文档库 最新最全的文档下载
当前位置:文档库 › 物流运筹学-线性规划

物流运筹学-线性规划

物流运筹学-线性规划
物流运筹学-线性规划

物流运筹学—线性规划

运筹学的概念

?运筹学是一门研究各种资源的运用、规划以及相关决策等问题的学科,其目的是根据问题的要求,通过数学的分析和运算,做出系统的、合理的优化安排,以便更经济、更有效地利用有限的资源。简略地说,是运用科学的数量方法(主要是数学模型)研究对人力、物力进行合理的规划和运用,寻求科学决策的综合性交

叉学科。

运筹学的产生

?运筹学作为科学名词是出现在20世纪30年代末,但作为运筹学的早期工作其历史可追溯到1914年。

?第二次世界大战后,在英、美军队中相继成立了更为正式的运筹研究组织,并以兰德公司(RAND)为首的一些部门开始着重研究战略性问题。

?最早建立运筹学会的国家是英国(1948年),接着是美国(1952年)、法国(1956年)、日本和印度(1957年)等。到1986年为止,国际上已有38个国家和地区建立了运筹学会或类似的组织。

运筹学在我国的发展?运筹学在1956年曾称为运用学,到1957年正式定名为运筹学。

?运筹学在我国的发展始于1955年,钱学森、许国志等教授结合我国的特点将运筹学由西方引入我国。

?1980年我国成立运筹学会。运筹学的研究方法

数学规划、图论、决策论、

对策论、排队论、

存储论、可靠性理论等。

–线性规划

–整数规划

–非线性规划

–动态规划

–几何规划

–参数规划

–多目标规划

–组合优化

–图论与网络分析

–优选与统筹方法

运筹学的研究思路?提出和形成问题

?建立模型

?求解

?解的检验

?解的控制

?解的实施

线性规划

设置变量

变量,就是待确定的未知数,也称决策变量变量一般要求

非负。

确定目标函数

目标函数:某个函数要达到最大值或最小值,也即问题要实现的目标,就是目标函数。目标是求最大值的,用max;求最小值的,用min。

考虑约束条件

约束条件,就是变量所要

满足的各项限制,包括变量的非负限制。它是一组包含若干未知数的线性不等式或线性等式。资源包括人力、资金、设备、原材料、电力等。要根据各种资源的限制,确定取等式或不等式。

写出线性规划模型

?将目标函数与约束条件写在一起,就是线性规划模型。?我们通常将目标函数写在前面,约束条件写在目标函数的后面

?一家工厂生产两种类型的浴缸,A-S和B-Y,

生产一个A-S需要9个工时,12英尺管道,1个水泵;生产一个B-Y需要6个工时,16英尺管道,1个水泵,1个A-S可赚$350,一个B-Y可赚$300。现有200个水泵,1566个工时,2880英尺管道,下个月生产计划该如何制定,才能使利润最大化?

运筹学与物流

?运筹学被大量地应用在各种

物流活动中

?生产计划

?库存管理

?运输问题

?设备更新

?物流中心选址

?市场销售

生产计划

?例1:某物流企业计划生产A,B两种产品,已知生产A 产品1公斤需要劳动力7工时,原料甲3公斤,电力2度;生产B产品1公斤需要劳动力10工时,原料甲2公斤,电力5度。在一个生产周期内,企业能够使用的劳动力最多6300工时,原料甲2124

公斤,电力2700度。又已知生产1公斤A,B产品的利润分别为10元和9元。试建立能获得最大利润的线性规模型。

物资调运问题

?例2 现有三个产地A,B,C供应某种商品,供应量分别为50吨、30吨、70吨;有四个销地Ⅰ,Ⅱ,Ⅲ,Ⅳ,需求量分别为30吨、60吨、20吨、40吨。产地A到销地Ⅰ,Ⅱ,Ⅲ,Ⅳ的每吨商品运

价分别为15元、18元、19元、13元;产地B到销地Ⅰ,Ⅱ,Ⅲ,Ⅳ的每吨商品运价分别为20元、14元、15元、17元;产地C到销地Ⅰ,Ⅱ,Ⅲ,Ⅳ的每吨商品运价分别为25元、16元、17元、22元。如何求出最优调运方案?试建立线性规划模型。

