的等效声级,填入工业企业厂界噪声测量记录表(见附表)。 3.2 背景值修正 背景噪声的声级值应比待测噪声的声级值低10dB(A)以上,若测量值与背景值差值小于10dB(A),按下表进行修正。 附录A工业企业厂界噪声测量记录表(补充件)

(完整版)噪声监测试题集..

噪声监测 一、填空题 1、建设项目的噪声污染防治设施必须与主体工程同时设计、同时施工、同时投产使用。 2、城市区域环境噪声监测,测量仪器为2型以上的积分式声级计及环境噪声自动监测仪器, 仪器时间计权特性为快响应,采样时间间隔不大于1秒。 3、城市道路交通噪声测量,测点应选在主要交通干道两路口之间,道路边人行道上,离车 行道的路沿20cm处,此处离路口应大于50m,主要交通干道是指城市规划部门划定的主、次交通干线。 4、噪声测量应在无雨、无雪天气条件下进行,风力大于5.5m/s(四级)时停止测量。 5、设备噪声测量一般在设备外1m包络线上,在设备四周区测量点,特殊发声部位及操作 部位应专门布点测量,以及测点噪声均值表征设备噪声,各侧点声级值相差5dB(A)以内用算术平均值表示,声级值相差大于5dB(A)时用能量平均值表示。气流噪声监测,如进出风口等,测点应取风口轴向45°方向。 6、建筑施工场界噪声限值分土石方、打桩、结构、装修四个施工阶段。 7、绿化林带并不是有效的声屏障。密集的林带对宽带噪声典型的附加衰减量是每10m衰减 1-2dB(A);取值的大小与树种、林带结构和密度等因素有关。密集的绿化带对噪声的最大附加衰减量一般不超过10dB (A)。 8、声级校准器发出1000Hz 94dB(A)的恒定声压。 9、用94 dB (A)的声级校准器校准配有1/2英寸传声器的积分声级计时,仪器应该指示 93.8dB(A),如不是,应用小起子调节校准器电位器。如果声级校准器不是94dB(A),则按 声级校准器的标准声压级减去0.2作为校准值。 10、《铁路边界噪声限值及其测量方法》中测点应选择在铁路边界高于地面1.2m,距离反射 面不小于1.0m处。 11、若厂界与居民住宅相连,厂界噪声无法测量,或住宅与噪声源楼层相连受楼内噪声或固 体传声影响时,可在室内测量,测点应设在室内中央,开窗,室内标准限值应比标准值严格10 dB (A)。 12、声级计校准方式可分为声校准和电校准两种;当两种校准方式校准结果不吻合时,以声 校准结果为准。 13、声压级常用公式为L p=2lg(P/P0)表示,单位为dB (或分贝)。

噪声的实验

噪声实验 一、实验目的 1.熟练运用噪声计; 2测量计算噪声随距离与空气传播以及周围环境对噪声消减效果。 3.测量同一时间校园内不同区域的噪声大小,并分析各区域对噪声的影响情况。 二、实验仪器 分贝仪 三、实验原理 I不同环境下的噪声消减实验 1.通过测噪声源的噪声与一定距离以外的噪声(无其他噪声影响)可以分析出距离对噪声消减的影响; 2.通过测噪声源的噪声以及隔着绿化带地的噪音可以分析出绿化带对噪声消减的影响; 3.通过测噪声源的噪声以及隔着楼栋地的噪音可以分析出楼栋对噪声消减的影响。 II同一时间不同区域噪声实验 用网格测量法,将要普查测量的某一区域划分成多个等大的正方形网络,网格要完全覆盖被测量区域。测点分布在每个网格中心,中心不宜有建筑物,若网格中心不宜测量,应移动测量点至距离中心位置最近的地方。将全部网格中心测点测得的10min的等级声级作算数平均运算,所得到的平均值代表某一区域的噪声水平。 四、实验步骤 I不同环境下的噪声消减实验 1. 选择好测量地点,准备分贝仪 2. 尽量在最短时间内测量出测噪声源的噪声与一定距离以外的噪声、测噪声源的噪声以及隔着绿化带地的噪音、噪声源的噪声以及隔着楼栋地的噪音。 II同一时间不同区域噪声分布情况 1.选择好测量区域,将学校分为六等分,选取每一等分中具有代表性的地点, 准备分贝仪, 2.各区域测量时都要进行十分钟的测量,每隔一分钟测量一个噪声级,得到十 组数据后求平均值,从而代表该区域的噪声水平。

