文档库 最新最全的文档下载
当前位置:文档库 › 集成电路用电子化学品

集成电路用电子化学品

集成电路用电子化学品
集成电路用电子化学品

集成电路用电子化学品

它包括四类关键产品:

第一、超净高纯试剂

超净高纯化学试剂超净高纯化学试剂,亦称湿化学品,或加工化学品,是超大规模集成电路制作过程中关键性基础化工材料之一,主要用于芯片的湿法清洗和湿法蚀刻,它的纯度和洁净度对IC的成品率、电性能及可靠性都有着十分重要的影响。超净高纯试剂具有品种多、用量大、技术要求高、贮存有效期短和强腐蚀性等特点。使用这种试剂的工艺主要是洗净(包括干燥)、光刻、蚀刻、显影、去膜、掺杂等。这种试剂包括超净高纯酸及碱类、超净

高纯有机溶剂和超净高纯蚀刻剂。在半导体工业中的消耗比例大致为:NH

4

OH 4%-8%,HCI 3%

一6% ,H

2SO

4

27%一33%、其它酸10%-20%、H

2

O

2

8%一22%、蚀刻剂12%一20%、有机溶剂10%

一15%。

随着IC存储容量的增大,存储器电池的氧化膜更薄,而试剂中所含的杂质、碱金属等溶进氧化膜之中,造成耐绝缘电压的下降;试剂中所含的重金属若附着在硅晶片表面上,则会使P-N结耐电压降低。一般认为,产生IC断丝、短路等物理性故障的杂质分子大小为最小线宽的1/4,产生腐蚀或漏电等化学性故障的杂质分子大小为最小线宽的1/10。主要生产商有北京化学试剂所(500t/a,22个品种)、苏州瑞红电子化学品公司(1000t/a,40余个品种)等。

北京化学试剂研究所的BV-Ⅲ级试剂已达到国外Semi-c7质量标准,适合于0.8u-1.2um 工艺,已形成500吨/年规模的生产能力,MOS级试剂已开发生产出20多个品种,年产量超过4000吨,这在我国处于较高水平,但只相当于国外的中等水平;国外Semi-c12质量标准达到0.09u-0.2um工艺水平。

2002年10月,上海华谊开始承担国家‘863’计划ULSI超纯试剂制备工艺研究课题,从事超纯过氧化氢、硫酸、氢氟酸、盐酸、醋酸、异丙醇等微电子化学品的研究和开发。国内首个超高纯微电子化学品项目2004年底在上海兴建,这个项目由上海华谊集团公司所属的上海中远化工有限公司与台湾联仕电子化学材料股份有限公司联合出资。项目首期投资超过1. 7亿人民币,预计将在2005年内完工投产,届时可年产近2万吨各种超高纯微电子化

学品。中国的超高纯微电子化学品一直依赖进口。为实施这一项目组建了华谊微电子材料有限公司,总经理为库尔特斯·德夫,公司目标是为超大规模集成电路和平面显示器的生产厂商提供他们所需的超高纯微电子化学品,满足国内电子产业的急切需求。

罗门哈斯公司已在中国建立建立8个工厂,其中在广东和香港分别有一家电子材料工厂。Mae Dermid公司在中国的番禺和香港设有电子化学品生产装置,已在上海建设了新装置。从而加强其在中国电子化学品市场的地位。该公司在亚太地区销售额至少已占其销售总收人的15%。日本精氢氟酸(HF)生产商Stella化学公司与中国浙江中央Fluor工业公司组建55/45合资企业,投资500万美元,建设1万吨/年无水氢氟酸装置,于2003年底投产。所产氢氟酸由Stella化学公司大阪和新加坡生产地提纯至电子级。Stella化学公司高纯氢氟酸在电子工业中所占份额已达60%一70%。

第二、光刻胶

1、辐射线抗蚀剂(光刻胶)

辐射线抗蚀剂(光刻胶)是指通过紫外光(UV)、电子束(EB)、准分子激光束(KrF248nm 和ArF193nm) } X射线、离子束等照射或辐射,其溶解度发生变化的耐蚀刻薄膜材料,经曝光和显影而使溶解度增加的是正型光刻胶,溶解度减小的是负型光刻胶。

为了适应微电子行业亚微米图形加工技术的要求,光刻胶的开发,已从普通紫外光(UV)即g线(436nm ),发展到深紫外( DUV)即i线(365nm),准分子激光束(KrF248nm和ArF193nm)以及电子束、X射线、离子束等一系列新型辐射抗蚀材料,即紫外光刻胶(包括紫外正型光刻胶、紫外负型光刻胶)、深紫外光刻胶、电子束胶、X-射线胶、离子束胶等。目前的开发重点是i线光刻胶和化学增幅性光刻胶(CAR)。CAR ( Chemically Amplified Resist)是以易酸解聚合物为最佳化学平台,加入适当的光产酸剂、光引发剂及其它成分构成的。化学增幅性193nm光刻胶的研制被列为国家“十五”863计划,由北京化学试剂研究所承担技术攻关。

光刻胶目前国产能力约100t/a,北方生产大户是北京化学试剂所(负胶20t/a,正胶5t/a)南方大户是苏州瑞红电子化学品公司(负胶20t/a。正胶20t/a) 。无锡化工研究院的电子束

胶可提供少量产品。国内光刻胶的其他研制生产单位有上海试剂一厂、黄岩有机化工厂、北师大、上海交大等。

北京化学试剂研究所一直是国家重点科技攻关课题——光刻胶研究的组长单位。“十五”期间,科技部为了尽快缩小光刻技术配套用材料与国际先进水平的差距,将新型高性能光刻胶列入了“863”重大专项计划之中,并且跨过0.35μm和0.25μm工艺用i线正型光刻胶和248nm深紫外光刻胶两个台阶,直接开展0.1μm~0.13μm工艺用193nm光刻胶的研究。苏州瑞红则是微电子化学品行业中惟一一家中外合资生产企业,曾经作为国家“八五”科研攻关“南方基地”的组长单位,其光刻胶产品以用于LCD的正胶为主,负胶为辅。

第三、特种电子气体

在特种电子气体方面,高纯气体中N2,H2,Ar等气体在电子工业中主要用作稀释气和运载气;而硼烷(B2He)、磷烷(PH3 )、砷烷(AsHs)等气体主要用作气体掺杂剂。特气产品除要求“超纯”之外,还要求“超净”,即特气中粒子和金属杂质有极严格的要求。我国特气市场以中外合资企业为主,如英国BOC公司与上海吴淞化工厂合资建立的上海比欧西气体公司(SBOC )、与天津华北氧气厂合资建立的天津伯克气体公司及在张家港建立的张家港BOC气体设备公司等;法国液化空气公司在华建了3家特气合资企业;美国空气产品和化学品公司(APCI )在华也建了3家合资企业;日本岩谷产业、美国普莱克斯(Praxair )、日本氧气公司、德国林德公司也纷纷在华建立了合资企业。国内特气企业也在迅速发展,四川中核红华特种气体公司、黎明化工研究院等单位是其中的典型代表,国内仅氟化物特种气体的年产量已超过2000吨,发展速度很快。

