文档库 最新最全的文档下载
当前位置:文档库 › 实验一梁结构静力有限元分析(精)

实验一梁结构静力有限元分析(精)

实验一梁结构静力有限元分析(精)
实验一梁结构静力有限元分析(精)

实验一 梁结构静力有限元分析

一、实验目的:

1、 加深有限元理论关于网格划分概念、划分原则等的理解。

2、 熟悉有限元建模、求解及结果分析步骤和方法。

3、 能利用ANSYS 软件对梁结构进行静力有限元分析。

二、实验设备:

微机,ANSYS 软件(教学版)。

三、实验内容:

利用ANSYS 软件对图示由工字钢组成的梁结构进行静力学分析,以获得其应力分布情况。

A-A B-B

四、实验步骤:

1、建立有限元模型:

(1) 建立工作文件夹:

在运行ANSYS 之前,在默认工作目录下建立一个文件夹,名称为beam ,在随后的分析过程中所生成的所有文件都将保存在这个文件夹中。

启动ANSYS 后,使用菜单“File ”——“Change Directory …”将工作目录指向beam 文件夹;使用“Change Jobname …”输入beam 为初始文件名,使分析过程中生成的文件均以beam 为前缀。

选择结构分析,操作如下:

GUI: Main Menu > Preferences > Structural

(2) 选择单元:

操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Beam >3D 3 node 189

然后关闭Element Types 对话框。

(3) 定义材料属性:

定义弹性模量和泊松比,操作如下:

GUI: Main Menu > Preprocessor > Material Props > Material Models > Structural > linear > Elastic > Isotropic

在弹出的对话框中输入材料参数: 杨氏模量(EX): 2.06e11

泊松比(PRXY): 0.3

(4) 定义梁的截面类型和尺寸:

操作如下: GUI: Main Menu > Preprocessor > Sections > Beam > Common Sections

选择“工”字型,W1=W2=0.4,W3=0.6,t1=t2=t3=0.015

(5)创建实体模型:

F=10000N 6m

6m A A B B

首先定义3个关键点,然后通过关键点生成梁实体模型。

定义关键点操作如下:

GUI: Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

关键点坐标参数如下:

1#关键点 X=0,Y=0,Z=0

2#关键点 X=0,Y=6,Z=0

3#关键点 X=6,Y=6,Z=0

连线操作如下:

GUI: Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight Line 将1和2、2和3连成直线。

(6)划分网格

①首先要设定各梁的截面方向,操作如下:

GUI: Main Menu > Preprocessor > Meshing > Mesh Attributes > Picked Lines

选中12线后点“OK”,在弹出对话框中“Pick Orientation Keypoint”项选为Yes,选中第3点为参考点。同样,选中23线后以第1点为参考点。

②划分网格为10份,操作如下:

GUI: Main Menu > Preprocessor > Meshing > MeshTool > Lines set (NDIV处输入10) > Mesh

③划分完后显示出截面可看得更清楚,操作如下:

菜单“Plotctrls” > Style > Size and Shape … > Display of element 项为 On Ctrl键+鼠标右键可调角度。

④保存数据库。 GUI: Toolbar >SAVE_DB

2、施加载荷并求解:

(1)定义约束

定义1#关键点的约束,操作如下:

GUI: Main Menu > Solution > Define Loads > Apply > Structural > Displacement > On Keypoints 选择1#关键点,单击OK按钮。在被约束自由度(DOFs to be constrained)列表中选”All DoF”限制所有,单击OK按钮。这时在图形窗口中可看到1#关键点处出现箭头,表示此点已被约束,箭头表示被约束的方向。

(2) 施加载荷

在梁的上边中间施加向下的载荷Fy=-10000N,操作如下:

GUI:Solution > Define Loads > Apply > Structural > Force/ Moment > On Nodes

弹出Apply F/M on Nodes 对话框,键入Fy载荷值-10000,单击OK按钮。

(3) 求解

GUI:Solution > Solve > Current LS

3、查看分析结果:

(1)查看模型变形前后图

GUI: Main Menu > General Postproc > Plot Results > Deformed Shape> Def+undeformed

