文档库 最新最全的文档下载
当前位置:文档库 › 沉淀的溶解度和影响因素

沉淀的溶解度和影响因素

沉淀的溶解度和影响因素
沉淀的溶解度和影响因素

沉淀的溶解度及其影响因素

在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以,即小于分析天平的称量允许误差。但是,很多沉淀不能满足这个条件。例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。

一、沉淀的溶解度

当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系:

MA (固)MA (水)M+ + A-

式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:

a (M+)×a (A-) == (7—1)

式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是:

a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2)

式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。将式( 7 - 2 )代入

(7 – 1 )得

(M+) ceq(M+)·( A-) ceq(A-) = (7—3)

故= ceq(M+)·ceq(A—) = (7—4)

称为微溶化合物的溶度积常数,简称溶度积。

在纯水中MA的溶解度很小,则

ceq(M+) = ceq(A—) = so(7—5)

ceq(M+)·ceq(A—) = so2 =(7—6)

上二式中的so是在很稀的溶液,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。实际上溶解度是随其他离子存

在的情况不同而变化的。因此溶度积只在一定条件下才是一个常数。如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。

对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为:

= [ceq (M n+)]m·[ceq (A m-)]n

=((7—7)= = = (7—8)

在一定温度下,难溶电解质在纯水中都有其一定的溶度积,其数值的大小是由难溶电解质本身的性质所决定的。外界条件变化,例如酸度的变化、配位剂的存在等,都将使金属离子浓度或沉淀剂浓度发生变化,因而影响沉淀的溶解度和溶度积。这和配位滴定中,外界条件变化引起金属离子或配位剂浓度变化,因而影响稳定常数的情况相似。

二、影响沉淀溶解度的因素

影响沉淀溶解度的因素很多,如同离子效应、盐效应、酸效应及配位效应等。此外,温度、溶剂、沉淀的颗粒大小和结构,也对溶解度有影响,分别讨论如下。

?同离子效应

为了减少溶解损失,当沉淀反应达到平衡后,应加入过量的沉淀剂,以增大构晶离子(与沉淀组成相同的离子)浓度,从而减小沉淀的溶解度。这一效应称为同离子效应(commom-ion effect)。

对重量分析来说,沉淀溶解损失的量不超过一般称量的精确度(0.2 mg),即处于允许的误差围之。但一般沉淀很少能达到这要求。例如用BaCl2使SO42—沉淀成BaSO4,(BaSO4) = 1.1×10—10, 当加入BaCl2的量与SO42—的量符合化学计量关系时,在200 mL溶液中溶解的BaSO4质量为

×233× = 0.000 49g = 0.49 mg

溶解所损失的量已超过重量分析的要求。

但是,如果加入过量的BaCl2,则可利用同离子效应来降低BaSO4的溶解度。若沉淀达到平衡时,过量的ceq(Ba2+)= 0.01 mol·L-1,可计算出200 mL溶液中溶解的BaSO4的质量为

×233×= 5.1×10-7 g = 0.000 51 mg

显然,这已远小于允许沉淀溶解损失的质量,可以认为沉淀已经完全。

因此,在进行重量分析确定沉淀剂用量时,常要求加入过量沉淀剂,利用同离子效应来降低沉淀的溶解度,以使沉淀完全。沉淀剂过量的程度,应根据沉淀剂的性质来确定。若沉淀剂不易挥发,应过量少些,如过量20 % ~ 50 %;若沉淀剂易挥发除去,则可过量多些,甚至过量100 %。

必须指出,沉淀剂决不能加得太多,否则可能发生其他影响(如盐效应、配位效应等),反而使沉淀的溶解度增大。

?盐效应

在难溶电解质的饱和溶液中,加入其他强电解质, 会使难溶电解质的溶解度比同温度时在纯水中的溶解度增大,这种现象称为盐效应(salt effect)。例如在强电解质KNO3的溶液中,AgCl、BaSO4的溶解度比在纯水中大,而且溶解度随KNO3的浓度增大而增大,当溶液中KNO3的浓度由0增到0.01 mol·L—1时,AgCl的溶解度由1.28×10—5 mol·L—1增到1.43×10—5 mol·L-1。

发生盐效应的原因是由于离子的活度系数与溶液中加入的强电解质的种类和浓度有关,当溶液中强电解质的浓度增大到一定程度时,离子强度增大而使离子活度系数明显减小。但在一定温度下,是常数,由

(7—4)可看出c (M+) c (A—)必然要增大,致使沉淀的溶解度增大。因此在利用同离子效应降低沉淀溶解度时,应考虑到盐效应的影响,即沉淀剂不能过量太多。

例1 计算在0.008 0 mol·L—1 MgCl2溶液中BaSO4的溶解度?

解:I =

=

mol·L-1 = 0. mol·L-1

查化学手册得:

0.56,0.55

s = ceq (Ba2+)/cθ= ceq (SO42-)/cθ= =

= = 1.9×10—5 mol·L—1

与在纯水中的溶解度(1.05×10—5 mol·L—1)相比较,则

= 181 %

即BaSO4在0.008 0 mol·L—1 MgCl2溶液中比在纯水中的溶解度增大81 %。

应该指出,如果沉淀本身的溶解度越小,盐效应的影响就越小,可以不予考虑。只有当沉淀的溶解度比较大,而且溶解的离子强度很高时,才考虑盐效应的影响。

?酸效应

溶液的酸度对沉淀溶解度的影响,称为酸效应(acid effect)。酸效应的发生主要是由于溶液中H+浓度的大小对弱酸、多元酸或难溶酸等离解平衡的影响。若沉淀是强酸盐,如AgCl、BaSO4等,其溶解度受酸度影响不大。若沉淀是弱酸、多元酸盐或氢氧化物时,酸度增大时,组成的阴离子如CO32—、C2O42—、PO43—、SiO32—和OH—等与H+结合,降低了阴离子的浓度,使沉淀的溶解度增大。反之,酸度减小时,组成沉淀的金属离子可能发生水解,形成带电荷的OH—配合物,于是降低了阳离子的浓度而增大沉淀的溶解度。下面以计算草酸钙沉淀的溶解度为例,来说明酸度对溶解度的影响。

ceq(Ca2+)×ceq (C2O42—) = (7—9)

草酸是二元酸,在溶液中具有下列平衡

在不同酸度下,溶液中存在的沉淀剂的总浓度c’(C2O42—)总应为:

c’(C2O42—)总 = ceq(C2O42—) + ceq(HC2O4—) + ceq( H2C2O4)

能与Ca2+形成沉淀的是C2O42—-,而

= (7—10)

式中的是草酸的酸效应系数,其意义和EDTA的酸效应系数完全一样。将式(7—10)代入式 (7—9) 即得:

ceq(Ca2+) .c’(C2O42—)总= = (7—11)

式中是在一定酸度条件下草酸钙的溶度积,称为条件溶度积。利用条件溶度积可以计算不同酸度

下草酸钙的溶解度。

s (CaC2O4) = ceq (Ca2+) =c’(C2O42—)总 =

= (7—12)