第四、环氧模塑料

塑料封装材料是封装材料中后起之秀。塑料封装材料主要以环氧树脂和有机硅为主,其次为有机硅环氧、聚酰亚胺和液晶聚合物。环氧树脂价格相对较便宜、成型工艺简单、适合大规模生产、可靠性也较高,因此近10年来发展很快。目前国外半导体器件的80%~90%(日本几乎全部)由环氧树脂封装材料所代替,其发展前景十分看好。

环氧树脂封装材料的组成和特性环氧树脂封装材料是由环氧树脂、固化剂、固化促进剂、无机填料、脱模剂、着色剂等十几种组份配制而成,其中环氧树脂是主要组份,可选用酚醛环

氧树脂或双酚A型环氧树脂。在热和促进剂的作用下,环氧树脂与固化剂发生交联固化反应,固化后成为热固性塑料。按其用途可分为塑封料、包封料和灌封料,其中对塑封料的要求最高。

环氧塑封料是IC封装的非常重要的结构材料之一。目前90%以上的集成电路是采用环氧封装料封装的塑封电路。环氧模塑料近几年在国内高速增长,产品供不应求。2000年产量为5500吨一6000吨,仅连云港华威电子集团有限公司一家就实现产销3500吨。该公司的主要产品有六大系列,89个品种,其中多数可满足lum-3um集成电路封装的需要,KL-4000型塑封料可用于0.8um-1.0um集成电路封装。环氧模塑料目前世界年产量已超过10万吨。国内生产该材料的主要厂家有7家,其中独资企业2家,国有企业2家,其他3家。

如连云港华威电子集团有限公司有二条线,有5000多吨的生产能力,中国科学院化学所有二条线,有2000多吨的生产能力,成都齐创有有500多吨的生产能力,其他还有浙江黄岩(500)、苏州住友(2000)、电木(2000)以及长兴电子等。以EMC为主的塑料封装约占整个封装的91%以上,受到业内人士的普遍关注。2001年按塑封料占整个封装的90%计算,用EMC为10200吨。2002年国内EMC需求量达到14000吨-18 000吨。目前国内EMC

的生产水平是能基本满足0.3 u m技术的需要,研制水平为用于0.35 u m封装,初步形成了本土塑封材料工业,打破了外国企业一统天下的局面。

2004年我国国内封装塑封料总用量在27000吨左右,国内厂商2004年塑封料产销量为17500吨左右,进口塑封料在9500吨左右。预测在2007年国内环氧塑封料厂家规划总生产能力可达到52000吨,与2004年同比将增长62.5%。

日立旗下的日立化成工业拟投资25亿日元(约合人民币1.9亿元) 建设一家半导体封装材料新的生产基地“日立化成工业(苏州)”,形成6000吨/年的封装材料生产能力。该项目初定于2005年4月动工,并于年内投产。目前,苏州已有三星、瑞萨、飞索、快捷、AMD、飞利浦、英飞凌等组成的半导体封装测试企业群。

此前,日立化成主要在其国内和马来西亚两个基地生产半导体封装材料。此次在中国建立新的生产基地后,将形成总计约3万吨/年的供货能力。日立化成方面希望到2010年将其在中国的市场占有率由目前的约20%(该公司估计)提高到40%以上。

对材料的要求进一步提高,新型材料成为研究方向。如脂环式环氧树脂的合成,不用环氧氯丙烷为原料,因此产品的有机氯含量为0。因此有可能开发出超高纯度的环氧树脂新材料,这对于电子封装的高纯净要求十分有利。目前这方面的研究报道很少,几乎没有工业化的产品出现,是今后电子封装材料值得注意的一个开发方向。开发绿色环保型无有害物质添加剂的封装材料是未来的必然趋势。环氧树脂基纳米复合封装材料环氧树脂中加入纳米材料也是一种行之有效的改性方法。

2)印制电路板(PCB) 配套用电子化学品

印刷电路板(PCB)是电子元件工业中的最大产业,产值和销售额均占世界电子元件总产值和总销售额的16%。近年来,我国PCB工业发展速度持久,产值产量已占世界第3位,年递增达18%;虽然2001年我国PCB总体下滑近30%,但当年出口额同比增长7.45%。我国PCB 行业已从生产销售单面板为主转变到以多层板为主,但仍处于来料加工水平。全国现有多层板产商52家、双面板产商25家、单面板产商10家、柔性板产商13家,环绕PCB的企业全国现有约1000家,包括PCB产品制造商、PCB物料供应商、PCB设备供应商、PCB辅助服务商、PCB装配厂商、PCB贸易服务商等。印制电路板配套用的化学品主要分为以下四类:

第一、基板用化学品

包括基体树脂和增强材料。基体树脂主要是酚醛树脂、环氧树脂、聚酯树脂和聚酰亚胺树脂,以及新崭露头角的BT树脂等。用作基体的酚醛树脂目的国内年产量为5000吨左右,用量最大的是环氧树脂。20世纪90年代以来我国环氧树脂发展迅速,目前拥有大大小小企业约150家,超过世界其它国家环氧树脂厂家总和,但生产能力仅占世界总生产能力的9%,品种少,质量差,中低档产品居多,技术和装备十分落后。其中万吨级企业有岳阳石化环氧树脂厂、无锡树脂厂、江苏三木集团和广东汽巴高分子料有限公司等。目前总的年生产能力在8万吨左右,只能部分满足基板生产的需求,大部分仍需进口。2000年国内环氧树脂净进口量达到11.72万t以上。据海关提供的数据,2005年1~4月我国环氧树脂进口78000多吨,其中4月进口近26000吨,大大超过前3个月的平均水平。

增强材料中,用量最大的是电子级玻璃纤维布,目前国内已有十多家企业建立了无碱池窑生产线,1999年生产具有代表性的7628布已达1000万米左右。

第二、线路成型用光致抗蚀剂和网印油墨

光致抗蚀剂是制造印制电路板电路图形的关键材料,目前主要用液态光致抗蚀剂和干膜抗蚀剂两大类,其中干膜抗蚀剂用量最大,在各种抗蚀剂中占90%以上。现在国内有七八家企业生产干膜抗蚀剂,年产100万平方米左右,远远不能满足国内PCB制造的需求,大部分依靠进口。液态抗蚀剂有四种类型,自然干燥型、加热固化型、UV(紫外光) 固化型和感光成像型。前三种类型的抗蚀剂是用丝网印刷的方法制作电路图形,主要适用于线宽200um以上的单面印制电路板的生产;后一种是用光致成像的光刻工艺制作电路图形,适用于制作精细、高密度双面和多层印制电路板。现在国内有七八家企业生产各种类型的抗蚀剂,年产量在1500吨左右,还不能满足国内PCB制造需求。目前国产网印油墨只能满足中、低档需求,高档产品用液态感光成像阻焊剂等大部分需要进口。去年国内使用的各种阻焊剂1500吨左右,其中,感光成像阻焊剂需求增长最快。

阻焊剂的年用量约1500吨。其中热固型占20%, UV光固型占33.3%,感光成像液态阻焊剂占13.3%。除阻焊剂外,还有字符油墨、导电油墨等。目前网印油墨只能满足中、低档需求,高档产品液态感光成像阻焊剂等大部分依靠进口。