保存图使用菜单“PlotCtrls” > Hardcopy > To file…

(2)查看等效应力

显示等效应力等值线图,操作如下:

GUI: Main Menu > General Postproc > Plot Results > Nodal Solu > Stress > von Mises stress

单击OK按钮。保存图使用菜单“PlotCtrls” > Hardcopy > To file…

(3)查看变形过程动画

菜单PlotCtrls > Animate > Deformed Results > Stress > von Mises SEQV

动画内容自动在工作目录下保存为avi格式。

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

结构抗震试验方法概述

结构抗震试验方法概述 严健南京林业大学研究生院 摘要:地震的多发性和破坏性,使得结构抗震试验研究越来越受到人类的广泛关注。目前人类已经发明了很多结构抗震试验研究的方法,本文详细介绍了目前结构抗震试验常用的四种方法,分别是(1)拟静力试验方法;(2)多维拟静力试验方法;(3)地震模拟振动台试验方法;(4)拟动力试验方法,并对其各自特点及存在的问题进行了概述。关键词:抗震试验;拟静力试验;振动台试验;拟动力试验;概述 The Summary of the Dynamic Testing Method of Structures Abstract More and more people pay more attention to the seismic research of structures which due to the multiple and devastating earthquake. Some dynamic test means were developed by human in the recent years. In this paper, four kinds of commonly used structure seismic test methods were describe, including The Pseudo Static experiment method, Dimensional Quasi-Static test methods, seismic simulation shaking table experiment method, Pseudo-dynamic test method. Key words dynamic testing; the pseudo-static experiment; shaking table experiment; pseudo-dynamic test;aseismatic design methods; summary 0 前言

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

结构静力分析

第一章结构静力分析 1.1 结构分析概述 结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。 在ANSYS产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。 静力分析---用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。 模态分析---用于计算结构的固有频率和模态。 谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 曲屈分析---用于计算曲屈载荷和确定曲屈模态。ANSYS可进行线性(特征值)和非线性曲屈分析。 显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 此外,前面提到的七种分析类型还有如下特殊的分析应用: ●断裂力学 ●复合材料 ●疲劳分析 ●p-Method 结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型 从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。 1.2 结构线性静力分析 静力分析的定义 静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。 静力分析中的载荷 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括: ●外部施加的作用力和压力 ●稳态的惯性力(如中力和离心力) ●位移载荷 ●温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形,塑性,蠕变,应力刚化,接触(间隙)单元,超弹性单元等。本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

抗震结构设计测试题及答案

《抗震结构设计》水平测试题及答案 一、名词解释 1、地震烈度: 指某一地区的地面和各类建筑物遭受一次地震影响的强弱程度。 2、抗震设防烈度: 一个地区作为抗震设防依据的地震烈度,应按国家规定权限审批或颁发的文件(图件)执行。 3、场地土的液化: 饱和的粉土或砂土,在地震时由于颗粒之间的孔隙水不可压缩而无法排出,使得孔隙水压力增大,土体颗粒的有效垂直压应力减少,颗粒局部或全部处于悬浮状态,土体的抗剪强度接近于零,呈现出液态化的现象。 4、等效剪切波速: 若计算深度范围内有多层土层,则根据计算深度范围内各土层剪切波速加权平均得到的土层剪切波速即为等效剪切波速。 5、地基土抗震承载力: 地基土抗震承载力aE a a f f ζ=?,其中ζa 为地基土的抗震承载力调整系数,f a 为深宽修正后的地基 承载力特征值。 6、场地覆盖层厚度: 我国《建筑抗震设计规范》(GB50011-2001)定义:一般情况下,可取地面到剪切波速大于500m/s 的坚硬土层或岩层顶的距离。 7、重力荷载代表值: 结构抗震设计时的基本代表值,是结构自重(永久荷载)和有关可变荷载的组合值之和。 8、强柱弱梁: 结构设计时希望梁先于柱发生破坏,塑性铰先发生在梁端,而不是在柱端。 9、砌体的抗震强度设计值: VE N V f f ?=,其中f v 为非抗震设计的砌体抗剪强度设计值,ζN 为砌体抗震抗剪强度的正应力影响 系数。 10、剪压比: 剪压比为c 0V/f bh ,是构件截面上平均剪力与混凝土轴心抗压强度设计值的比值,用以反映构件截面上承受名义剪应力的大小。 二、填空题(每空1分,共25分) 1、地震波包括在地球内部传播的体波和只限于在地球表面传播的面波,其中体波包括 纵波(P )波和 横(S ) 波,而面波分为 瑞雷 波和 洛夫 波,对建筑物和地表的破坏主要以 面 波为主。 2、场地类别根据 等效剪切波波速 和 场地覆土层厚度划分为IV 类。 3、在用底部剪力法计算多层结构的水平地震作用时,对于T 1>时,在 结构顶部 附加ΔF n ,其目的是