列表分析题意

建立例2的线性规划模

?(1)引进变量

?设产地A运往销地Ⅰ,Ⅱ,Ⅲ,Ⅳ的运输量分别为x

11

x12,x13,x14;产地B运往销地Ⅰ,Ⅱ,Ⅲ,Ⅳ的运输量分别为x21,x22,x23,x24;产地C运往销地Ⅰ,Ⅱ,Ⅲ,Ⅳ的运输量分别为x31,x32,x33,x34。

(2)确定目标函数

?目标函数就是使问题达到最大值或最小值的函数。

?设运输总费用为S,故目标函数为:

?min S=15x11+18x12+19x13+13x14+20x21 +14x22+15x23+17x24+25x31 +16x32

+17x33+22x34

?其中min S表示使运输总费用S 最小。

(3)考虑约束条件

约束条件就是各种资源的限制条件及变量非负限制

?产地A的总运出量应等于其供应量,即

x11+x12+x13+x14=50

同理,对产地B和C,有

x21+x22+x23+x24=30

x31+x32+x33+x34=70

?运进销地Ⅰ的运输量应等于

其需求量,即

x11+x21+x31=30

?同理,对销地Ⅱ,Ⅲ,Ⅳ,有

x12+x22+x32=60

x13+x23+x33=20

x14+x24+x34=40

?运输量应非负,故约束条件为:

(4)写出线性规划问题

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 . 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则 1 由原问题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

1x ,2x ,3x ≥0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b 列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4,-3)=-4,故5x 为换出变量。 换入变量的确定,计算得15,40,80/3,故1x 为换入变量。

由表可知,6x 为换出变量。2x 为换入变量。然后继续画单纯形表: 可得4x 为换出变量,3x 为换入变量。继续做单纯形表:

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ ’=21y +42y +33y +04y +05y +06y 31y +42y +23y +4y =60 21y +2 y +23y +5y =40 1y +32y +23y +6y =80 1y ,2y ,3y ,4y ,5y ,6y ≥0 然后建立单纯形表,可得 i

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s.t. 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问 1 题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s.t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s.t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s.t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

八种 经典线性规划例题(超实用)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

2015简单线性规划典型例题

良好的开端是成功的一半 1. “平面区域”型考题 1.不等式组?? ? ??-≥≤+<31y y x x y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则 ( ) A .D P D P ??21且 B .D P D P ∈?21且 C . D P D P ?∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y x D .82300>+y x 3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题 1.设平面点集{} 221 (,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则A B 所表示的平 面图形的面积为 A 34π B 35π C 47π D 2 π 2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域 {(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1 4 3、若A 为不等式组002x y y x ≤?? ≥??-≤? 表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫 过A 中的那部分区域的面积为 . 4、 若不等式组0 3434 x x y x y ≥?? +≥??+≤? 所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是 (A ) 73 (B ) 37 (C )43 (D ) 34 高 5、若0,0≥≥b a ,且当?? ? ??≤+≥≥1,0, 0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面 区域的面积等于__________. 3. “求约束条件中的参数”型考题 1.在平面直角坐标系中,若不等式组10 1010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示的平面区域内的面积等于2, 则a 的值为 A. -5 B. 1 C. 2 D. 3 2、若直线x y 2=上存在点),(y x 满足约束条件?? ???≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A . 21 B .1 C .2 3 D .2 3、设二元一次不等式组2190802140x y x y x y ?+-? -+??+-? ,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图 象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9] 4.设m 为实数,若{250 (,)300x y x y x mx y -+≥??-≥??+≥? }22 {(,)|25}x y x y ?+≤,则m 的取值范围是___________. 4. “截距”型考题 1. ,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) ()A 12()B 11 ()C 3()D -1 2.设变量,x y 满足-100+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为A .20 B .35 C .45 D .55 3.若,x y 满足约束条件1030330 x y x y x y -+≥??? +-≤??+-≥??,则3z x y =-的最小值为 。 4.设函数ln ,0 ()21,0 x x f x x x >?=?--≤?,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成