3.根据各区域噪声情况,规定各噪声带颜色和阴影线,在学校地图上相应的区 域标明。 噪声带颜色阴影线 55dB以下天蓝小点 55~58 紫红中点 58~59 鹅黄大点 59~60 亮橙条纹 60~66 深蓝虚线 66~70 墨绿网格 五、实验数据 I不同环境下的噪声消减实验 声源:播放音乐的手机 距离声源/m 隔着绿化 带(竹林)隔着楼栋 0 5 10 15 噪声/db 86.5 63.6 61.4 56.3 63.9 62.5 86.5 64.6 61.1 57.6 64.6 64.2 86.5 63.3 61.4 53.8 61.5 61.6 86.5 64.8 60.3 54.7 63.4 62.4 86.5 62.6 62.6 52.4 62.6 62.5 平均值/db 86.5 63.7 61.4 55.0 63.2 62.6 II不同区域噪声分布情况 香樟院宿舍区院楼教学楼操场食堂区 噪声/db (10min)74.5 60.3 59.2 55.8 51.7 61.2 71.9 59.8 56.1 56.8 51.8 67.4 66.4 56.4 57 54.9 50.7 71.2 67.6 58.4 55.8 62.5 49.9 64.1 69.0 57.4 57.3 55.9 51.0 66.7 62.8 60.4 55.6 68.4 49.6 70.9 67.9 58.2 60.1 55.2 51.1 60.1 70.1 66.2 60.1 62.1 50.1 63.5 76.8 58.7 72.2 58.1 51.2 71.7 65.1 58.4 58.4 56.1 51.8 60.9 平均值/db 69.2 59.4 57.7 58.6 50.9 65.8 六、数据分析

空气声隔声测量

空气声隔声测量 一、实验目的和要求 了解如何减少外界的声音传入室内,或者室内的噪声传入邻室形成干扰。通过实验加强对墙体、楼板、和门窗等构件的隔声性能的认识,有利于合理的进行隔声设计和施工。 二、实验内容 测试办公室隔墙的空气声隔声性能。 三、测试原理 根据建筑声学原理,判断隔墙降低房间噪声实际效果的最终指标是:隔墙一边的噪声发声室的声压级与另一边受声室的声压级差D (21p p L L D -=)。因此,对隔墙空气声隔绝量的测试就归结为测量隔墙一边的噪声发声室与另一边的受声室的声压级差。再根据空气声隔声量 R : A S D A S L L R p p lg 10lg 1021+=+-= 计算出各频率的隔声量。 最后绘出隔墙的空气声隔声量的频率特性曲线,并按国家标准《建筑隔声评价标准》GB/T50121-2005求得计权隔声R w 。 A :受声室吸声量 60 161.0T V A = (T 60 :混响时间,实验(6) 室内混响时间测定中测得) 1P L :声源室的平均声压级 2P L :受声室的平均声压级 D :声源室与受声室平均声压级差 四、测试设备 实验室(声源室、受声室)、噪声信号源、滤波器、GZ021-A 功率放大器、全指向声源、 JT121声学分析仪、HS5671A 型噪声频谱分析仪、卷尺 五、实验步骤 1、测试对象:由于测试环境限制,因此选择墙体两侧的房间,一为声源室,另一为受声室,两 房间中间隔墙为测试试件。 2、按要求布置好声源和测点位置,关闭好门窗,接好仪器设备。仪器应事先做好核对工作,并 作必要的预热。