第三、电镀用化学品。

除主要用于镀铜工艺外,在镀镍、锡、金及其他资金属的电镀工艺中也要使用。常用的电镀化学品有Na2S2O2、Na2SO4、NaOH、H2SO4、CuSO4、HNO3、HCl等,这些产品国内均能供应,有些特殊性能要求的电镀添加剂需进口。

第四、其他化学品

用于显影、蚀刻、黑化、除胶、清洗、保护助焊等工艺的其他化学品,如保护涂料、消泡剂、粘合剂和助焊剂等,目的国内有几家公司及科研单位生产这些产品。2004年,国内电镀用化学品及显影、蚀刻等其他化学品的市场规模已超过2亿元,而且需求增长很快。自供量仅10%左右.其余主要靠进口。

美国Rockwood电子化学品公司R.ockwood特种产品印刷线路板(PWB )化学品分公司在苏州吴忠经济开发区投资600万美元建设电子化学品新装置。Rockwood新装置将生产各种

印刷线路板(PWB )化学品,包括Shadow品牌产品用于直接镀金属过程,以及铜添加剂、蚀刻剂、氧化物和氧化物替代品。Rockwood公司在中国台湾省的中坜拥有PWB化学品生产装置,占有很强的市场竞争地位。PWB化学品占Rockwood公司电子业务销售额一半以上,2002年电子业务总销售额为1.47亿美元。

集成电路-微电子-学习中概念解释

1:SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS 电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。通常根据在绝缘体上的硅膜厚度将SOI分成薄膜全耗尽FD(Fully Depleted)结构和厚膜部分耗尽PD(Partially Depleted)结构。由于SOI的介质隔离,制作在厚膜SOI结构上的器件正、背界面的耗尽层之间不互相影响,在它们中间存在一中性体区,这一中性体区的存在使得硅体处于电学浮空状态,产生了两个明显的寄生效应,一个是"翘曲效应"即Kink 效应,另一个是器件源漏之间形成的基极开路NPN寄生晶体管效应。如果将这一中性区经过一体接触接地,则厚膜器件工作特性便和体硅器件特性几乎完全相同。而基于薄膜SOI结构的器件由于硅膜的全部耗尽完全消除"翘曲效应",且这类器件具有低电场、高跨导、良好的短沟道特性和接近理想的亚阈值斜率等优点。因此薄膜全耗尽FDSOI应该是非常有前景的SOI结构。 目前比较广泛使用且比较有发展前途的SOI的材料主要有注氧隔离的SIMOX(Seperation by Implanted Oxygen)材料、硅片键合和反面腐蚀的BESOI(Bonding-Etchback SOI)材料和将键合与注入相结合的Smart Cut SOI材料。在这三种材料中,SIMOX适合于制作薄膜全耗尽超大规模集成电路,BESOI 材料适合于制作部分耗尽集成电路,而Smart Cut材料则是非常有发展前景的SOI 材料,它很有可能成为今后SOI材料的主流。 2:速度过冲 Velocity overshoot effect (1)基本概念: 速度过冲效应(Velocity overshoot effect)是半导体载流子在强电场作用下所产生的一种瞬态输运现象。另外一种重要的瞬态输运现象是弹道输运。速度过冲效应所表现出来的效果就是载流子的漂移速度超过正常的定态漂移速度。这种效应对于小尺寸器件以及化合物半导体器件等的性能的影响比较大,可有效地提高器件的工作频率和速度。与速度过冲相对应的一种瞬态输运现象是速度下冲,即是突然去掉强电场时所产生的漂移速度低于定态速度的一种现象。(2)产生机理: 产生速度过冲的原因就在于半导体中载流子的动量弛豫时间远小于其能量弛豫时间,这实际上也就意味着,在强电场作用下,载流子能够很快地获得很大的动量,而相应地较难于获得很高的能量。这是由于载流子在强电场作用下获得动量的机理与获得能量的机理不同所致。由于晶体中能够提供能量和动量的客体通常是声学波声子和光学波声子,而一般声学波声子的动量较大、能量较小,光学波声子的能量较大、动量较小,所以在强电场作用下,载流子所获得的动量主要是来自于声学波声子,而所获得的能量则主要是来自于光学波声子。因为载流子从声学波声子处获得动量的速度要大于从光学波声子处获得能量的速度,所以在强电场作用下,载流子即会很快地通过与声学波声子的散射而获得动量、并达到很大的漂移速度,而与此同时其能量却可能仍然将处于原来较低的状态,需要通过较长一段时间才能达到相应的较高能量的状态;于是,这时载流

微电子学与集成电路分析

微电子学与集成电路分析 1微电子学与集成电路解读 微电子学是电子学的分支学科,主要致力于电子产品的微型化,达到提升电子产品应用便利和应用空间的目的。微电子学还属于一门综合性较强学科类型,具体的微电子研究中,会用到相关物理学、量子力学和材料工艺等知识。微电子学研究中,切实将集成电路纳入到研究体系中。此外,微电子学还对集成电子器件和集成超导器件等展开研究和解读。微电子学的发展目标是低能耗、高性能和高集成度等特点。集成电路是通过相关电子元件的组合,形成一个具备相关功能的电路或系,并可以将集成电路视为微电子学之一。集成电路在实际的应用中具有体积小、成本低、能耗小等特点,满足诸多高新技术的基本需求。而且,随着集成电路的相关技术完善,集成电路逐渐成为人们生产生活中不可缺少的重要部分。 2微电子发展状态与趋势分析 2.1发展与现状 从晶体管的研发到微电子技术逐渐成熟经历漫长的演变史,由晶体管的研发→以组件为基础的混合元件(锗集成电路)→半导体场效应晶体管→MOS电路→微电子。这一发展过程中,电路涉及的内容逐渐增多,电路的设计和过程也更加复杂,电路制造成本也逐渐增高,单纯的人工设计逐渐不能满足电路的发展需求,并朝向信息化、高集成和高性能的发展方向。现阶段,国内对微电子的发展创造了良好的发展空间,目前国内微电电子发展特点如下:(1)微电子技术创新取得了具有突破性的进展,且逐渐形成具有较大规模的集成电路设计产业规模。对于集成电路的技术水平在0.8~1.5μm,部分尖端企业的技术水平可以达到0.13μm。(2)微电子产业结构不断优化,随着技术的革新产业结构逐渐生成完整的产业链,上下游关系处理完善。(3)产业规模不断扩大,更多企业参与到微电子学的研究和电路中,有效推动了微电子产业的发展,促使微电子技术得到了进一步的完善和发展。 2.2发展趋势 微电子技术的发展中,将微电子技术与其他技术联合应用,可以衍生出更多