线性规划习题

第一章 线性规划习题 1. 将下列线性规划问题变换成标准型,并列出初始单纯形表。 1) min Z =-3x 1+4x 2-2x 3+5x 4 s.t.???????≥≥+-+-≤-++-=-+-. ,0,,22321432244321432143214321无约束x x x x x x x x x x x x x x x x 2) max S =z x /p k s.t.???? ????? ==≥=-=-=∑∑∑===).,...,2,1;,...,2,1(0),,...,2,1(1, 1 11 m k n i x n i x x a z ik m k ik n i m k ik ik k 2. 分别用单纯法中的大M 法和两阶段法求解下述线性规划问题: min Z =2x 1+3x 2+x 3 s.t.??? ??≥≥+≥++.0,,,623,8243 212 1321x x x x x x x x 并指出该问题的解属哪一类解。 3. 【表1-6】是某求极大化线性规划问题计算得到单纯形表。表中无人工变量, a 1, a 2, a 3, d , c 1, c 2为待定常数。试说明这些常数分别取何值时,以下结论成立。 1) 表中解为唯一最优解; 2) 表中解为最优解,但存在无穷多最优解; 3) 该线性规划问题具有无界解; 4) 表中解非最优,为对解进行改进,换入变量为x 1,换出变量为x 6。 表1-6 4. 某饲料厂用原料A 、B 、C 加工成三种不同牌号的饲料甲、乙、丙。已知各 种牌号饲料中A 、B 、C 含量,原料成本,各种原料的每月限制用量,三种牌号的饲料的单位加工费及售价如【表1-7】所示。 表1-7

简单的线性规划典型例题

简单的线性规划典型例题 例1画出不等式组 ? ? ? ? ? ≤ + - ≤ - + ≤ - + - .0 3 3 4 2 y x y x y x , , 表示的平面区域. 分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分. 解:把0 = x,0 = y代入2 - + -y x中得0 2 0< - + - ∴不等式0 2≤ - + -y x表示直线0 2= - + -y x下方的区域(包括边界), 即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示. 说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法. 例2 画出3 3 2≤ < -y x表示的区域,并求所有的正整数解) , (y x. 分析:原不等式等价于 ? ? ? ≤ - > .3 ,3 2 y x y 而求正整数解则意味着x,y 有限制条件,即求 ? ? ? ? ? ? ? ≤ - > ∈ ∈ > > .3 ,3 2 , , ,0 ,0 y x y z y z x y x . 解:依照二元一次不等式表示的平面区域,知3 3 2≤ < -y x表示的区域如下图:

对于332≤<-y x 的正整数解,先画出不等式组.???????≤->∈∈>>. 3,32,,,0,0y x y z y z x y x 所表示的平面区域,如图所示. 容易求得,在其区域的整数解为)1,1(、)2,1(、)3,1(、)2,2(、)3,2(. 说明:这类题可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域找出符合题设要求的整数点来. 例3 求不等式组?????+-≤-+≥1 11x y x y 所表示的平面区域的面积. 分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积.而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论. 解:不等式11-+≥x y 可化为)1(-≥≥x x y 或)1(2-<--≥x x y ; 不等式1+-≤x y 可化为)0(1≥+-≤x x y 或)0(1<+≤x x y . 在平面直角坐标系作出四条射线

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x1+40 x2 +80 x3 s.t. 3 x1 +2 x2 + x3 2 4x1 +x2 +3x3 4 2x1 +2x2 +2x3 3 x1 , x2 , x3 0 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。解:(1)设对应于上述约束条件的对偶变量分别为y1,y2, y3 ;则由原问题和对偶问题,可以直接写出对偶问题为: Max Z'=2 y1+4 y2+3 y3 s.t 3y1+4 y2+2 y3 60 2y1+y2+2 y3 40 y1 +3y2 +2 y3 80 y1,y2,y3 0 (2)用对偶单纯形法求解原问题(添加松弛变量x4 ,x5 , x6 )MaxZ= -60 x1 -40x2-80x3 +0x4 +0x5 +0x6 s.t -3x1 -2x2- x3+ x4 =-2 -4x1-x2-3x3+x5=-4 -2 x1-2 x2-2 x3+x6=-3

X i, X2 , X3 0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4, -3)=-4,故x为换出变量。换入变量的确定,计算得15,40, 80/3,故x i为换入变量。 由表可知,X6为换出变量。X2为换入变量。然后继续画单纯形表:

X i, X2 , X3 0

可得X4为换出变量,X3为换入变量。继续做单纯形表: 所以此问题的最优解为X= (11/10,19/30, 1/10),此对偶问题的最优解为Y二(16,12,30),原问题的最小值为118/3. (3)MaxZ '2 y1+4 y2 +3 y +0 y +0 * +0 y S.t 3 y1+4 y2+2 y3+ y4=60 2 y1 + y2 +2 y 3 + y =40 y1 +3y2+2 出 + y6=80 y1, y2, y3, y4, y5, y6 0 然后建立单纯形表,可得