例 2比较CaC2O4在pH为4.00和2.00的溶液中的溶解度。

解:设CaC2O4在pH为4.00的溶液中的溶解度为s1, 已知= 2.0×10—9, H2C2O4的= 5.9×10—2, = 6.4×10—5, 此时

= 1 + β1c (H+) +β2 c2 (H+) = 2.56

s1 = = 7.2×10—5 mol·L—1

同理,设CaC2O4在pH为2.00的溶液中的溶解度为s2,由计算可得:

= 185

s2 = = 6.1×10—4 mo l·L—1

由上述计算可知,沉淀的溶解度随溶液酸度增加而增加。在pH = 2.00时CaC2O4的溶解损失已超过重量分析要求,若要符合误差允许围,则沉淀反应需在pH = 4 ~ 6的溶液中进行。

?配位效应

若溶液中存在配位剂,它能与生成沉淀的离子形成配合物,使沉淀溶解度增大,甚至不产生沉淀,这种现象称为配位效应(complexing effect)。例如用Cl—沉淀Ag+时,

Ag+ + Cl—AgCl

若溶液中有氨水,则NH3能与Ag+配位,形成 [ Ag (NH3)2 ]+ 配离子,AgCl在0.01 mol·L—1氨水中的溶解度比在纯水中的溶解度大40倍。如果氨水的浓度足够大,则不能生成AgCl沉淀。又如Ag+溶液中加入Cl—, 最初生成AgCl沉淀,但若继续加入过量的Cl—,则Cl—能与Ag+配位成AgCl2—和AgCl32—等配离子,而使AgCl沉淀逐渐溶解。AgCl在0.01 mol·L—1HCl溶液中的溶解度比在纯水中的溶解度小,

这时同离子效应是主要的。若Cl—浓度增加到0.5 mol·L—1, 则AgCl的溶解度超过纯水中的溶解度,此时配位效应的影响已超过同离子效应;若Cl—再增加,则由于配位效应起主要作用,AgCl沉淀甚至可能不出现。因此,用Cl—沉淀Ag+时,必须严格控制Cl—浓度。应该指出,配位效应使沉淀溶解度增大的程度与沉淀的溶度积和形成配合物的稳定常数的相对大小有关。形成的配合物越稳定,配合效应越显著,沉淀的溶解度越大。

依据以上讨论的共同离子效应、盐效应、酸效应和配位效应对沉淀溶解度的影响程度,在进行沉淀反应时,对无配位反应的强酸盐沉淀,应主要考虑同离子效应和盐效应;对弱酸盐或难溶酸盐,多数情况下应主要考虑酸效应;在有配位反应,尤其在能形成较稳定的配合物,而沉淀的溶解度又不太小时,则应主要考虑配位效应。

除上述因素外,温度、其他溶剂的存在及沉淀本身颗粒的大小和结构,也都对沉淀的溶解度有所影响。

5.其它影响因素

(1)温度的影响溶解一般是吸热过程,绝大多数沉淀的溶解度随温度升高而增大。

(2)溶剂的影响大部分无机物沉淀是离子型晶体,在有机溶剂中的溶解度比在纯水中要小。例如在CaSO4溶液加入适量乙醇,则CaSO4的溶解度就大大降低。

(3)沉淀颗粒大小和结构的影响同一种沉淀,在相同质量时,颗粒越小,其总表面积越大,溶解度越大。因为小晶体比大晶体有更多的角、边和表面,处于这些位置的离子晶体离子的吸引力小,又受到溶剂分子的作用,容易进入溶液中,所以小颗粒沉淀的溶解度比大颗粒的大。在沉淀形成后,常将沉淀和母液一起放置一段时间进行化,使小晶体逐渐转化为大晶体,有利于沉淀的过滤与洗涤。化还可使沉淀结构发生改变,由初生成时的结构转变为另一种更稳定的结构,溶解度就大为减小。

例如初生成的CoS是α型,= 4×10—21, 放置后转变为β型,=2×10—25。

(4)形成胶体溶液的影响进行沉淀反应特别是无定形沉淀反应时,如果条件掌握不好,常会形成胶体溶液,甚至使已经凝聚的胶体沉淀还会因“胶溶”作用而重新分散在溶液中。胶体微粒很小,极易透过滤纸而引起损失,因此应防止形成胶体溶液。将溶液加热和加入大量电解质,对破坏胶体和促进胶凝作用甚为有效。

第三节沉淀的形成及影响沉淀纯度的因素

一、沉淀的类型

沉淀按其物理性质不同,可粗略地分为两类:一类是晶形沉淀;另一类是无定形沉淀。无定形沉淀又称为非晶形沉淀或胶状沉淀。BaSO4是典型的晶形沉淀,Fe2O3·n H2O是典型的无定形沉淀。AgCl是一种凝乳状沉淀,按其性质来说,介于两者之间。它们的最大差别是沉淀颗粒的大小不同。颗粒最大的是晶形沉淀,其直径约0.1μm ~ 1.0μm; 无定形沉淀的颗粒很小,直径一般小于0.02μm; 凝乳状沉淀的颗粒大小介于两者之间。

从整个沉淀外形来看,由于晶形沉淀是由较大的沉淀颗粒组成,部排列较规则,结构紧密,所以整个沉淀所占的体积是比较小的,极易沉降于容器的底部。无定形沉淀是由许多疏松聚集在一起的微小沉淀颗

影响物质溶解性的因素

影响物质溶解性的因素 教学目标: (1)建立溶解性、饱和溶液、不饱和溶液的概念。 (2)知道影响物质溶解性的因素。 (3)知道饱和溶液与不饱和溶液相互转化的方法 教学重点: (1)饱和溶液与不饱和概念的的建立。 (2)饱和溶液与不饱和溶液的相互转化。 教学难点: (1)学会用控制变量法来研究问题,总结归纳结论。 教学过程: 一、实验探究“影响物质溶解性的因素” 【情境导入】 师:同学们你们在吃火锅或者烤肉的时候,油渍不小心溅到衣服上了,妈妈在洗衣服的时候用水容易洗掉吗? 生:不容易。 师:但是生活经验丰富的妈妈们对付油渍有妙招,她们会在有油渍的地方涂一点汽油,就能洗掉了,你知道为什么吗? 师:这是因为油渍能够溶解在汽油中,但是不能溶解在水中,所以用水洗不掉油渍但是汽油就可以。油渍在水中和在汽油中的溶解性不同。 师:那溶解性是什么呢?溶解性是指一种物质溶解在另一种物质中能

力的大小

。比如刚才举的例子,油渍容易溶解在汽油中而不容易溶解在水中,说明油渍在汽油中的溶解能力比在水中的溶解能力大,所以说油渍在汽油中的溶解性跟在水中的溶解性相比,哪个大一些? 师:那影响物质溶解性大小的因素有哪些呢?我们通过几个实验来探究一下吧。 (板书:影响物质溶解性的因素) 【学生分组实验】P16 实验1。 分别向A、B、C三支试管中加入5 mL水,再分别加入食盐、蔗糖、消石灰各1 g,震荡,静置、观察物质的溶解情况,记录实验现象,总结实验结论。 【交流讨论】 师:在三支试管中你分别看到了什么现象? 生:食盐和蔗糖完全溶解了,形成溶液,而消石灰没有完全溶解,形成悬浊液。 师:为什么会这样?形成不同现象的原因是什么? 生:物质的种类不同。 师:我们对比了三种不同物质在同一溶剂——水中溶解性的大小,发现蔗糖和食盐都能完全溶解而消石灰不能,说明蔗糖和食盐在水中的溶解性比消石灰大,也就是说:不同物质在同一溶剂中的溶解性不同。那请同学们思考一下,这个实验说明了物质的溶解性和那种因素有关?(板书:物质的性质)