2018年全球集成电路用电子化学品行业市场分析:超600亿规模 局部地区发展态势喜人

2018年全球集成电路用电子化学品行业市场分析:超600 亿规模局部地区发展态势喜人 电子化学品是电子工业重要的支撑材料之一 集成电路行业作为全球信息产业的基础,在产业资本的驱动下,已逐渐成为衡量一个国家或地区综合竞争力的重要标志和地区经济的晴雨表。集成电路产品的广泛应用推动了电子时代的来临,也成为现代日常生活中必不可少的组成部分。 其中,电子化学品是电子工业重要的支撑材料之一,其质量的好坏,不但直接影响到电子产品的质量,而且对微电子制造技术的产业化有重大影响。IC产 业的发展要求电子化学品产业与之同步。因此,电子化学品成为世界各国为发展电子工业而优先开发的关键材料之一。 全球集成电路用电子化学品行业市场规模进一步扩大 目前,电子化学品主要应用在芯片的制造和封装测试领域。电子化学品占整个IC制造成本的10%-20%左右。2016-2018年,全球集成电路用电子化学品市场规模保持持续增长趋势,2015年为近年来最低值433亿美元。2018年,全球集成电路用电子化学品行业市场规模为609亿美元,比2017年增长11.7%。 2014-2018年全球集成电路用电子化学品行业市场规模统计及增长情况

数据来源:前瞻产业研究院整理 中国台湾为最大消费地区,韩国、日本、中国大陆紧随其后 2000年,全球约四分之三的电子化学品市场集中在美国,西欧和日本。随 着其他亚洲国家成为生产地区,这一主导地位迅速下降,2018年占全球IC加工化学品消费量的36%左右。这一趋势得益于全球消费电子市场不断增长,消费电子产品生产行业不断增长。亚洲,以及美国,欧洲和日本综合设备制造商的战略转变,他们转向轻资产或无晶圆厂战略,并将生产外包给中国台湾,韩国,中国大陆和新加坡的代工厂。 2018年,最大的集成电路工艺化学品消费地区是中国台湾(约占总数的22%),其次是韩国(19%),日本(17%),中国大陆(15%),美国(12%),欧洲(8%)和其他亚洲(7%)。 2018年全球集成电路用电子化学品消费地区占比统计情况

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

电子化学品细分市场概况

●集成电路电子化学品 为集成电路(IC)产业配套的主要是光刻胶、高纯试剂、电子特种气体、封装材料等。集成电路配套的电子化学品是最关键的材料,目前世界集成电路水平已经由微米级(1.0μm)、亚微米级(1.0-0.35μm)、深亚微米级(0.35μm以下)进入到纳米级(90-65nm)阶段。 2007 年全球IC (集成电路)工艺化学品的市场需求达到190 亿美元,2012 年前的年均增速将达到7%~7.5%。 国内集成电路用等电子试剂主要品种有上百种,但只占国内总需求量的20%。2~3μm技术用试剂已基本可以实现生产供应,0.8~1.2μm用试剂仍处开发阶段,国内市场几乎全部依赖进口。“十五”期间国内集成电路用超纯试剂的需求量接近1万吨,而国内生产企业实际能提供的量仅10%。随着电子工业飞速发展,对配套电子试剂将有更大的需求。 ●半导体行业需求 工程院调查和预测,中国2005年半导体材料材料的需求情况是(见表8):多晶硅需求将达1500吨;单晶硅约600吨;硅抛光片约8000万平方英寸;硅外延片500万平方英寸;GaAs单晶2000千克;GaAs外延片3~4万片;InP单晶120千克;化学试剂8000吨;塑封料8000吨;键合金丝3000千克。 ●液晶行业需求 由于技术、成本等方面的优势,TFT 液晶显示器(TFT-LCD)已经成为显示器之主流。数据显示2008 年全球液晶电视首次超过CRT 电视,出货量为10504 万台,占总量的51.3%。并且有报告显示到2010 年,TFT-LCD显示器将占据显示器领域的90%的市场份额。目前,国内企业投入建设和规划建设的TFT-LCD 生产线主要是京东方在成都建造4.5 代TFT-LCD生产线,主要涉及中小尺寸面板;京东方在合肥建造6 代TFT-LCD 生产线,主要涉及电视用液晶面板;京东方在北京建造8 代TFT-LCD 生产线,主要涉及大电视用液晶面板。同时上广电规划在上海建设8 代TFT-LCD 生产线,TCL 在深圳建设8.5 代TFT-LCD 生产线,龙腾光电规划建设7.5 代TFT-LCD 生产线等,彩虹集团在张家港建设6 代生产线。此外国外面板生产企业由于制造成本较高,具有将生产线向国内转移的趋势,如韩国LG 将在广州投资兴建8.5 代生产线。 保守估计到2010 年,大尺寸液晶面板对全球液材料的需求量560 吨,单体液晶的需求量超过600 吨;2012 年,大尺寸液晶面板对全球液晶材料的需求量超过700 吨,单体液晶的需求量达到770 吨。 2010 年我国液晶电视同比增长79.5%,预计全球液晶电视2010 年产量增速为17%,三大终端领域均出现强劲增长,且国内增速大大超过全球增速。2008年中国液晶电视销量占全球的12.5%,保守估计2010年中国占全球比为28.3%,2010 年,我国大尺寸液晶面板对液晶材料的需求量158 吨,2012年220吨。 未来我国液晶材料需求的增长来自于两个方面:需求量本身的增长和产品升级(如TFT 材料在需求结构中的日益上升)带来的增长。根据大尺寸液晶面板的计算方法,我们预计2010 年我国大陆中小尺寸液晶面板对液晶材料的需求量在53 吨,单体液晶的需求量接近60 吨。 ●LED LED 光源可广泛应用于背光源、广告显示屏、汽车照明以及交通信息标识、通用照明等领域。

对半导体技术、微电子技术、集成电路技术三者的浅略认识

对半导体技术、微电子技术、集成电路技术三者的浅略认识 一、半导体技术、微电子技术、集成电路技术三者的联系与区别 我们首先从三者的概念或定义上来分别了解一下这三种技术。 半导体技术就是以半导体为材料,制作成组件及集成电路的技术。在电子信息方面,绝大多数的电子组件都是以硅为基材做成的,因此电子产业又称为半导体产业。半导体技术最大的应用便是集成电路,它们被用来发挥各式各样的控制功能,犹如人体中的大脑与神经。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术,是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术,为微电子学中的各项工艺技术的总和。 集成电路技术,在电子学中是一种把电路小型化的技术。采用一定的工艺,把一个电路中所需的各种电子元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。(以上三者概念均来源于网络)这般看来,三者概念上互相交叉,却也略有区别。依我这个初次接触这三个名词、对电子信息几乎一窍不通的大一新生来看,半导体技术是其他二者技术的基础,因为半导体是承载整个电子信息的基石,不管是微电子还是集成电路,便是以半导体为材料才可以建造、发展。而微电子技术,个人感觉比较广泛,甚至集成电路技术可以包含在微电子技术里。除此之外,诸如小型元件,如纳米级电子元件制造技术,都可以归为微电子技术。而集成电路技术概念上比较狭窄,单单只把电路小型化、集成化技术,上面列举的小型元件制造,便不能归为集成电路技术,但可以归为微电子技术。以上便是鄙人对三者概念上、应用上联系与区别的区区之见,如有错误之处还望谅解。 二、对集成电路技术的详细介绍 首先我们了解一下什么是集成电路。 集成电路是一种微型电子器件或部件。人们采用一定的工艺,把一个电路中所需的各种元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。当今半导体工业大多数应用的是基于硅的集成电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。 而简单来说,集成电路技术便是制造集成电路的技术方法。它涉及半导体器件物理、微电子学、电子学、无线电、光学以及信息学等学科领域的知识。 从产业分工角度,集成电路技术可以分为集成电路加工技术、集成电路测试封装技术以及集成电路设计技术等几方面。 1. 集成电路加工技术 集成电路加工技术主要是通过物理或化学手段在硅材料上生成半导体器件(比如场效应管)以及器件之间的物理互连。这些器件以及器件之间的互连构成的电路功能要符合系统设计要求。集成电路加工技术涉及的知识包括半导体器件物理、精密仪器、光学等领域,具体应用在工艺流程中,包括注入、掺杂、器件模型、工艺偏差模型、成品率分析以及工艺过程设计等。在近十几年的时间里,集成电路加工工艺水平一直按照摩尔(Moore)定律在快速发展。 2.集成电路测试、封装技术 集成电路测试包括完成在硅基上产生符合功能要求的电路后对裸片硅的功能和性能的