衍架的结构静力分析

实验一 衍架的结构静力分析 结构静力分析是ANSYS 软件中最简单,应用最广泛的一种功能,它主要用于分析结构在 固定载荷(主要包括外部施加的作用力,稳态惯性力如重力和离心力,位移载荷和温度载荷等)作用下所引起的系统或部件的位移,应力,应变和力。一般情况下,结构静力分析适用于不考虑或惯性,阻尼以及动载荷等对结构响应的影响不大的场合,如温度,建筑规范中的等价静力风载和地震载荷等在结构中所引起的响应。 结构静力分析分为线性分析和非线性分析两类,由于非线性分析涉及大变形,塑性,蠕变和应力强化等内容,较为复杂,不适于作为入门教学。因此,本实训中只讨论ANSYS 的线性结构静力分析。 一、问题描述 图1所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一 个方向向下的力F y ,衍架的尺寸已在图中标出,单位: m 。试计算各杆件的受力。 其他已知参数如下: 弹性模量(也称扬式模量) E=206GPa ;泊松比μ=0.3; 作用力F y =-1000N ;杆件的 横截面积A=0.125m 2. 显然,该问题属于典型的衍架静力分析问题,通过理论求解 方法(如节点法或截面法)也可以很容易求出个杆件的受力,但这里为什么要用ANSYS 软件对其分析呢? 二、实训目的 本实训的目的有二:一是使学生熟悉ANSYS8.0软件的用户界面,了解有限元分析的一 般过程;二是通过使用ANSYS 软件分析的结果和理论计算结果进行比较,以建立起对利用ANSYS 软件进行问题根系的信任度,为以后使用ANSYS 软件进行更复杂的结构分析打基础。 图1衍架结构简图

三、结果演示 通过使用ANSYS8.0软件对该衍架结构进行静力分析,其分析结果与理论计算结果如表 1所示。 表1 ANSYS 分析结果与理论计算结果的比较 比较结果表明,使用ANSYS 分析的结果与理论计算结果的误差不超过0.5%,因此, 利用ANSYS 软件分析来替代理论计算是完全可行的。 四、实训步骤 (一) ANSYS8.0的启动与设置 1. 启动。点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。如图2所示。其中,几个常用的部分有应用菜单,命令输入栏,主菜单,图形显示区和显示 图形显示区 主菜单 应用菜单 命令输入栏 显示调整工具栏 图2 用户主界面

智慧树知到工程结构抗震章节测试答案

智慧树知到《工程结构抗震》章节测试答案 第一章 1、抗震设防是指对建筑物进行抗震设计并采取一定的抗震构造措施,以达到结构抗震的效果和目的,其依据是()。 A:基本烈度 B:多遇烈度 C:抗震设防烈度 D:罕遇烈度 正确答案:抗震设防烈度 2、某地区设防烈度为7度,则该地可能遭遇的预估大震烈度为( )度。 A:5.45 B:8 C:6 D:9 正确答案:8 3、我国建筑工程抗震设防分类标准将建筑物按其用途的重要性分为()类。 A:二类 B:三类 C:四类 D:五类 正确答案:四类 4、我国地震烈度表采用的是()度的烈度表。