第二课时电离平衡的建立及影响因素

班级姓名 第一节弱电解质的电离(第二课时) 电离平衡的建立及影响因素 1.在溶液导电性实验装置里,分别注入20 mL 6 mol·L-1醋酸和20 mL 6mol·L-1氨水,灯光明暗程度相似。如果把这两种溶液混合后再实验,则()A.灯光明暗程度不变B.灯光变暗C.灯光明暗程度变化不大D.灯光变亮 2.下列说法中,正确的是()A.强电解质的水溶液一定比弱电解质溶液的导电能力强 B.强电解质都是离子化合物,弱电解质都是共价化合物 C.强电解质的水溶液中不存在溶质分子 D.不溶性盐都是弱电解质,可溶性酸和具有极性键的化合物都是强电解质。 3.下列叙述中,能证明某物质是弱电解质的是()A.熔化时不导电B.不是离子化合物,而是极性共价化合物 C.水溶液的导电能力很差D.溶液中已电离的离子和未电离的分子共存4.NaHSO4在溶液中和熔融状态下,都存在的离子是()A.H+ B.Na+ C.SO42-D.HSO4- 5.下列物质在水溶液中,存在电离平衡的是()A.Ca(OH)2B.CH3COOH C.BaSO4D.CH3COONa 6.把0.01molNaOH固体分别加入下列100mL液体中,溶液的导电能力变化不大的()A.自来水B.0.1mol/LHNO3C.0.1mol/L醋酸D.0.1mol/LNH4Cl 7.一定量的稀H2SO4与过量铁粉反应时,为了减缓反应速率,且又不影响生成的氢气的总量,可向稀H2SO4溶液中加入()A.H2O B.NaOH固体C.CH3COONa固体D.NH4C1固体 8.下列各组物质反应中,溶液的导电性比反应前明显增强的是()A.向亚硫酸钠溶液中加入液态溴B.向硝酸银溶液中通入少量氯化氢 C.向氢氧化钠溶液中通入少量氯气D.向硫化氢饱和溶液中通入少量氯气 (s) Ca2++2OH-中,能使c(Ca2+)减小,而使c(OH-)增大的是() 9.在平衡体系Ca(OH) A.加入少量MgCl2固体B.加入少量Na2CO3固体 C.加入少量KCl固体D.加入少量Ba(OH)2固体 10.在0.01mol/L醋酸中加入少量硫酸后,其变化结果是()A.氢离子浓度变小B.醋酸的浓度减小 C.酸性增强,PH变小D.醋酸根离子浓度变小 11.在含有酚酞的0.1 mol·L-1氨水中加入少量的NH4Cl晶体,则溶液颜色 A.变蓝色 B.变深 C.变浅 D.不变 12、弱电解质的电离运用勒夏特列原理分析填写下表:

难溶电解质的溶解平衡 第1课时 沉淀溶解平衡与溶度积

第四节难溶电解质的溶解平衡 第1课时沉淀溶解平衡与溶度积 [学习目标] 1.知道难溶电解质的沉淀溶解平衡及其影响因素,能多角度、动态地分析难溶电解质的溶解平衡。 2.知道溶度积的意义,建立根据溶度积和离子积的大小关系判断反应进行方向的思维模型。 一、难溶电解质的溶解平衡 1.AgCl沉淀溶解平衡的建立 (1)在装有少量难溶的AgCl白色固体的试管中,加入约5 mL蒸馏水,充分振荡后静置。 ①取约2 mL上层清液于另一试管中,滴加浓盐酸,观察到的现象是有白色沉淀生成。 ②由上述实验得出的结论是原上层清液中含有Ag+。 (2)分析AgCl的溶解过程:AgCl在溶液中存在下述两个过程:一方面,在水分子作用下,少量Ag+和Cl-脱离AgCl的表面溶于水中,即存在溶解过程;另一方面,溶液中的Ag+和Cl-受AgCl表面阴、阳离子的吸引,回到AgCl的表面析出,即存在沉淀过程。在一定温度下,当AgCl溶解和生成的速率相等时,达到溶解平衡状态,得到AgCl的饱和溶液。 Cl-(aq)+Ag+(aq),由于沉淀、溶解之间的这(3)AgCl溶于水的平衡方程式是AgCl(s)溶解 沉淀 种动态平衡的存在,决定了Ag+和Cl-的反应不能进行到底。 2.溶解平衡的概念与特征 (1)概念 在一定温度下,当沉淀溶解和生成的速率相等时,即建立了动态平衡,叫做沉淀溶解平衡。 (2)特征

(3)反应完全的标志 对于常量的化学反应来说,化学上通常认为残留在溶液中的离子浓度小于1.0×10-5 mol·L-1时,沉淀就达完全。 3.影响因素 (1)实例分析 已知溶解平衡:Mg(OH)2(s)Mg2+(aq)+2OH-(aq),请分析当改变下列条件时,对该溶解平衡的影响,填写下表(浓度变化均指平衡后和原平衡比较): 条件改变移动方向c(Mg2+)c(OH-) 加水正向移动不变不变 升温正向移动增大增大 加MgCl2(s)逆向移动增大减小 加盐酸正向移动增大减小 加NaOH(s)逆向移动减小增大 (2)外界条件对沉淀溶解平衡的影响 ①温度:升高温度,多数溶解平衡向溶解方向移动;少数溶解平衡向生成沉淀方向移动,如Ca(OH)2的溶解平衡。 ②浓度:加水稀释,溶解平衡向溶解方向移动。 ③同离子:加入与难溶电解质构成中相同的离子,平衡向生成沉淀方向移动。 ④其他:加入可与难溶电解质溶解所得的离子反应的物质,溶解平衡向溶解方向移动。 (1)易溶电解质或难溶电解质的饱和溶液中存在溶解平衡,不饱和溶液中不存在溶解平衡。 (2)影响难溶电解质溶解平衡的因素,除内因外,主要涉及温度、浓度(包括稀释、加入同种离子)等。 例1下列关于溶解平衡:AgCl(s)Ag+(aq)+Cl-(aq)的说法正确的是() A.AgCl沉淀的生成和溶解同时在不断进行,且速率相等 B.等物质的量的AgNO3和NaCl溶于水后,溶液中不存在Ag+和Cl- C.只要向含有AgCl的饱和溶液中加入盐酸,一定会有沉淀生成