电子化学品性能要求及生产技术

电子化学品性能要求及 生产技术 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

电子化学品性能要求及生产技术 电子化学品的质量规格及标准 电子化学品的质量标准的演变 为了能够规范世界超净高纯试剂的标准,SEMI(Semiconductor Equipment and Materials International,国际半导体设备和材料协会)于1975年成立了SEMI化学试剂标准化委员会,专门制定、规范超净高纯试剂的国际统一标准—SEMI标准。 1978年,德国的伊默克公司也制定了MOS标准。两种标准对超净高纯化学品中金属杂质和(尘埃)微粒的要求各有侧重,分别适用于不同级别IC的制作要求。 国际上公认的电子化学品的标准大致可分为四类:一类是以SEMI为基础的美国试剂标准;一类是以德国标准为主的欧洲试剂标准;一类是以日本关东化学(Kanto)公司、和光纯药工业(Wako)公司的湿电子化学品为代表的日本试剂标准;另一类则是以REA公司为代表的俄罗斯试剂标准。ULSI在全球的快速发展使得这些标准的指标有逐步接近的趋势,但SEMI标准更早取得世界范围内的普遍认可。 目前世界及我国的电子化学品产品通常执行SEMI国际标准,其关键技术指标包括单项金属离子,单项阴离子,颗粒数等,另外根据不同产品特点会相应增加其它一些技术指标。 电子化学品SEMI标准 进入21世纪,国际SEMI标准化组织又根据电子化学品在世界范围内的实际发展情况对原有的分类体系进行了归并,按品种进行分类,每个品种归并为一个指导性的标准,其中包括多个用于不同工艺技术的等级。表2-1列出了IC制造的不同线宽对湿电子化学品SEMI国际标准等级的要求。

2019年北大软件与微电子学院集成电路工程考研复试时间复试内容复试流程复试资料及经验

2019年北大软件与微电子学院集成电路工程考研复试时间复试内容 复试流程复试资料及经验 随着考研大军不断壮大,每年毕业的研究生也越来越多,竞争也越来越大。对于准备复试的同学来说,其实还有很多小问题并不了解,例如复试考什么?复试怎么考?复试考察的是什么?复试什么时间?复试如何准备等等。今天启道小编给大家整理了复试相关内容,让大家了解复试,减少一点对于复试的未知感以及恐惧感。准备复试的小伙伴们一定要认真阅读,对你的复试很有帮助啊! 专业介绍 集成电路是二十世纪的人类最重要科技发明之一,它的发明标志着人类进入信息时代。集成电路被广泛运用于国家经济建设、社会发展和国防安全的方方面面,起到了不可替代的核心作用。 集成电路工程是研究生层次招生专业,属于电子科学与技术、仪器科学与技术、电气工程、控制科学与工程、信息与通信工程等一级学科交叉领域。本专业是信息科学的重要组成部分,其主要理论和方法已广泛应用于信息科学的各个领域。 复试时间 复试时间:3月19、20日; 复试地点:软件与微电子学院(大兴校区)(地址:北京市大兴工业开发区金苑路24号)。 复试内容(科目) 复试分数线

复试流程 (1) 院系应及时公布复试细则(含复试时间、地点和复试成绩计算规则等信息)和复试名单。考生可登录院系网站查询,并按要求参加复试。 (2) 硕士研究生招生考试复试费标准为 100 元/人次,由院系于复试前收取。参加两次及以上专家组复试的复试费按次收取。 (3) 复试专家组秘书要在复试时填写《北京大学 2018 年硕士研究生招生复试情况记录表》。 (4) 复试可结合学科特点和培养要求,通过笔试、面试、实践操作等灵活多样的方式突出对考生专业素质、实践能力和创新精神的方面的考核。 如仅对考生进行面试,院系须设立一定数量的题库,事先确定评分标准,由考生随机抽取适量的试题进行回答。试题难度要适中,并应尽量避免问题的随意性和偶然性。综合面试

电子化学品

电子化学品 又称电子化工材料。一般泛指电子工业使用的专用化工材料,即电子元器件、印刷线路板、工业及消费类整机生产和包装用各种化学品及材料。按用途可分成基板、光致抗蚀剂、电镀化学品、封装材料、高纯试剂、特种气体、溶剂、清洗前掺杂剂、焊剂掩模、酸及腐蚀剂、电子专用胶黏剂及辅助材料等大类。电子化学品具有品种多、质量要求高、用量小、对环境洁净度要求苛刻、产品更新换代快、资金投入量大、产品附加值较高等特点,这些特点随着微细加工技术的发展越来愈明显。 一、行业属性 电子化学品,也称作电子化工材料,是指为电子工业配套的精细化工材料,主要包括集成电路和分立器件、电容、电池、电阻、光电子器件、印制线路板、液晶显示器件、显像管、电视机、计算机、收录机、录摄像机、激光唱盘、音响、移动通讯设备、传真机等电子元器件、零部件和整机生产与组装用各种精细化工材料。电子化学品是一种专项化学品,就生产工艺属性而言,属于精细化工行业;就产品用途而言,属于电子材料行业。按照我国国民经济行业分类标准,电子化学品行业属于"专项化学用品制造业" 2662);根据中国证监会2001年4月发布的《上市公司行业分类指引》,属于"专用化学产品制造业" C4360)。 二、行业地位

电子化学品是电子材料及精细化工结合的高新技术产品。电子化学品及下游元器件是电子信息产业的基础与先导,处于电子信息产业链的前端,是信息通讯、消费电子、家用电器、汽车电子、节能照明、工业控制、航空航天、军工等领域终端产品发展的基础。随着技术创新的发展,电子化学品的应用领域不断扩大,已渗透到国民经济和国防建设的各个领域。没有高质量的电子化学品就不可能制造出高性能的电子元器件。电子化学品在一定程度上决定或影响着下游及终端产业的发展与进步,对于国内产业结构升级、国民经济及国防建设具有要意义。工信部指出,"十一五"期,我国必须大力发展电子材料产业,加快产业结构调整与优化,缩小电子材料与国外先进水平的差距,提高国内自主配套能力,为电子信息产业的发展提供有力支撑。 三、行业特点 1)品种多、专用性强、专业跨度大 电子化学品品种规格繁多,可分为半导体材料、磁性材料及中体、电容器化学品、电池化学品、电子工业用塑料、电子工业用涂料、打印材料化学品、高纯单质、光电材料、合金材料、缓蚀材料、绝缘材料、特种气体、电子工业用橡胶、压电与声光晶体材料、液晶材料、印刷线路板材料等十几个大的门类,每一个大类有可分为若干子类,据不完全统计产品品种在2万余种以上。如半导体材料可分为集成电路和分立器件生产工艺所用的光刻胶、封装材料、高