B:8 C:10 D:12 正确答案:12 5、地震现象表明,()使建筑物产生上下颠簸,()使建筑物产生水平方向摇晃。A:面波 B:纵波 C:横波 D:勒夫波 正确答案:纵波,横波 6、地球上某一点到震中的距离称为( )。 A:震源深度 B:震中心 C:震中距 D:震源距 正确答案:震中距 7、设计基本地震加速度0.15g对应的抗震设防烈度是()。 A:6 B:7 C:8 D:9

正确答案: 第二章 1、根据《建筑抗震设计规范》下列()属于竖向不规则的条件。 A:抗侧力结构的层间受剪承载力小于相邻上一楼层的80% B:该层的侧向刚度小于相邻上一层的80% C:除顶层外,局部收进的水平尺寸大于相邻下一层的20% D:该层的侧向刚度小于其上相邻三个楼层侧向刚度平均值的85% 正确答案:抗侧力结构的层间受剪承载力小于相邻上一楼层的80% 2、当某层的侧向刚度小于其上相邻三个楼层侧向刚度平均值的(),为侧向刚度不规则。A:85% B:75% C:80% D:70% 正确答案:80% 3、为实现立面规则性,相邻楼层的质量变化不得超过()。 A:50% B:55% C:60% D:65% 正确答案:50% 4、为实现立面规则性,抗侧力构件的层间受剪承载力不得小于相邻上一层的()。 A:80%

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

结构静力分析边界条件施加方法与技巧—约束条件

在结构的静力分析中载荷与约束的施加方案对计算结果有较大的影响,甚至导致计算结果不可信,笔者在《结构设计CAE主业务流程》的博文中也提到这一点。那么到底如何施加载荷与约束呢?归根到底要遵循一个原则——尽量还原结构在实际中的真实约束和受力情况。本文着重介绍几种约束的施加方法与技巧,并通过具体例子来进一步说明。 1 销轴约束 销轴连接在结构中是很常见的一种形式,其约束根据具体的结构形式有所不同,下面以一个走行装置为例具体介绍一下。 走行装置是连接平动轨道与上部结构的,其约束应是轨道通过车轮对走行装置的约束,但是通常对于车轮只要验证其轮压满足要求即可,因此在模型中往往将车轮简化掉,因此对于走行装置的约束就变为销轴约束。 图1 某走行装置 图1 中1-10是与车轮相连接的轴孔,车轮行驶于轨道上,约束位置在10对轴孔处,如果把整个轴孔都约束则约束刚度太大,结果会导致圆孔周围应力过大,因此应简化为约束轴孔中心点,将中心点与轴孔边缘通过刚性单元连接,简化为点约束。首先y方向(竖直向上)是应该约束的(此处假设车轮及轴为刚体),其次由于轨道与轮缘的相互作用,z方向(侧向)也应该是约束的,然后由于走行装置在向下的压力下会产生沿x方向(运行方向)的位移,因此x方向约束应放开,但是如果10对轴孔中心x方向的约束全放开则会导致约束不全无法计算,因此应在1轴孔或10轴孔中心处施加x方向的约束,这样实现全自由度约束。 2 转动轨道约束 图2是一个翻车机模型,该结构通过电机驱动,托辊支撑,2个端环在轨道上转动来实现翻卸功能。

图2 翻车机 由于翻车机托辊支撑端环,由电机驱动不断地翻转卸车,造成其约束位置方向不断变化,针对一个具体翻转角度,翻车机端环在与托辊接触处(线接触)应约束沿翻车机端环径向,另外,由于翻车机在荷载作用下会产生沿翻车机轴向的位移,所以两端环中要约束一个端环的轴向自由度。 3 对称面约束 图3是某钢水罐模型,该模型关于y-z面对称,下面介绍一下该结构的约束处理。 图3 钢水罐 首先在1处由于受到钢水罐起吊装置的限制,其竖直方向y及水方向z无法变形,应施加z 方向及y方向的约束,而x方向是没有约束的,此时因缺少约束无法计算,应注意到该结构(包

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

ANSYS Workbench Mechanical第四章 静力结构分析

Workbench -Mechanical Introduction 第四章 静力结构分析

概要 Training Manual ?本章,将练习线性静力结构分析,模拟过程中包括: A.几何和单元 B.组件和接触类型 C.分析设置 D.环境,如载荷和约束 环境如载荷和约束 E.求解模型 F.结果和后处理 ?本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用。 –尽管本章中讨论的一些选项可能需要更高级的许可,但都给了提示。