影响蛋白质水合和溶解性的因素有哪些

1.影响蛋白质水合和溶解性的因素有哪些?这两方面的影响因素有何异同? 答:(1)蛋白质的水合性质(PropertiesHydration of Proteins) A.蛋白质水合性质:蛋白质分子中带电基团、主链肽基团、Asn、 Gln的酰胺基、Ser、Thr和非极性残基团与水分子相互结 合的性质。 B. 蛋白质水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽 达到平衡时,每克蛋白质所结合的水的克数。 α=?C +0.4 ?P+0.2 ?N (α:水合能力,g水/g蛋白质;?C, ?P , ?N:带电的、极性和非极性的分数) C.影响蛋白质结合水的环境因素: 1.pH 当pH=pI时,蛋白质的水合能力最低 2.温度温度升高,氢键作用和离子基团的水合作用减弱,水合能力下降。 3.氨基酸组成极性氨基酸越多,水合能力越高 4,离子强度低浓度的盐能提高蛋白质的水合能力。 5.盐的种类 (2)蛋白质的溶解度(SolubilityofProteins) 影响蛋白质溶解性质的主要的相互作用: A 疏水相互作用能促进蛋白质—蛋白质相互作用,使蛋白质溶解度降低; B离子相互作用能促进蛋白质—水相互作用,使蛋白质溶解度增加。 1.pH 当pH高于或低于等电点时,蛋白质带净的负电荷或净的正电荷, 水分子能同这些电荷相互作用并起着稳定作用 U-形曲线,最低溶解度出现在蛋白 2.①“盐溶”(salted in)中性盐的离子在0.1-1M能提高蛋白质的溶 解度。 ②“盐析”(salted out)中性盐的离子大于1M,蛋白质的溶解 度降低,并可能导致蛋白质沉淀。 ③当离子强度<0.5时,离子中和蛋白质表面的电荷。 电荷掩蔽效应对蛋白质的溶解度的影响取决于蛋白质的表面性质。如果蛋白质含 有高比例的非极性区域,那么此电荷掩蔽效应使它的溶解度下降,反之, 溶解度提高。 当离子强度>1.0时,盐对蛋白质溶解度具有特殊的离子效应。 硫酸盐和氟化物(盐)逐渐降低蛋白质的溶解度。在相同的μ,各种离子对蛋 白质溶解度的相对影响(提高溶解度)的能力。Hofmeister系列 阴离子(提高蛋白质溶解度的能力): SO42-<F-

沉淀溶解平衡知识点

难溶电解质的溶解平衡 一.固体物质的溶解度 1.溶解度:在一定温度下,某固体物质在100g 溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度。符号:S ,单位:g ,公式:S=(m 溶质/m 溶剂 )×100g 2.不同物质在水中溶解度差别很大,从溶解度角度,可将物质进行如下分类: 3.绝大多数固体物质的溶解度随温度的升高而增大,少数物质的溶解度随温度变化不明显,个别物质的溶解度随温度的升高而减小。 二?沉淀溶解平衡 1.溶解平衡的建立 讲固态物质溶于水中时,一方面,在水分子的作用下,分子或离子脱离固体表面进入水中,这一过程叫溶解过程;另一方面,溶液中的分子或离子又在未溶解的固体表面聚集成晶体,这一过程叫结晶过程。当这两个相反过程速率相等时,物质的溶解达到最大限度,形成饱和溶液,达到溶解平衡状态。 溶质溶解的过程是一个可逆过程: ? ?? ??→<→=→>????→→晶体析出 溶解平衡固体溶解 结晶溶液中的溶质溶解固体溶质结晶溶解结晶溶解结晶溶解v v v v v v 2.沉淀溶解平衡 绝对不溶解的物质是不存在的,任何难溶物质的溶解度都不为零。以AgCl 为例:在一定温度下,当沉淀溶解和生成的速率相等时,便得到饱和溶液,即建立下列动态平衡: AgCl(s) Ag +(aq)+Cl - (aq) 3.溶解平衡的特征 1)动:动态平衡 2)等:溶解和沉淀速率相等 3)定:达到平衡,溶液中离子浓度保持不变 4)变:当外界条件改变时,溶解平衡将发生移动,达到新的平衡。 三.沉淀溶解平衡常数——溶度积 1)定义:在一定温度下,难溶性物质的饱和溶液中,存在沉淀溶解平衡,其平衡常数叫溶度积常数。 2)表达式:即:AmBn(s) mA n+(aq)+nB m - (aq) Ksp =[A n+]m ·[B m - ]n 例如:常温下沉淀溶解平衡:AgCl(s) Ag +(aq)+Cl -(aq), Ksp(AgCl)=[Ag +][Cl - ] =1.8×10 -10 常温下沉淀溶解平衡:Ag 2CrO 4(s) 2Ag +(aq)+CrO 42-(aq), Ksp(Ag 2CrO 4)=[Ag +]2 [CrO 2- 4] =1.1×10 -12 溶解 沉淀

影响沉淀溶解度的因素(复习)

影响沉淀溶解度的因素 1. 同离子效应(向溶液中加入构晶离子时,沉淀的溶解度减小) [][]()sp A A sp A K M A S S C S C K S C +-==+≈??=’ 2. 盐效应 (I 增大,γ减小,溶解度增大) 20) SP M A M A SP M A M A SP SP K M A K S S K K ααγγγγγγ+-+ -+-+-+-????=?=???= ??????=??=≈3.酸效应 (沉淀为弱酸盐时,αA (H ),酸度增加时,溶解度增大) CaC 2O 4=Ca 2++C 2O 42- s s=[C 2O 42-]+[HC 2O 42-]+[H 2C 2O 4]=[C 2O 42-'] s 2=[Ca 2+][C 2O 42-']= K sp '= K sp ?α C2O42-(H) [][][][]'2()sp A H K M A M A S S α+-+-==?=?== ’ 4. 络合效应 金属离子发生副反应 AgCl =Ag ++Cl - Cl - s [Cl -]小时,主要是同离子效应,溶解度减小。[Cl -]大时,主要是络合效应,溶解度增大。 H + +

S =[Ag +]+[AgCl]+[AgCl 2-]+ [AgCl 32-]+[AgCl 43-]=[Ag +](1+β1[Cl -]+β2[Cl -]2+β3[Cl -]3+β4[Cl -]4)=K sp /[Cl -](1+β1[Cl -]+β2[Cl -]2+β3[Cl -]3+β4[Cl -]4)= K sp /s ? αAg(Cl-) S= [][][ ]''2()sp M L K M A M A S S α+-+-==?=?????= 5. 酸效应与络合效应同时存在时: [][][ ]'''2()()sp M L A H K M A M A S S αα+-+-==?=???? ?== 6. 酸效应与同离子效应同时存在时 [][][][]''()()() sp A H A sp A H sp A A A K M A M A S S C K K S C C ααδ---- +-+-==?=+?== 7. 络合效应与同离子效应同时存在时: [][][][]''()()'()+()(sp M L SP M L M M sp sp M L M M M K M A M A K S S C S C K K S M C C C ααα++++++-+-==?==+≈?== 加入与相同的构晶阳离子使其浓度达到)

第3章 第3节 第1课时 沉淀溶解平衡与溶度积

第3节沉淀溶解平衡 第1课时沉淀溶解平衡与溶度积 [核心素养发展目标] 1.变化观念与平衡思想:知道难溶电解质的沉淀溶解平衡及其影响因素,能多角度、动态地分析难溶电解质的溶解平衡。2.证据推理与模型认知:知道溶度积的 意义,建立根据溶度积和离子积的大小关系判断反应进行方向的思维模型。 一、沉淀溶解平衡及其影响因素 1.固体物质的溶解度(S)与溶解性的关系 溶解性难溶微溶可溶易溶 S的范围S<0.01 g 0.01 g<S<1 g 1 g<S<10 g S>10 g 2.PbI2固体的溶解平衡 实验操作 ①在装有少量难溶的PbI2黄色固体的试管中,加入约3 mL蒸馏水, 充分振荡后静置; ②待上层液体变澄清后,即得到PbI2饱和溶液,向其中滴加几滴 0.1 mol·L-1 KI溶液 实验现象在上层清液中加入KI溶液后,有黄色沉淀产生 实验结论 上层清液中有Pb2+存在,当加入KI溶液后,I-浓度增大,发生反 应:Pb2++2I-===PbI2↓,从而有黄色PbI2沉淀生成 3.沉淀溶解平衡 (1)概念 在一定温度下,当沉淀溶解和生成的速率相等时,即建立了动态平衡,叫作难溶电解质的沉 淀溶解平衡。如AgCl溶于水的沉淀溶解平衡表示为AgCl(s)溶解 沉淀 Ag+(aq)+Cl-(aq)。(2)特征