3、将传声器放在规定的测点处,声源室和受声室的测点数都不少于3个。 4、调整信号源,发出100—3150HZ中心频率的1/3倍频程的白噪声。 5、测量并计算平均声压级L p1和L p2,每一个测点的每一频率直接读取其声压级平均值或读取几个值后再求其平均值。最后再求每一频率几个测点的平均声压级值,则为该频率的声压级。 6、受声室吸声量的测量,该数据已由“实验(6) 室内混响时间测定”中测得其混响时间而算出了。 六、注意事项 1、声源系统应稳定,在测量的频率范围内具有连续的频率。 2、声源应具有足够的声功率,保证受声室内任何一频带的声压级比环境噪声声压级至少高10dB。 3、受声室的混响时间不能太长,最好不大于2s。 4、传声器放置高度应距地面1.5m以上,各测点之间距离不小于1.5m。 5、HS5671A型噪声频谱分析仪在测量之前应进行校准。 6、测量时房间的门窗必须关闭,防止外界的噪音干扰。

声学环境噪声测量方法

声学环境噪声测量方法 Acoustics一Measurement method of environmental noise GB/T 3222-94 代替GB 3222-82 本标准参照采用国际标准ISO 1996/1《声学环境噪声的描述和测量第1部分:基本量与测量方法》;ISO 1996/2《声学环境噪声的描述和测量第2部分:与土地使用有关的数据采集》。 1 主题内容与适用范围 本标准规定了环境噪声测量与评价方法。 本标准适用于城市区域(含县、建制镇)环境噪声、道路交通噪声的测量。 2 引用标准 GB 3947 声学名词术语 GB 3785 声级计的电、声性能及测试方法 SJ/Z 9151 积分平均声级计 JJG 176 声校准器检定规程 JJG 669 积分声级计检定规程 JJG 778 噪声统计分析仪检定规程 3 术语 3.1 A[计权]声级 用A计权网络测得的声级,用LpA表示,单位dB。 注:通常简单地用LA表示。 3.2 累积百分声级 在规定测量时间T内,有N%时间的声级超过某一LpA值,这个LpA值叫做累积百分声级,用LN,T表示,单位dB。例如L95,1h表示1小时内,有95%的时间超过的A声级。 累积百分声级用来表示随时间起伏无规噪声的声级分布特性。 注:通常简单地用LN表示,如L95。 3.3 等效「连续]A声级 等效[连续]A声级是在某规定时间内A声级的能量平均值,用LAeq,T表示,单位dB。按此定义此量为: (1) 式中:LpA(t)棗某时刻t的瞬时A声级,dB; T -规定的测量时间,s。 当规定的时间T内,要分时间段测量时,如T=T1+T2+…………+Tm,则T时间内的等效A声级,计算式为: (2) 式中:LAeq,Ti棗第i段时间测得的等效A声级; Ti-第i段时间,s。 由于环境噪声标准中都用A声级,故如不加说明,则等效声级就是等效[连续]A声级、并常简单地用符号Leq表示。 3.4 昼夜等效声级 在昼间和夜间的规定时间内测得的等效A声级分别称为昼间等效声级Ld或夜间等效声级Ln,。昼夜等效声级为昼间和夜间等效声级的能量平均值,用Ldn表示,单位dB。