线性静态结构分析基础 Training Manual ?对于一个线性静态结构分析(Linear Static Analysis),位移{x}由下面的矩阵方程解出: []{}{}F K= x 假设: –[K] 是一个常量矩阵 [K]是个常量矩阵 ?假设是线弹性材料行为 ?使用小变形理论 可能包含些非线性边界条件 ?可能包含一些非线性边界条件 –{F}是静态加在模型上的 ?不考虑随时间变化的力 ?不包含惯性影响(质量、阻尼) ?记住关于线性静态结构分析的假设是很重要的。非线性静态分析和动态分析在后面章节讲解。

A. 几何模型 Training Manual ?在结构分析中,可能模拟各种类型的实体。 ?对于面实体,在Details of surface body中一定要指定厚度值。 ?线实体的截面和方向,在DesignModeler里进行定义,并自动导入到Simulation(模拟)中。

… 质量点 Training Manual ?在模型中添加一个质量点来模拟结构中没有明确建模的重量体: –质量点只能和面一起使用。 –它的位置可以通过下面任一种方法指定: ?用户自定义的坐标系中指定(x,y,z)坐标值 ?通过选择顶点/边/面指定位置 –质量点只受包括加速度、重力加速度和角加速度的影响。 –质量是与选择的面联系在一起的,并假设它们之间没有刚度。 –不存在转动惯性

有限元上机实验报告

有限元法基础及应用 上机报告 南京理工大学 2015年12月 上机实验一

1 实验题目 设计一个采用减缩积分线性四边形等参元的有限元模型,通过数值试验来研究网格密度、位移约束条件与总刚度矩阵奇异性、沙漏扩展、求解精度的关系,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。总结出你的研究结论,撰写实验报告。 2 实验目的 通过实验来研究减缩积分方案中网格密度和位移约束条件对总体刚度矩阵奇异性和求解精度的影响,以此加深对有限元减缩积分的理解,和对减缩积分中保证总体刚度矩阵非奇异性的认识。 3建模概述 先保持位移约束条件不变,研究网格密度对总体刚度矩阵奇异性和求解精度的影响,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。如下图1所示,建立一个简支和链杆的约束条件,然后不断增加网格密度,通过ABAQUS 来计算位移和应力的变化规律。 个独立关系式)节点(两个自由度)

4 计算结果分析讨论与结论 1)1*1单元四边形减缩积分实验 载荷布种/单元 应力云图 2)2*1单元四边形减缩积分实验 载荷单元

应力云图3)4*4单元四边形减缩积分实验 载荷布种单元 应力云图

结果分析 5 实验体会与小结 单元刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 K相同 (4)平面图形相似、弹性矩阵D、厚度t相同的单元,e K的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两 (5)e 列,其位置与结点位置对应。 整体刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 (4)稀疏性 (5)非零元素呈带状分布。 [K]的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。为消除[K]的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 对于一个给定形式的单元,如果采用精确积分,则插值函数中所有项次在|J|=常数的条件下能被精确积分,并能保证刚度矩阵的非奇异性。如果采用减缩积分,因为插值函数中只有完全多项式的项次能被精确积分,因此需要进行刚度矩阵非奇异必要条件的检查。

基于NX有限元分析实验报告

有限元分析及应用 专业:机械 姓名:你喝 学号:2 0 1 3 X X 指导老师:没意义 工字梁热力学与结构学耦合分析

有限元分析(FEA,Finite Element Analysis)将物体划分成有限个单元,这些单元之间通过有限个节点相互连接,单元看作是不可变形的刚体,单元之间的力通过节点传递,然后利用能量原理建立各单元矩阵;在输入材料特性、载荷和约束等边界条件后,利用计算机进行物体变形、应力和温度场等力学特性的计算,最后对计算结果进行分析,显示变形后物体的形状及应力分布图。有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 热——结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量的影响,热——结构耦合问题是结构分析中较常见的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者是结构件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后再进行结构分析。在NX环境中进行热——结构耦合分析,首先进行热分析求得结构的温度场,然后再进行结构分析,并将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。 1.模型建立 2.热分析 新建FEM和仿真 点击开始按钮,选择“高级仿真”,激活高级仿真模块。在仿真导航器中选择“新建FEM 和仿真” 解算方案 网格收集器 添加材料属性,从材料清单中选择“Steel”,单击“确定” 划分网格 添加约束(进入仿真环境) 所有外表面添加对流约束,环境温度为45,对流系数为100W/m^2-C 添加热约束 在工字梁顶端设置65恒温 解算方案求解