(3)沉淀溶解平衡的表达式: M m A n(s)m M n+(aq)+n A m-(aq) 在沉淀后用“s”标明状态,溶液中用“aq”标明状态,并用“”连接。 如:PbI2沉淀溶解平衡可表示为PbI2(s)Pb2+(aq)+2I-(aq)。 4.影响因素 (1)实例分析 已知溶解平衡:Mg(OH)2(s)Mg2+(aq)+2OH-(aq)ΔH>0,请分析当改变下列条件时,对该溶解平衡的影响,填写下表(浓度变化均指平衡后和原平衡比较): 条件改变移动方向c平(Mg2+) c平(OH-) 加水正向移动不变不变 升温正向移动增大增大 加MgCl2(s) 逆向移动增大减小 加盐酸正向移动增大减小 加NaOH(s) 逆向移动减小增大 (2)外界条件对沉淀溶解平衡的影响 ①温度:升高温度,多数溶解平衡向溶解方向移动;少数溶解平衡向生成沉淀方向移动,如Ca(OH)2的溶解平衡。 ②浓度:加水稀释,溶解平衡向溶解方向移动。 ③同离子:加入与难溶电解质构成中相同的离子,平衡向生成沉淀方向移动。 ④反应离子:加入可与难溶电解质溶解所得的离子反应的物质,溶解平衡向溶解方向移动。 (1)由于BaSO4难溶,所以将BaSO4加入水中,溶液中无Ba2+和SO2-4() (2)难溶电解质的溶解平衡是动态平衡,即溶解和沉淀仍然同时进行着,只是v(溶解)=v(沉淀) () (3)Ca(OH)2溶解放热,所以升温,Ca(OH)2(s)Ca2+(aq)+2OH-(aq)溶解平衡逆向移动() (4)含等物质的量的AgNO3与NaCl的溶液混合后,恰好完全生成AgCl沉淀,溶液中不存在Ag+和Cl-() (5)当溶液中某离子浓度小于1×10-5 mol·L-1时,可视为该离子沉淀完全() 答案(1)×(2)√(3)√(4)×(5)√ 1.Ca(OH)2是一种强碱,在水中应该完全电离,但某同学见到过以下两个式子,Ca(OH)2===Ca2++2OH-、Ca(OH)2(s)Ca2+(aq)+2OH-(aq),请帮他解开迷惑。

第二节沉淀的溶解度及其影响因素

第二节沉淀的溶解度及其影响因素 在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以内,即小于分析天平的称量允许误差。但是,很多沉淀不能满足这个条件。例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。 一、沉淀的溶解度 当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系: MA (固)MA (水)M+ + A- 式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即:a (M+)×a (A-) == (7—1) 式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是: a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2) 式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。将式( 7 - 2 )代入 (7 – 1 )得 (M+) ceq(M+)·( A-) ceq(A-) = (7—3) 故= ceq(M+)·ceq(A—) = (7—4) 称为微溶化合物的溶度积常数,简称溶度积。 在纯水中MA的溶解度很小,则 ceq(M+) = ceq(A—) = so(7—5) ceq(M+)·ceq(A—) = so2 =(7—6) 上二式中的so是在很稀的溶液内,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。实际上溶解度是随其他离子存 在的情况不同而变化的。因此溶度积只在一定条件下才是一个常数。如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。 对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为: = [ceq (M n+)]m·[ceq (A m-)]n

沉淀溶解平衡知识点(经典,解决所有沉淀问题)

一.固体物质的溶解度 1.溶解度:在一定温度下,某固体物质在100g 溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度。符号:S ,单位:g ,公式:S=(m 溶质/m 溶剂 )×100g 2.不同物质在水中溶解度差别很大,从溶解度角度,可将物质进行如下分类: 3.绝大多数固体物质的溶解度随温度的升高而增大,少数物质的溶解度随温度变化不明显,个别物质的溶解度随温度的升高而减小。 二?沉淀溶解平衡 1.溶解平衡的建立 讲固态物质溶于水中时,一方面,在水分子的作用下,分子或离子脱离固体表面进入水中,这一过程叫溶解过程;另一方面,溶液中的分子或离子又在未溶解的固体表面聚集成晶体,这一过程叫结晶过程。当这两个相反过程速率相等时,物质的溶解达到最大限度,形成饱和溶液,达到溶解平衡状态。 2.沉淀溶解平衡 绝对不溶解的物质是不存在的,任何难溶物质的溶解度都不为零。以AgCl 为例:在一定温度下,当沉淀溶解和生成的速率相等时,便得到饱和溶液,即建立下列动态平衡: AgCl(s) Ag +(aq)+Cl - (aq) 3.溶解平衡的特征 1)动:动态平衡 2)等:溶解和沉淀速率相等 3)定:达到平衡,溶液中离子浓度保持不变 4)变:当外界条件改变时,溶解平衡将发生移动,达到新的平衡。 三.沉淀溶解平衡常数——溶度积 1)定义:在一定温度下,难溶性物质的饱和溶液中,存在沉淀溶解平衡,其平衡常数叫溶度积常数。 2)表达式:以MmAn(s) mMn +(aq)+nAm -(aq)为例: Ksp=[c(Mn+)]m ·[c(Am-)]n 3)意义:反应了物质在水中的溶解能力。对于阴阳离子个数比相同的电解质,Ksp 数值越大,电解质在水中的溶 解能力越强。 4)影响因素:与难溶电解质的性质和温度有关,而与沉淀的量和溶液中离子的浓度无关。 四.影响沉淀溶解平衡的因素 1)内因:难溶电解质本身的性质 2)外因:①浓度:加水稀释,沉淀溶解平衡向溶解的方向移动 ②温度:多数难溶性电解质溶解于水是吸热的,所以升高温度,沉淀溶解平衡向溶解的方向移动。 ③同离子效应:向沉淀溶解平衡体系中,加入相同的离子,使平衡向沉淀方向移动。 ④其他:向体系中加入可与体系中某些离子反应生成更难溶或气体的离子,使平衡向溶解方向移动。 五.溶度积规则 通过比较溶度积Ksp 与溶液中有关离子的离子积Qc 的相对大小,可以判断难溶电解质在给定条件下沉淀能否生 成或溶解?对AgCl 而言,其Qc=c(Ag +)·c(Cl -),该计算式中的离子浓度不一定是平衡浓度,而Ksp 计算式中的离 子浓度一定是平衡浓度? 1)若Qc>Ksp,则溶液过饱和,有沉淀析出,直至溶液饱和,达到新的平衡? 2)若Qc=Ksp,则溶液饱和,沉淀与溶解处于平衡状态? 3)若Qc