线性规划期末复习题

《线性规划》期末复习题1 一、将下列线性规划问题化成标准型 3412281221212(1).21612,0 12MaxZ x x x x x x st x x x x =+-+≤+≤+≤≥????? 4612361221012(2).764120,0 12MinZ x x x x x x st x x x x =+-≥+≤-=≥≤????? 二、考虑下述线性规划问题 1105234912.52812,012 Maxf x x x x st x x x x ???????=++≥+≤≥ 求: (1) 用图解法求解。 (2) 写出此线性规划问题的标准型。 (3) 求出此线性规划问题的两个松弛变量的值。 三、考虑下述线性规划问题 118121022012331812..493612,012MinZ x x x x x x st st x x x x =++≥+≤+≥≥????? 求: (1) 用图解法求解。 (2) 写出此线性规划问题的标准型。 (3) 求出此线性规划问题的三个剩余变量的值。 四、考虑下述线性规划问题的灵敏度分析 431261282.231812,0 12MaxZ x x x x st x x x x =+≤≤+≤≥????? (1) 用图解法求最优解和最优目标函数值。 (2) 假定1c 值不变,求出使最优解不变的2c 值的变化范围。 (3) 假定2c 值不变,求出使最优解不变的1c 值的变化范围。 (4) 当1c 值从4变为1,2c 值不变,求出新的最优解。 (5) 当1c 值从4变为2.5,2c 值从3变为2时,其最优解是否发生变化?为什么? (6) 当右端项由(6,8,18)变为(7,8,18)时,最优解怎么变化? (7) 如果1x 的约束系数由(1,0,2)变为(1,0,3时),最优解怎么变化? (8) 如果增加一个约束5 x 1 +3 x 2≤25,最优解怎么变化?

六种经典线性规划例题

1 线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选 D

2 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 解:如图,作出可行域,x 2 +y 2 是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方, 即|AO|2 =13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选 C 六·比值问题 当目标函数形如y a z x b -= -时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。 例 已知变量x ,y 满足约束条件?????x -y +2≤0,x ≥1,x +y -7≤0, 则 y x 的取值范围是( ). (A )[95,6] (B )(-∞,9 5]∪[6,+∞) (C )(-∞,3]∪[6,+∞) (D )[3,6] 解析 y x 是可行域内的点M (x ,y )与原点O

运筹学--线性规划问题最优解的确定与改进

线性规划问题最优解的确定与改进 线性规划是运筹学的一个重要分支。自1947年丹捷格(G.B.Dantzig )提出了一般线性规划问题求解的方法——单纯形法之后,线性规划在理论上趋向成熟,在实用中日益广泛与深入。线性规划最优解求解问题,在《运筹学》本科版给出了图解法和单纯形法。 一般线性规划问题的标准型为: 1 max (14)n j j i z c x ==-∑ 1,1,2(15)0,1,2,(16) n i j j i j j a x b i m x j n ===-≥=-?∑???? 满足约束条件(1-5)式、(1-6)式的解12(,,,)T n X x x x = ,称为线性规划问题的可行解,其中使目标函数达到最大值的可行解称为最优解。 2009年中国科教创新导刊,第三十期李高秀写的《线性规划中最优解的准确确定》中详细介绍了图解法的过程,图解法适合于二元线性规划问题,对于多元线性规划问题图解法相对较难。 图解法过程: 1 线性目标函数最值的分析 对于线性目标函数Z=ax+by ,若b ≠0时,目标函数可变为a z y x b b =-+,则是直线a z y x b b =-+在y 轴上的截距。 (1)b>0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的截距 z b 最大时z 最大;当z b 最小时z 最小。 (2)b<0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的 截距z b 最大时z 最小;当z b 最小时z 最大。 由以上两点可知,要求线性目标函数z=ax+by 的最大最小值要注意y 的系数b 的正负和平移直线在y 轴上的截距。 2 在图上分别作出约束函数和目标函数,平移目标函数线到可行域的交点时,要把目标函数的斜率与相交于这一点的直线的斜率进行比较 上述的最值分析是确定平移目标函数的大概方向,而这次是确定最优解的确凿位置。斜率比较大

相关文档
相关文档 最新文档