梁结构静力有限元分析论文

梁结构静力有限元分析论文 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:ANSYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B 1#面 2#面 C A B D

C,A 1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants菜单。 建立的切片模型如下:

折板的有限元分析(实验报告)

ANSYS上机实验报告实验二:折板的有限元分析 班级: 姓名: 学号:

一、实验题目 图示折板,右侧受力F=1000N,该力均匀分布在边缘各节点上,板厚t=2mm,材料选用低碳钢,弹性模量E=210GPa,u=0.33。 二、实验过程 1、确定所采用的单位制:N,mm,MPa。 2、问题类型:平面应力问题。 3、利用ANSYS构造实体模型。 4、网格划分 1)、定义材料属性:Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 210e3, PRXY: 0.33 →OK 2)、定义单元类型:Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad-8node(Plane82) →OK (back to Element Types window) →Options… →selelt K3: Plane Strsw/thk →Close (the Element Type window) 3)、定义实常数(厚度):Main Menu: Preprocessor →Real Constants… →Add… →select Type 1→OK→input THK: 2 →OK →Close (the Real Constants Window) 4)、划分网格:为作网格密度对比,在size element edge length(单元边长值)分别输入1,3,8 。 5、加载及求解

ansys有限元分析实验报告

(此文档为word格式,下载后您可任意编辑修改!) ANSYS有限元分 试验报告

ANSYS试验报告 一、ANSYS简介: ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如ProEngineer, NASTRAN, AutoCAD等,是现代产品设计中的高级CAE工具之一。 本实验我们用的是ANSYS12.1软件。 二、试验题目: 我们组做的是第六组题目,具体题目如下: (6)如图所示,LB=10,a= 0.2B , b= (0.5-2)a,比较b 的变化对 最大应力 x的影响;并与(5) 比较。 三、题目分析: 该问题是平板受力后的应力分析问题。我们通过使用ANSYS软件求解,首先要建立上图所示的平面模型,然后在平板一段施加位移约束,另一端施加载荷,最后求解模型,用图形显示,即可得到实验结果。 四、ANSYS求解: 求解过程以b=0.5a=0.02为例:

1.建立工作平面,X-Y平面内画长方形, L=1,B=0.1,a=0.02,b=0.5a=0.01;(操作流程:preprocessor→modeling →create→areas→rectangle) 2.根据椭圆方程,利用描点法画椭圆曲线,为了方便的获得更多的椭圆上的点,我们利用C++程序进行编程。程序语句如下: 运行结果如下:

本问题(b=0.5a=0.01)中,x在[0,0.02]上每隔0.002取一个点,y 值对应于第一行结果。由点坐标可以画出这11个点,用reflect命令关于y轴对称,然后一次光滑连接这21个点,再用直线连接两个端点,便得到封闭的半椭圆曲线。(操作流程:create→keypoints→on active CS→依次输入椭圆上各点坐标位置→reflect→create→splines through keypoints→creat→lines→得到封闭曲线)。 3.由所得半椭圆曲线,生成半椭圆面。用reflect命令关于x轴对称(操作流程:create→areas by lines→reflect→得到两个对称的半椭圆面)。 4.用substract命令,将两个半椭圆面从长方形板上剪去(操作流程:preprocessor→modeling→create→Booleans→substract→areas.)。