沉淀溶解平衡(讲义及答案)

沉淀溶解平衡(讲义) 一、知识点睛 1.沉淀溶解平衡 (1)定义 在一定条件下,当难溶电解质溶于水形成饱和溶液时, 沉淀和的速率相等,固体质量和 离子浓度不再变化的状态。 (2)溶度积常数(简称溶度积) 对于沉淀溶解平衡A m B n(s) m A n+(aq)+n B m-(aq),溶 度积可表示为K sp= 。 如:PbI2(s) Pb2+(aq)+2I-(aq),K sp(PbI2)= [Pb2+][ I-]2。 ①K sp 只与难溶电解质的性质和温度有关。 ②K sp 反映了难溶电解质在水中的溶解能力,当化学式 所表示的组成中阴、阳离子个数比相同时,K sp 越大, 溶解能力越强。 2.影响沉淀溶解平衡的外界因素 (1)温度 大多数难溶电解质的溶解是吸热的,升高温度,平衡 向的方向移动。 (2)浓度 浓度越稀,溶解程度越大,加水稀释,平衡向 的方向移动。 (3)外加试剂 ①加入相同难溶电解质,平衡不移动。 ②加入某种物质(其中含有难溶电解质的组成离子), 平衡向的方向移动。 ③加入能与难溶电解质电离出的离子反应的物质,平 衡向的方向移动。 3.沉淀的溶解与生成 (1)溶度积规则(浓度商Q 与K sp 的关系) Q K sp 溶液中的离子生成沉淀,直至平衡。 Q K sp 沉淀溶解与离子生成沉淀处于平衡状态。 Q K sp 若体系中有足量固体,则固体溶解,直至平衡。 (2)实例分析 ①做“钡餐”用BaSO4而不用BaCO3

②误服可溶性钡盐可用 5.0%的Na2SO4溶液洗胃 ③石笋、钟乳石和石柱的形成 ④珊瑚的形成 4.沉淀的转化 (1)实质 加入某种能使难溶电解质转化为更难溶电解质的物 质,利用沉淀溶解平衡的移动,实现沉淀的转化。 注:两种难溶物的溶解能力差别越大,越容易转化。 (2)实例分析 ①工业废水中重金属离子的去除 用FeS、MnS 等难溶物作沉淀剂除去工业废水中的 Cu2+、Hg2+、Pb2+等重金属离子。 以FeS 除去工业废水中的Hg2+为例,沉淀转化反应 为。 ②将某些用酸或其他方法不易除去的沉淀转化为用酸 或其他方法易除去的沉淀 锅炉水垢中的CaSO4可用饱和Na2CO3溶液转化为 CaCO3,再用酸除去,沉淀转化反应为 。 ③水垢中Mg(OH)2的形成 持续加热可以使水中部分溶解的MgCO3转化为更 难溶的Mg(OH)2。 二、精讲精练 1.下列对沉淀溶解平衡的描述正确的是() A.难溶电解质溶解开始后,只有溶解过程,没有析出过程B.难溶电解质的沉淀溶解平衡是一种动态平衡,可以通过改变条件使平衡移动 C.达到平衡时,沉淀溶解和生成的速率相等,都为0 D.达到平衡时,溶液中溶质的离子浓度相等,且保持不变 2.下列说法中,正确的是() A.某物质的溶解性为难溶,则该物质的溶解度为0 B.难溶电解质在溶解过程中都存在沉淀溶解平衡 C.某离子被沉淀完全是指该离子在溶液中的浓度为0 D.K sp(AB2)小于K sp(CD),则AB2的溶解度小于CD

增加药物溶解度的方法与影响溶解度的因素

增加药物溶解度的方法(1) 2009-08-20 18:53 【大中小】【我要纠错】 导读:本部分主要讲述执业药师考试中关于增加药物溶解度的方法的知识,其中涉及溶 解度、增溶、成盐等知识。 有些药物由于溶解度较小,即使制成饱和溶液也达不到治疗的有效浓度。例如碘在水中的溶解度为1:2950,而复方碘溶液中碘的含量需达到5%。因此,将难溶性药物制成符合治疗浓度的液体制剂,就必须增加其溶解度。增加难溶性药物的溶解度是药剂工作的一个重 要问题,常用的方法主要有以下几种。 一、制成盐类 一些难溶性的弱酸或弱碱药物,其极性小,在水中溶解度很小或不溶。若加入适当的碱或酸,将它们制成盐类,使之成为离子型极性化合物,从而增加其溶解度。 含羧基、磺酰胺基、亚胺基等酸性基团的药物,常可用氢氧化钠、碳酸氢钠、氢氧化钾、氢氧化铵、乙二胺、二乙醇胺等碱作用生成溶解度较大的盐。 天然及合成的有机碱,一般用盐酸、醋酸、硫酸、硝酸、磷酸、氢溴酸、枸橼酸、水杨 酸、马来酸、酒石酸等制成盐类。 通过制成盐类来增加溶解度,还要考虑成盐后溶液的pH、溶解性、毒性、刺激性、稳定性、吸潮性等因素。如:新生霉素单钠盐的溶解度是新生霉素的300倍,但其溶液不稳定 而不能用。 二、增溶作用 增溶是指某些难溶性药物在表面活性剂的作用下,在溶剂中溶解度增大并形成澄清溶液的过程。具有增溶能力的表面活性剂称为增溶剂。被增溶的物质称为增溶质。每1g增溶剂能增溶药物的克数称增溶量。对于水为溶剂的药物,增溶剂的最适HLB值为15-18. 1、增溶机理 表面活性剂之所以能增加难溶性药物在水中的溶解度,是因为其在水中形成“胶束”的结果。胶束是由表面活性剂的亲油基团向内形成非极性中心区,而亲水基团则向外共同形成的球状体。整个胶束内部是非极性的,外部是极性的。由于胶束的内部与周围溶剂的介电常数不同,难溶性药物根据自身的化学性质,以不同方式与胶束相互作用,使药物分子分散在胶 束中,从而使溶解量增大。 如非极性药物可溶解于胶束的非极性中心区;具有极性基团而不溶于水的药物,在胶束中定向排列,分子中的非极性部分插入胶束中心区,极性部分则伸入胶束的亲水基团方向; 对于极性基团占优势的药物,则完全分布在胶束的亲水基团之间。 2、影响增溶的因素