噪声检测方法

建筑施工噪声测量方法 建筑施工场界噪声测量方法 Measurement method for noise from construction site GB 12524-90 本标准适用于城市建筑施工作业期间,由建筑施工场地产生的噪声测量。 1 名词术语 1.1 建筑施工场地的边界 由政府有关部门限定的建筑施工场地最外面的边界线。 1.2 建筑施工场地 指工程限定的边界范围以内的区域,以及规定界线以外的确实用于建筑或拆毁的其他中间准备区域。 1.3 噪声敏感区域 受到建筑施工噪声影响的住宅区、机关、学校、商业区以及公共场所等,其背景噪声比建筑施工场地产生的噪声级低的区域。 1.4 背景噪声 当建筑场地停止施工时,上述区域的环境噪声。 2 测点的确定 2.1 根据城市建设部门提供的建筑方案和其他与施工现场情况有关的数据确定建筑施工场地边界线。并应在测量表中标出边界线与噪声敏感区域之间的距离。 2.2 根据被测建筑施工场地的建筑作业方位和活动形式,确定噪声敏感建筑或区域的方位,并在建筑施工场地边界线上选择离敏感建筑物或区域最近的点作为测点。由于敏感建筑物方位不同,对于一个建筑施工场地,可同时有几个测点。 3 测量条件 3.1 测量仪器 测量仪器为积分声级计,其性能至少应符合GB 3785《声级计的电、声性能及测试方法》中对Ⅱ型仪器的要求。在测量前后要对使用的声级计进行校准。 如有条件,也可使用环境噪声自动监测仪,但仪器的动态范围应不小于50dB,以保证测量数据的准确性。 3.2 传声器设置 测量时声级计或传声器可以手持,也可以固定在三角架上,传声器处于距地面高1.2m的边界线敏感处。如果边界处有围墙,为了扩大监测范围也可将传声器置于1.2m以上的高度,但要在测量报告中加以注明。 3.3 气象条件 测量应选在无雨、无雪的气候时进行。当风速超过1m/s时,要求在测量时加防风罩,如风速超过5m/s时,应停止测量。 3.4 测量时间 分为昼间和夜间两部分,时间的划分可由当地人民政府确定。 4 测量参数的定义 测量参数为等效连续A声级L eq,单位为dB(A)。 等效连续声级代表声级的能量平均值,即随时间变化噪声的等能量稳态声级。 按定义此量为: (1) 式中:LA(t)棗某测量时刻t的瞬时A声级,dB; T-规定的测量时间,s。 当测量是采样测量,且采样的时间间隔一定时,式(1)可表示为: (2)

GB1496—79机动车辆噪声测量方法

中华人民共和国国家标准 GB 1496—79 机动车辆噪声测量方法 本标准适用于各类型汽车、摩托车、轮式拖拉机等机动车辆的车外、车 内噪声的测量。 一、测量仪器 1.使用精密声级计或普通声级计和发动机转速表。 2.声级计误差应不超过±2dB(A)。 3.在测量前后,仪器应按规定进行校准。 二、车外噪声测量 (一)测量条件 4.测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。 5.测试场地跑道应有20m以上的平直、干燥的沥青路面或混凝土路面。路面坡度不超过0.5%。 6.本底噪声(包括风噪声)应比所测车辆噪声至少低10 dB(A)。并保 证测量不被偶然的其他声源所干扰。 注:本底噪声系指测量对象噪声不存在时,周围环境的噪声。 7.为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。 8.声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。 9.被测车辆不载重。测量时发动机应处于正常使用温度,车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。

(二)测量场地及测点位置 10.测量场地示意图见图1。 11.测试话筒位于20m跑道中心点0两侧,各距中线7.5m,距地面高度1.2m,用三角架固定,话筒平行于路面,其轴线垂直于车辆行驶方向。 (三)加速行驶车外噪声测量方法 12.车辆须按下列规定条件稳定地到达始端线: 行驶档位:前进档位为4档以上的车辆用第3档,前进档位为4档或4档以下的用第2档。 发动机转速为发动机标定转速的四分之三。如果此时车速超过了50km/h,那 么车辆应以50km/h的车速稳定地到达始端线。 拖拉机以最高档位、最高车速的四分之三稳定地到达始端线。 对于自动换档车辆,使用在试验区间加速最快的档位; 辅助变速装置不应使用。 在无转速表时,可以控制车速进入测量区:以所定档位相当于四分之三标定 转速的车速稳定地到达始端线。 13.从车辆前端到达始端线开始,立即将油门踏板踏到底或节流阀全开,直 线加速行驶,当车辆后端到达终端线时,立即停止加速。车辆后端不包括拖车以

04第四讲 空气声隔声处理.