(完整word版)微电子技术概论期末试题

《微电子技术概论》期末复习题 试卷结构: 填空题40分,40个空,每空1分, 选择题30分,15道题,每题2分, 问答题30分,5道题,每题6分 填空题 1.微电子学是以实现电路和系统的集成为目的的。 2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。 3.集成电路封装的类型非常多样化。按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。 4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。 5. 迁移率是载流子在电场作用下运动速度的快慢的量度。 6.PN 结的最基本性质之一就是其具有单向导电性。 7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。 8.隧道击穿主要取决于空间电荷区中的最大电场。 9. PN结电容效应是PN结的一个基本特性。 10.PN结总的电容应该包括势垒电容和扩散电容之和。 11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。 12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线, 13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。 14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。 15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。 16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。 17. 在N 型半导体中电子是多子,空穴是少子; 18. 在P 型半导体中空穴是多子,电子是少子。 19. 所谓模拟信号,是指幅度随时间连续变化的信号。 20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。 21. 所谓数字信号,指在时间上和幅度上离散取值的信号。 22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。 23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极

微电子技术的发展

微 电子技术的发展 摘要:微电子技术是科技发展到一定阶段的时代产物,是对当今社会经济最具影响力的高新技术之一。本文主要对微电子技术的概念、发展及其在社会各大产业中的应用进行了浅析的探讨。 【关键词】微电子技术发展应用 微电子技术的核心技术是半导体集成电路,微电子技术的发展及应用影响我们生产生活的方方面面。对促使经济发展,人类的进步有着巨大的影响力。随着社会经济的发展,为了达到社会经济的发展对微电子技术的需求,实现社会经济在技术支持下快捷稳定发展,我们必须要不断地对微电子技术进行优化和改进,积极地探索更深层次的微电子技术知识,使微电子技术更好地服务于社会经济发展。相信微电子技术不仅是在当今,乃至未来社会发展中微电子技术必将是促使社会发展进步的主导产业。 1微电子技术的概念 微电子技术是信息化时代最具代表性的高新技术之一,它的核心技术半导体集成电路技,术由电路设计、工艺技术、检测技术、材料配置以及物理组装等购置技术体系。微电子技术基于自身集成化程度高,反应敏捷、占用空间较小等优势特点目前在有关涉及电子产业中得以广泛的应用。 2 微电子技术的发展现状 国外微电子的发展 自1965年发明第一块集成电路以来,特别是过去的十年中,全球微电子产业一直处于高速发展的时期,推动着信息产业的高速发展。集成电路产业及其产品是带动整个经济增长的重要因素。集成电路已发展到超大规模和甚大规模、深亚微米μ

m)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。1965年,Intel 公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。自从20 世纪50 年代后期集成电路问世以来, 就一直追求在芯片上有更多的晶体管, 能够完成更多的功能, 从一代到下一代芯片的基本价格变化却很小, 这是由于较高的集成度导致完成每项功能的价格降低。这是驱动芯片发展的最基本动力。现在还在向更小的工艺发展。技术飞速的进步, 促使人们不断探究现代半导体器件最终的物理极限。 国内微电子发展 早在1965年,我国的集成电路就开始起步,而此时世界上最著名的芯片制造商英特尔还没有成立。由于体制等众多的原因,我国在这一领域与国外差距越来越大。目前,我国集成电路产业已具备了一定的发展规模,形成了从电路设计、芯片制造和电路封装三业并举,与集成电路有关的主要材料、测试设备、仪器等支持业也相继配套发展,在地域上呈现相对集中的格局,京津、苏浙沪、粤闽地区成为集成电路产业较为发达的区域。。我国集成电路设计业在过去的几年中有了长足的进步,高等院校、科研院所、企业从事集成电路设计的单位越来越多。然而国内集成电路设计企业规模,设计人员的平均数量还未达到国际同类公司的水平。随着信息时代的到来,微电子技术得以快速发展,在信息时代中扮演中重要角色,是影响时代发展的关键技术之一。从微电子技术的发展历程来看,上世纪五十年代贝尔实验室发明了晶体管,晶体管的面世标志着微电子技术的诞生。在随后的几年内经过科学家的不断努力,又发明了集成电路。集成电路的发明为后来的微型计算机的发明奠定了坚实的技术基础。直至上世纪七十年代,集成电路在微型计算机中的成功应用,标志着微电子技术的发展达到了空前的高度。随着微电子技术的进一步发展,以集成电路为核心的微电子技术经过科学家的优化和改进,较上世界刚诞生的微电子技术集成化程度足足提高了近500 万倍,另外在微电子技术产品体积方面也大大地缩小。一个微小的单独的集成片就能集成几千万个集体管。自改革开发以来,国家对微电

我国电子化学品的现状和发展

电子化学品,一般是指为电子工业配套地专用化学品,主要包括集成电路和分立器件用化学品、印制电路板配套用化学品、表面组装用化学品和显示器件用化学品等.目前电子化学品地品种已达上万种,它具有质量要求高、用量少、对生产及使用环境洁净度要求高和产品更新换代快等特点. 我国历来十分重视电子化学品地研制、开发和生产,现在地产品已能部分满足我国信息产业地生产需求.现将2类比较重要地电子化学品地现状简要介绍如下:b5E2RGbCAP 1.1囊成电瘩用地电子化学品关键地有4类,(1>是超净高纯试剂.BV一Ⅲ级试剂已达到国外semi—c7质量标准,适合于0.8~1.2微M工艺(1M一4M值>,已形成500t/a规模地生产能力,MOS级试剂已开发生产20多个品种,年产量超过4 000t;(2>是光刻胶.目前每年生产100 t左右,其中紫外线负皎已国产化.紫外线正胶可满足2微M地工艺要求,辐皎和电子束胶可提供少量产品;(3>是特种电子气体.目前少量由国内生产,30多个品种主要由美国、法国和日本等国家地公司提供;(4>是环氧模塑料.目前国内已有3 000t/a地生产能力,可满足0.8微M工艺要求,现在正在研制0.35m工艺要求地封装材料.p1EanqFDPw 1.2印刷电路板(PCB>配套用地电子化学品印制电路板配套用地化学品主要也分4类:

(1>基板用化学品,包括基体树脂和增强材料,基体树脂主要是酚醛树脂、环氧树脂、聚酯树脂和聚酰亚胺树脂等.用作基体地酚醛树脂.目前国内年产量为5 000t左右,用量最大地是环氧树脂,国内生 产厂家较多,其中年生产能力超过1万t地有3家,目前总地年生产 能力在5万t左右,只能部分满足基板生产地要求,大部分仍需进 口.1999年进口环氧树脂已超过5万t增强材料中,用量最大地是电子级玻璃纤维布,目前国内已有十多家企业建立了无碱池窑生产线, 1999年生产具有代表性地7628布已选1000万m左右.DXDiTa9E3d (2>线路成像用光致抗蚀剂和网印油墨.光致抗蚀剂是制造印制 电路板电路图形地关键材料,目前主要用液态光致抗蚀剂(Liquid photo—resist>和干膜抗蚀剂(dry film resist>2大类,其中干膜 抗蚀剂地用量最大,在各种抗蚀剂中占90%以上.现在国内有7~8家企业生产干膜抗蚀剂,年产干膜抗蚀剂100万心左右, 远远不能满足国内PCB制造地需求,大部分靠进口.1999年,我国干膜抗蚀剂地使 用量约1500万平方M.液态抗蚀剂有4种类型,即自然干燥型、加热固化型,uvf紫外光>固化型和感光成像型,前3种类型地抗蚀剂是用丝网印刷地方法制作电路图形,主要适用于线宽在200 btm以上地单面印制电路板地生产,后一种是用光致成像地光刻工艺制作电路图形,适用于制作精细、高密度双面和多层印制电路板,现在国内有7~8 个厂家生产各种类型地抗蚀剂,年产量在1500t左右,还不能满足国 内PCB制造地需求,尤其是液态感光成像光致抗蚀剂,1999年地用量接近200 t,主要靠进口.PCB用网印油墨,主要产品有阻焊剂、字符

集成电路产业与微电子专业

集成电路产业与微电子专业
长安大学 电子科学与技术系 李演明 2011年12月24日

1. 概 述
集成电路产业是一门充满创新和变数的产业
– 1958年第一块集成电路(IC)诞生,半个世纪的历程 演绎了令人兴奋不已的快速进步。 – IC产业既是一个令世人惊羡钟爱的产业,又是一个使人 呕心沥血、欲罢不能、不断面对挑战的产业。 – 集成电路具有当今高技术产业的典型特点,它是中间产 品,其应用可以产生十倍甚至于百倍的倍增效益,因 此,世界在这一领域的竞争非常激烈。
2011/12/24
2

IC技术发展沿革: 微米-亚微米-深亚微米-纳米
集成电路的技术进步一般用微细加工精度和 芯片的集成度来衡量。 2007年:
– 65纳米CMOS工艺为主流的集成电路技术已进入大生 产。 – 45纳米先导性生产线也开始投入运转。 – CPU上的晶体管数已达到8亿只。
集成电路产业作为典型的高技术产业, 高投入、搞收益、高风险的特征更加突出。
2011/12/24 3

Gordon Moore-Intel 名誉董事长
摩尔定律(1965年提出)
? IC上可容纳的晶体管数目,每18个月(或24个月) 便会增加一倍,性能也将提升一倍。 ? 这一定律还意味着IC的成本每18个月(或24个月) 降低一半。 ? 集成电路自诞生以来,一直戏剧性地遵循着这一 定律。这样的变化速度是其它产业的产品难于比 拟的。 ? 该定律成为电子信息产业对于其技术发展前景预 测的基础。
2011/12/24 4

微电子学与固体电子学和集成电路工程复试指导

微电子学与固体电子学和集成电路工程 硕士研究生招生复试指导 根据教育部关于加强硕士研究生招生复试工作的指导意见及学校有关要求,微电子学与固体电子学和集成电路工程2012年硕士研究生招生复试指导确定如下。 一、复试比例及主要内容 1、复试由笔试和面试两部分组成,外国语听力考试在面试中进行。复试的总成绩为280 分,其中笔试200分,面试80分。 2、复试笔试科目 (1)电子线路(数字电子和模拟电子),占70分。 主要内容:半导体二极管及其基本电路;半导体三极管及其放大电路基础;场效应放大电路;集成电路运算放大器;反馈放大电路;信号的运算与处理电 路;信号的产生电路;直流稳压电源;逻辑门电路;组合逻辑电路的分 析与设计;常用组合逻辑功能器件;触发器;时序逻辑电路的分析和设 计;常用时序逻辑功能器件。 参考书目:1.《基础电子技术》,蔡惟铮主编,高等教育出版社,2004年8月第1 版。 2.《集成电子技术》,蔡惟铮主编,高等教育出版社,2004年7月第1 版。 (2)晶体管原理,占70分。 主要内容:pn结直流特性、空间电荷区和电容、pn结击穿;双极型晶体管的基本结构和工作原理、直流特性、频率特性、开关特性和功率特性的物理基 础;场效应晶体管(包括结型和MOS场效应晶体管)的基本结构、工 作原理、直流特性、频率特性、开关特性和功率特性;MOS场效应晶 体管的阈值电压、短沟道与窄沟道效应以及击穿特性。 参考书目:1.《双极型与场效应晶体管》武世香编,电子工业出版社,1995年版. 2.《微电子技术基础――双极、场效应晶体管原理》曹培栋编著,电子 工业出版社,2001年第一版。 (3)半导体集成电路,占60分。 主要内容:典型的集成电路制造工艺流程及原理(双极工艺和MOS工艺);集成电路中常用的器件结构及其寄生效应;双极型逻辑集成电路(TTL及单管 逻辑门)工作原理、静态特性、瞬态特性及版图设计;MOS逻辑集成电 路(NMOS、CMOS以及MOS动态电路)工作原理、静态特性、瞬态特 性及版图设计;各类MOS存储器的结构及特性;模拟集成电路中常用单

集成电路用电子化学品

集成电路用电子化学品 它包括四类关键产品: 第一、超净高纯试剂 超净高纯化学试剂超净高纯化学试剂,亦称湿化学品,或加工化学品,是超大规模集成电路制作过程中关键性基础化工材料之一,主要用于芯片的湿法清洗和湿法蚀刻,它的纯度和洁净度对IC的成品率、电性能及可靠性都有着十分重要的影响。超净高纯试剂具有品种多、用量大、技术要求高、贮存有效期短和强腐蚀性等特点。使用这种试剂的工艺主要是洗净(包括干燥)、光刻、蚀刻、显影、去膜、掺杂等。这种试剂包括超净高纯酸及碱类、超净 高纯有机溶剂和超净高纯蚀刻剂。在半导体工业中的消耗比例大致为:NH 4 OH 4%-8%,HCI 3% 一6% ,H 2SO 4 27%一33%、其它酸10%-20%、H 2 O 2 8%一22%、蚀刻剂12%一20%、有机溶剂10% 一15%。 随着IC存储容量的增大,存储器电池的氧化膜更薄,而试剂中所含的杂质、碱金属等溶进氧化膜之中,造成耐绝缘电压的下降;试剂中所含的重金属若附着在硅晶片表面上,则会使P-N结耐电压降低。一般认为,产生IC断丝、短路等物理性故障的杂质分子大小为最小线宽的1/4,产生腐蚀或漏电等化学性故障的杂质分子大小为最小线宽的1/10。主要生产商有北京化学试剂所(500t/a,22个品种)、苏州瑞红电子化学品公司(1000t/a,40余个品种)等。 北京化学试剂研究所的BV-Ⅲ级试剂已达到国外Semi-c7质量标准,适合于0.8u-1.2um 工艺,已形成500吨/年规模的生产能力,MOS级试剂已开发生产出20多个品种,年产量超过4000吨,这在我国处于较高水平,但只相当于国外的中等水平;国外Semi-c12质量标准达到0.09u-0.2um工艺水平。 2002年10月,上海华谊开始承担国家‘863’计划ULSI超纯试剂制备工艺研究课题,从事超纯过氧化氢、硫酸、氢氟酸、盐酸、醋酸、异丙醇等微电子化学品的研究和开发。国内首个超高纯微电子化学品项目2004年底在上海兴建,这个项目由上海华谊集团公司所属的上海中远化工有限公司与台湾联仕电子化学材料股份有限公司联合出资。项目首期投资超过1. 7亿人民币,预计将在2005年内完工投产,届时可年产近2万吨各种超高纯微电子化