沉淀的溶解度和影响因素

沉淀的溶解度及其影响因素 在利用沉淀反应进行重量分析时,要求沉淀反应进行完全,一般可根据沉淀溶解度的大小来衡量。通常,在重量分析中要求被测组分在溶液中的残留量在0.000 1g 以,即小于分析天平的称量允许误差。但是,很多沉淀不能满足这个条件。例如,在1 000 mL水中,BaSO4的溶解度为0.002 3 g, 故沉淀的溶解损失是重量分析法误差的重要来源之一。因此,在重量分析中,必须了解各种影响沉淀溶解度的因素。 一、沉淀的溶解度 当水中存在1: 1型难溶化合物MA时,MA溶解并达到饱和状态后,有下列平衡关系: MA (固)MA (水)M+ + A- 式中MA (固) 表示固态的MA,MA (液) 表示溶液中的MA,在一定温度下它的活度积是一常数,即: a (M+)×a (A-) == (7—1) 式中a (M+)和a (A-)是M+和A-两种离子的活度,活度与浓度的关系是: a (M+) = (M+) ×ceq(M+);a (A—) = ( A—) ×ceq (A—)(7—2) 式中(M+)和( A—)是两种离子的活度系数,它们与溶液中离子强度有关。将式( 7 - 2 )代入 (7 – 1 )得 (M+) ceq(M+)·( A-) ceq(A-) = (7—3) 故= ceq(M+)·ceq(A—) = (7—4) 称为微溶化合物的溶度积常数,简称溶度积。 在纯水中MA的溶解度很小,则 ceq(M+) = ceq(A—) = so(7—5) ceq(M+)·ceq(A—) = so2 =(7—6)

上二式中的so是在很稀的溶液,没有其他离子存在时MA的溶解度,由so所得溶度积非常接近于活度积。一般溶度积表中所列的是在很稀的溶液中没有其他离子存在时的数值。实际上溶解度是随其他离子存 在的情况不同而变化的。因此溶度积只在一定条件下才是一个常数。如果溶液中的离子浓度变化不太大,溶度积数值在数量级上一般不发生改变。所以在稀溶液中,仍常用离子浓度乘积来研究沉淀的情况。如果溶液中的电解质浓度较大(例如以后将讨论的盐效应对沉淀溶解度的影响),就必须用式 (7 - 3) 来考虑沉淀的情况。 对于其他类型沉淀如MmAn的溶解度公式,根据质量作用定律可推导为: = [ceq (M n+)]m·[ceq (A m-)]n =((7—7)= = = (7—8) 在一定温度下,难溶电解质在纯水中都有其一定的溶度积,其数值的大小是由难溶电解质本身的性质所决定的。外界条件变化,例如酸度的变化、配位剂的存在等,都将使金属离子浓度或沉淀剂浓度发生变化,因而影响沉淀的溶解度和溶度积。这和配位滴定中,外界条件变化引起金属离子或配位剂浓度变化,因而影响稳定常数的情况相似。 二、影响沉淀溶解度的因素 影响沉淀溶解度的因素很多,如同离子效应、盐效应、酸效应及配位效应等。此外,温度、溶剂、沉淀的颗粒大小和结构,也对溶解度有影响,分别讨论如下。 ?同离子效应 为了减少溶解损失,当沉淀反应达到平衡后,应加入过量的沉淀剂,以增大构晶离子(与沉淀组成相同的离子)浓度,从而减小沉淀的溶解度。这一效应称为同离子效应(commom-ion effect)。 对重量分析来说,沉淀溶解损失的量不超过一般称量的精确度(0.2 mg),即处于允许的误差围之。但一般沉淀很少能达到这要求。例如用BaCl2使SO42—沉淀成BaSO4,(BaSO4) = 1.1×10—10, 当加入BaCl2的量与SO42—的量符合化学计量关系时,在200 mL溶液中溶解的BaSO4质量为 ×233× = 0.000 49g = 0.49 mg 溶解所损失的量已超过重量分析的要求。

影响物质溶解性的因素说课讲稿

《影响物质溶解性的因素》说课 沿庄中学李树娟 一、说教材 1、本课在本章中的地位:学生在前面已学习过物质的溶解、溶液组成的表示方法等知识,同时在日常生活中有一些物质在溶剂中溶解时不能无限制地溶解的初步概念,但学生了解不够,通过本节课知识(影响物质溶解性的因素)的学习为后面知识(物质溶解性的定量表示)的学习作好铺垫。 2、教学目标: (1)建立溶解性、饱和溶液、不饱和溶液的概念。 (2)知道影响物质溶解性的因素。 (3)知道饱和溶液与不饱和溶液相互转化的方法 3、重点与难点: 日常生活中有物质不能在水中无限溶解的实例,但学生没有注意观察,没有深入探究,因而对饱和与不饱和的概念难以理解。 (1)饱和溶液与不饱和概念的的建立。 (2)饱和溶液与不饱和溶液的相互转化。 4、本节内容知识点: (1)溶解性:是指一种物质溶解在另一种物质里的能力。 (2)影响物质溶解性的因素:①不同物质在同一溶剂中溶解性不同。②同一种物质在不同的溶剂中的溶解能力不同。③同一种物质在同一溶剂中的溶解能力与温度有关。 (3)饱和溶液:在一定温度下,一定量的溶剂里,不能再溶解某种溶质的溶

液,叫做这种溶质的饱和溶液。 (4)不饱和溶液:在一定温度下,一定量的溶剂里,还能再溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。 二、说教法: 以杜威为代表的现代教育学派的理论认为,应让学生成为学习的主体,一切教学轰动都必须从学生出发。皮亚杰的知识建构理论认为:每个学生都在积极主动的建构自我的知识体系。基于此,教师在教学中以学生的求知要求为主线,追求教师和学生面对知识共同探讨、平等对话。对于知识的建构,就是一种探究性的学习,除了个体探究之外,我们更应倡导合作探究。在探究教学中,要根据学生的实际差异,提出不同的探究目标。最后利用学生集思广益、思维互补、分析透彻、各抒己见的特点,使问题更清楚更准确。因此本节课作为教师主要是教学的组织者、引领者,设计一定的探究问题,充分发挥学生的能动作用,做好课本中的探究活动,教师帮助学生进行总结和归纳,最终得出正确的结论。 三、说学法: 在本节课中学生主要是在教师的引导下以探究活动为学习知识的主体,与同学合作,探讨课题中的问题,这种学习方法符合人认识事物的规律,对于知识接受来说不容易遗忘,同时在探究过程中培养了学生的实验的基本操作:试管的振荡、给试管加热、溶液的配制、量筒的使用、天平的使用及仪器的洗涤等。 四、说教学过程: 由平时生产、生活中的实例:医用生理盐水用的是质量分数大约为0.9%