噪声治理课程第四讲空气声隔声处理 1构件件的空气声隔声性能 1.1 声音进入围闭结构的途径 为了保证室内环境的私密性,降低外界声音的影响,房间之间需要隔声。隔声与吸声是完全不同的概念,好的吸声材料不一定是好的隔声材料。声音进入建筑维闭结构有三种形式。1)通过孔洞直接进入。2)声波撞击到墙面引起墙体振动向对面辐射声音。3)物体撞击地面或墙体产生结构振动而辐射声音。前两种方式叫做空气声传声,例如人的讲话声,机器的轰鸣声,隔壁电视机的声音等。第三种方式是撞击声传声,如敲门或使用锤子撞击墙面。在本讲内的隔声特指是空气声隔声,有关撞击声隔声的内容在第四讲《振动的隔离》中讲述。 噪声进入房间内的基本途径是没有阻挡的长驱直入,或者说孔洞、缝隙以及穿透造成的漏声。最明显的是年久失修、窗框吱嘎作响的窗户,没有压条的门,和墙体上穿透的电源合。不关门的墙将失去隔声意义。 1.2 隔声量与计权隔声量 dB,其中τ是 透射声能,是透到对面的声能与入射声能的比。隔声量可以粗略地理解为墙体两边声音分贝数的差值,但绝对不是差值这样简单,因为房间内的声音大小还会受到吸声情况的影响。孔洞的隔声量R=0dB,隔掉99%声能的隔墙的隔声量是20dB,隔掉99.999%声能的隔墙的隔声量是50dB。 墙体在不同频率下的隔声量并不相同,一般规律是高频隔声 量好于低频。不同材料的隔声量频率特性曲线很不相同,为了通 过单一指标比较不同材料及构造的隔声性能,人们使用计权隔声 量Rw。Rw是使用标准评价曲线与墙体隔声量频率特性曲线进行 比较得到的,标准评价曲线符合人耳低频不敏感的听觉特性。如 右图,Rw的确定方法为:使用空气声隔声的标准曲线与实际隔声 频率特性曲线进行比对,同时满足32分贝原则和8分贝原则的隔 声最大的标准曲线的500Hz的隔声量为Rw。32分贝原则为: 100-3150Hz的16个1/3倍频程的构件隔声量比标准曲线低的分贝 数总和不大于32dB。8分贝原则为:任一100-3150Hz的1/3倍 频程的构件隔声量比标准曲线低的分贝数不超过8dB。 Rw的优势在于建筑师和工程师已经普遍接受而且可以作为 隔声性能比较的标准。不足之处在于,Rw的评价曲线为降低语言声源而设计的,不能适于象机器噪声这样的低频成分比语言多得多的噪声。对于机器噪声,我们还可以使用Rw,但要记住,对于低频成分较多的噪声来讲,Rw一般比实际构件的隔声性能夸大了5-10dB。也就是,如果构件的隔声量为30dB 那么对于环境噪声来讲只能隔掉20dBA。我国现行国家标准隔声量指标被称为标准计权隔声量Rw,美国国家标准称为标准传声等级STC,STC除频率范围为125-4000Hz且不考虑8分贝原则以外,评价方法同Rw。一般情况下STC与Rw相等,或小1dB。 1.3建筑隔声使用中的考虑 我国部颁标准JGJ37-87《民用建筑设计通则》中,要求各类主要用房的隔墙计权隔声量Rw不应小于40dB。下表是墙体空气声隔声量Rw与声音私密性性的关系。

相关文档
相关文档 最新文档