电子化学品性能要求及生产技术

电子化学品性能要求及生产技术 电子化学品的质量规格及标准 电子化学品的质量标准的演变 为了能够规范世界超净高纯试剂的标准,SEMI(Semiconductor Equipment and Materials International,国际半导体设备和材料协会)于1975年成立了SEMI 化学试剂标准化委员会,专门制定、规范超净高纯试剂的国际统一标准—SEMI 标准。 1978年,德国的伊默克公司也制定了MOS标准。两种标准对超净高纯化学品中金属杂质和(尘埃)微粒的要求各有侧重,分别适用于不同级别IC的制作要求。 国际上公认的电子化学品的标准大致可分为四类:一类是以SEMI为基础的美国试剂标准;一类是以德国E.Merck标准为主的欧洲试剂标准;一类是以日本关东化学(Kanto)公司、和光纯药工业(Wako)公司的湿电子化学品为代表的日本试剂标准;另一类则是以REA公司为代表的俄罗斯试剂标准。ULSI在全球的快速发展使得这些标准的指标有逐步接近的趋势,但SEMI标准更早取得世界范围内的普遍认可。 目前世界及我国的电子化学品产品通常执行SEMI国际标准,其关键技术指标包括单项金属离子,单项阴离子,颗粒数等,另外根据不同产品特点会相应增加其它一些技术指标。 电子化学品SEMI标准 进入21世纪,国际SEMI标准化组织又根据电子化学品在世界范围内的实际发展情况对原有的分类体系进行了归并,按品种进行分类,每个品种归并为一个指导性的标准,其中包括多个用于不同工艺技术的等级。表2-1列出了IC制造的不同线宽对湿电子化学品SEMI国际标准等级的要求。

表2-1 电子化学品SEMI国际标准等级 从表2-1中可以看出,对应集成电路不同技术水平,所需要电子化学品的标准越高,纯度和洁净度的要求也就越高。如果给电子化学品分级别或档次的话,那么用于≥1.2μm属于低档产品(需采用SEMI C1等级的湿电子化学品),0.8~1.2μm属于中低档产品(需采用SEMI C7等级的电子化学品),0.2~0.6μm属于中高档产品(需采用SEMI C8等级的电子化学品)。0.09~0.2μm和<0.09μm则属于高档产品(需采用SEMI C12等级的电子化学品),其中≥1.2μm和0.8~1.2μm的硅片主要用于制作分立器件;0.2~0.6μm和0.09~0.2μm的硅片主要用于大规模集成电路和超大规模集成电路制造中。 可以看出,电子化学品制备的关键在于控制并达到其所要求的杂质含量和颗粒度。为使超净高纯试剂的质量达到要求,需从多个方面同时进行保障,包括试剂的提纯、包装、供应系统及分析方法等。目前,国际上普遍使用的提纯工艺有十余种,它们适用于不同成分、不同要求的超净高纯试剂的生产,例如,蒸馏、精馏、连续精馏、盐熔精馏、共沸精馏、亚沸腾蒸馏、等温蒸馏、减压蒸馏、升华、化学处理、气体吸收等。超净高纯试剂在运输过程中极易受污染,所以超净高纯试剂的包装及供应方式是电子化学品使用的重要一环。特别是颗粒控制的相关技术,它贯穿于超净高纯试剂生产、运输的始终,包括环境控制、工艺控制、成品包装控制等各个环节。 目前,国际上制备SEMI-C1到SEMI-C12级电子化学品的技术都已经趋于成熟。随着集成电路制作要求的提高,对工艺中所需的湿电子化学品纯度的要求也不断提高。从技术趋势上看,满足纳米级集成电路加工需求是超净高纯试剂今后发展方向之一。

电子化学品分析

湿电子化学品概述 湿电子化学品,又称超净高纯试剂或工艺化学品,是指主体成分纯度大于 99.99%,杂质离子和微粒数符合严格要求的化学试剂。主要以上游硫酸、盐酸、氢氟酸、氨水、氢氧化钠、氢氧化钾、丙酮、乙醇、异丙醇等为原料,经过预处理、过滤、提纯等工艺生产得到的高纯度产品。 湿电子化学品是微电子、光电子湿法工艺制程中使用的各种液体化工材料,是电子技术与化工材料相结合的创新产物,具有技术门槛高、资金投入大、产品更新换代快等特点。 湿电子化学品的分类 1.按用途分 湿电子化学品按用途主要分为通用化学品和功能性化学品两类。其中通用化学品以高纯溶剂为主,例如氧化氢、氢氟酸、硫酸、磷酸、盐酸、硝酸等;功能性化学品指通过复配手段达到特殊功能、满足制造中特殊工艺需求的配方类或复配类化学品,主要包括显影液、剥离液、清洗液、刻蚀液等。 湿电子化学品主要品种一览

2.按应用领域分 湿电子化学品目前广泛应用在半导体、平板显示、太阳能电池等多个领域,其中液晶面板领域增速快。即按下游产品应用的工艺环节分,主要有平板显示制造工艺的应用、半导体制造工艺的应用及太阳能电池板制造工艺的应用。 其中平板显示制造领域对湿电子化学品的需求量最高,半导体制造工艺用湿电子化学品是技术要求最高,太阳能电池板制造用湿电子化学品盈利能力一般。 湿电子化学品按应用领域分类

湿电子化学品的应用 湿电子化学品主要应用在半导体、平板显示、太阳能光伏领域等微电子器件制造领域,广泛应用于超大规模集成电路、LED、TFT-LCD 面板制造过程、太阳能硅片的蚀刻与清洗。 超净高纯试剂的应用多种多样,例如在晶圆生产过程中对于晶圆的清洗,在芯片制造光刻工艺中的刻蚀、显影和洗脱过程,同时在芯片制造和 PCB 板制造中的电镀液(例如硫酸铜)的制备原料硫酸也属于超净高纯试剂范畴。晶圆清洗试剂是前端加工关键工艺。由于集成电路内各元件及连线相当微细,因此制造过程中,如果遭到尘粒、金属的污染,很容易造成晶片内电路功能的损坏,形成短路或断路等,导致集成电路的失效以及影响几何特征的形成。因此在集成电路加工之前,必须对晶圆进行清洗,清除残留在晶圆上之微尘、金属离子及有机物之杂质。 CMP 研磨液的配置原料中涉及超净高纯试剂的应用,例如其中用作氧化剂的双氧水(H2O2)和碱性溶液 KOH。在硅表面处理过程中涉及到碱洗除去 Si 余料和酸洗活化 SiO2表面过程中分别涉及碱性试剂氨水 NH3?H2O 和酸性试剂 H2SO4 等。 晶圆污染物类型及清洗工艺

相关文档
相关文档 最新文档