13沉淀溶解平衡与溶度积常数

13. 沉淀溶解平衡与溶度积常数 一、知识梳理 1、难溶电解质的沉淀溶解平衡的预备知识 ①20℃时,溶解度与溶解性的关系 ②难溶并非不溶,任何难溶物在水中均存在沉淀溶解平衡。 ③沉淀溶解平衡常为吸热,但Ca(OH)2为放热,升温其溶解度减少。 ④反应后离子浓度降至1×10—5以下的反应为完全反应。 ⑤沉淀溶解平衡方程式的书写:注意在沉淀后用(s)、(aq)标明状态,并用“”。 如:Ag 2S(s)2Ag +(aq)+ S 2—(aq) 2、沉淀溶解平衡 (1)定义:一定温度下,沉淀溶解成离子的速率等于离子重新结合成沉淀的速率,形成饱和溶液,固体质量和溶液中各离子的浓度保持不变的状态。 (2)特征:逆、动、等、定、变 (3)影响沉淀溶解平衡的因素: 内因:难溶物质本身性质——主要决定因素 外因:①温度—升温,多数平衡向溶解方向移动 ②浓度—加水,平衡向溶解方向移动 ③同离子效应—向平衡体系中加入相同的离子使平衡向沉淀方向移动 ④其他—向平衡体系中加入可与体系中某些离子反应生成更难溶物质或气体时,平衡正移 3、溶度积常数(Ksp ) (1)定义:在一定温度下,难溶电解质在溶液中达到沉淀溶解平衡时,离子浓度保持不变。其离子浓度的化学计量数次方的乘积为一个常数,称之为溶度积常数,简称溶度积,用Ksp 表示。 (2)表达式:AmBn(s)mA n+(aq)+nB m —(aq) Ksp= [A n+]m ?[B m —]n 注:①Ksp 值的大小只与难溶电解质本身的性质和温度有关,与浓度无关。 ②Ksp 反映了难溶电解质在水中的溶解能力。同类型的难溶电解质,在同温度下,Ksp 越大,溶解度越大 二、典例分析 例题1、在含有Mg(OH)2沉淀的饱和溶液中加入固体NH 4Cl 后,则Mg(OH)2沉淀( ) A .溶解 B .增多 C .不变 D .无法判断 考点:难溶电解质的溶解平衡及沉淀转化的本质. 分析:氢氧化镁电离出来的OH —与NH 4+结合生成弱电解质NH 3?H 2O ,从而促进Mg(OH)2 的溶解,据此分析解答. 解答:氢氧化镁溶液中存在溶解平衡Mg(OH)2(s)Mg 2+(aq)+2OH —(aq),Mg(OH)2电离出 来的OH —与NH 4+结合生成难电离的弱电解质NH 3?H 2O ,氢氧根离子浓度降低,从而使Mg(OH)2的溶解平衡向右移动,促进氢氧化镁溶解,故Mg(OH)2能溶于NH 4Cl 溶液中。 故选A . 点评:本题考查了难溶电解质的溶解平衡,从溶解平衡角度进行分析解答即可,难度不大. 三、实战演练 1、下列说法正确的是( ) A .难溶电解质的溶度积Ksp 越小,则它的溶解度越小 B .任何难溶物在水中都存在沉淀溶解平衡,溶解度大小都可以用Ksp 表示 C .溶度积常数Ksp 与温度有关,温度越高,溶度积越大 D .升高温度,某沉淀溶解平衡逆向移动,说明它的溶解度是减小的,Ksp 也变小 难溶 微溶 可溶 易溶 0.01 1 10 (S g/100g 水)

气体在水中的溶解度

表中的符号意义如下。 ——吸收系数,指在气体分压等于101.325 kPa时,被一体积水所吸收的该气体体积(已折合成标准状况); l——是指气体在总压力(气体及水气)等于101.325 kPa时溶解于1体积水中的该气体体积;q——是指气体在总压力(气体及水气)等于101.325 kPa时溶解于100 g水中的气体质量(单位:g)。 气体在水中的溶解度 The Aquatic Solubilities of Gases 气体 (Gas) H 2 He Ar Kr Xe Rn O 2 N 2 Cl

Br 2 (蒸气) 空气 NH 3 H 2S HCl CO CO 2溶解度符 号 (Solubility symbol)温度(Temperature)/℃010203040506080100×102 q×1042.171.981.821.721.661.631.621.601.60 1.921.741.601.471.391.291.180.79 0.970.9910.9941.0031.0211.07 -1.751.741.721.701.69

- - - 5.284.133.372.882.51 0.1110.0810.0630.0510.043 0.2420.1740.1230.0980.082 0.5100.3260.2220.1620.126- - 0.036 - 0.085-----0 ------0000 ---×102 q×104 ×102 ×102 q×1032.091.84

4.893.803.102.612.312.091.951.761.70 6.955.374.343.593.082.662.271.38 2.942.311.891.621.391.211.050.660 4.613.152.301.801.441.231.020.683 1.460.9970.7290.5720.4590.3930.3290.223 60.535.121.313.8 42.924.814.99.5 2.9182.2841.8681.564- - -- - -- - ---- 2.351.861.551.341.181.091.020.9580.947×102 q×103 l q q l×102

07电离平衡及影响因素

07. 电离平衡及影响因素 一、知识梳理 1、概念:在一定的条件下,当弱电解质分子电离成离子的速率和离子结合成分子的速率相等时,电离过程就达到了平衡状态,叫电离平衡。 2、特征:与化学平衡相似,即“逆、等、动、定、变”。 3、影响因素: (1)内因:电解质本身的性质 (2)外因: ①温度:由于电离是吸热过程,故升高温度,促进电离,K增大 ②浓度:浓度越大,电离程度越小;稀释促进电离(碰撞效应),K不变 ③同离子效应:在弱电解质溶液里加入与弱电解质具有相同离子的电解质,抑制电离,K不变 ④化学反应:加入能与弱电解质电离产生的某种离子反应的物质时,促进电离,K不变 二、典例分析 例题1、在含有酚酞的0.1mol/L氨水中加入少量的NH4Cl晶体,则溶液颜色()A.变蓝色B.变深C.变浅D.不变 考点:弱电解质在水溶液中的电离平衡. 分析:从加入少量的NH4Cl晶体后氨水的电离平衡移动方向进行判断. 解答:因氨水电离生成氢氧根离子,则酚酞遇碱变红,当加入少量的NH4Cl晶体后,NH4+离子浓度增大,根据同离子效应,加入NH4Cl后,氨水的电离平衡向逆方向移动,抑制氨水电离,从而c(OH—)变小,颜色变浅. 故选:C. 点评:本题考查电离平衡问题,注意影响平衡移动的因素,本题属同离子效应问题,较为简单. 三、实战演练 1、在0.1mol/L的CH3COOH溶液中,要促进醋酸电离,且氢离子浓度增大,应采取的措施是() A.升温B.降温 C.加入NaOH溶液D.加入稀HCl 2、在NH3?H2O NH4++OH—形成的平衡中,要使NH3?H2O的电离程度及c(OH—)都增大,可采取的措施是() A.通入HCl B.加少量NaOH固体 C.加少量氯化铵固体 D.加热

专题13 沉淀溶解平衡(解析版)

“递进式”进阶复习13——沉淀溶解平衡 递进式复习(step by step):感知高考教材回扣变式再现 ◆感知高考 【真题1】[2018·海南卷]某温度下向含AgCl固体的AgCl饱和溶液中加少量稀盐酸,下列说法正确的是 A.AgCl的溶解度、K sp均减小 B.AgCl的溶解度、K sp均不变 C.AgCl的溶解度减小、K sp不变 D.AgCl的溶解度不变、K sp减小 【答案】C 【解析】在含AgCl固体的AgCl饱和溶液中存在沉淀溶解平衡:AgCl(s)Ag+(aq)+Cl-(aq),当加入少量稀盐酸时,c(Cl-)增大,平衡逆向移动,c(Ag+)减小,溶解的氯化银质量减小,AgCl的溶解度减小;AgCl的Ksp只受温度影响,温度不变,AgCl的Ksp不变。 【真题2】[2019·新课标Ⅱ,12]绚丽多彩的无机颜料的应用曾创造了古代绘画和彩陶的辉煌。硫化镉(CdS)是一种难溶于水的黄色颜料,其在水中的沉淀溶解平衡曲线如图所示。下列说法错误的是 A.图中a和b分别为T1、T2温度下CdS在水中的溶解度 B.图中各点对应的K sp的关系为:K sp(m)=K sp(n)

相关文档
相关文档 最新文档