试验三结构梁的有限元分析

实验三结构梁的有限元分析 (一) 实验目的 1.了解ANSYS在有限元分析中的作用; 2.理解ANSYS的工作机理; 3.掌握ANSYS的建模及分析方法; 4.掌握梁结构的有限元分析方法。 (二) 实验设备和工具 装有ANSYS软件的计算机 (三) 实验原理 1.有限元建模的基本原则 建模时需要考虑两条基本原则:一是保证计算结果的精度,二是控制模型的规模。在保证精度的前提下,减小模型规模是必要的,它可在有限的条件下使有限元计算更好、更快地完成。 (1) 保证精度原则 ① 适当增加单元数量,即划分比较密集的网格。实际计算时,可以比较两种网格的计算结果,如果相差较大,可以继续增加单元数量。如果结果变化不大,则可以停止增加。 ②在划分网格特别是在应力精度要求很高的区域时尽量划分比较规则的网格形状。一般情况下,使单元形状为正多边形(等边三角形或正方形)和正多面体。 (2) 控制规模原则 模型规模是指模型的大小,直观上可用节点数和单元数来衡量。 ①可以通过控制节点和单元数量来控制模型规模。此外,模型规模还受节点和单元编号的影响。 ② 在估计模型规模时,除了考虑节点的多少外,还应考虑节点的自由度数。 2.有限元建模的一般步骤 不同问题的有限元建模过程和内容不完全相同,在具体实施分析之前,首先弄清分析对象的几何形状、约束特点和载荷规律,以明确结构型式、分析类型、计算结果的大致规律、精度要求、模型规模大小等情况,以确定合理的建模策略和分析方案。 3.形状处理方法 几何模型对分网过程、网格形式和网格数量都有直接影响。几何建模时,对原有结构进

行适当处理是必要的。 (1) 降维处理:对某些结构作近似处理,按平面问题或轴对称问题来计算,把三维问题简化或近似为二维问题来处理。 (2) 细节简化:结构中存在的一些相对尺寸很小、处于结构的非高应力区的细节,如倒圆、倒角、退刀槽、加工凸台等,可以简化处理。 (3) 局部结构的利用:当有些结构尺寸很大,但受力或同时受力的却是某些相对很小的局部,结构只是在局部发生变形,应力也分布在局部区域内时,可以从整个结构中划分出一部分进行分析。 (4) 对称性的利用:当结构形状和边界条件具有某种对称性,应力和变形呈相应的对称分布时,可以只取出结构的一半计算。 4.单元类型 单元类型的选择应根据分析类型、形状特征、计算数据特点、精度要求和计算条件等因素综合考虑。在结构分析领域,不同的结构类型需要相应的单元进行离散。因此单元通常是按结构类型进行分类的,即根据结构的特点选择相应单元。 5.单元特性 单元特性定义了单元内部数据,包括材料数据、截面数据等。 (1) 材料特性 材料特性用于定义分析对象的材料在力学、热学等方面的性能,如弹性模量E、泊松比、密度、导热系数、热膨胀系数等。 (2) 物理特性 物理特性用于定义单元物理参数或辅助几何特征,在ANSYS中称为实常数。 (3) 截面特性 杆、梁这类一维单元需要定义其截面特性。杆件结构只承受拉压,其截面特性只有截面积。梁结构可以承受拉压、弯曲和扭转,其截面特性包括截面积、主惯矩、极惯矩等截面性质。 (4) 单元相关几何数据 某些单元具有一些相关几何数据,以对单元作进一步说明。 6.网格划分原则 (1) 网格数量 网格数量的多少主要影响以下两个因素。 ①结果精度 网格数量增加,结果精度一般会随之提高,但当网格数量太大时,数值计算的累积误差反而会降低计算精度。 ②计算规模 网格数量增加,将会增加计算时间。并不是网格分得越多越好,应该考虑网格增加的经济性,在实际计算时应权衡两个因素综合考虑。 (2) 网格疏密 网格疏密是指结构不同部位采用不同大小的网格,又称相对网格密度。应力集中区域采用较密集的网格,而在其它非应力集中区域,则采用较稀疏的网格。采用疏密不同的网格划分,既可保持相当的精度,又可使网格数量减小。 (3) 单元阶次 采用高阶单元可以提高计算精度,但高阶单元的节点较多,使用时也应权衡精度和规 模综合考虑。 (4) 网格质量

相关文档