文档库 最新最全的文档下载
当前位置:文档库 › 卡文迪许扭秤法测量万有引力常数

卡文迪许扭秤法测量万有引力常数

卡文迪许扭秤法测量万有引力常数
卡文迪许扭秤法测量万有引力常数

卡文迪许扭秤法测量万有引力常数

班级核工程82

学号 08182022

姓名刘勇

卡文迪许扭秤法测量万有引力常数

一、实验目的

1. 掌握在扭秤摆动中求平衡位置的方法。

2. 掌握如何通过卡文迪许扭秤法测量万有引力常数。

二、实验仪器

卡文迪许扭秤,激光发射器, 光屏,米尺,秒表,电源

三、实验原理

根据牛顿万有引力定律,间距为r, 质量为 m1 和m2 的两球之间的万有引力F 方向沿着两球中心连线,大小为

其中G 为万有引力常数。

实验仪器卡文迪许扭秤法原理图所示。卡文迪许扭秤是一个高精度的仪器,非常灵敏,为保护仪器和防止外界干扰影响实验测量,扭秤被悬挂在一根金属丝上,装在镶有玻璃板的铝框盒内,固定在底座上。

实验时,把两个大球贴近装有扭秤的盒子,扭秤两端的小球受到大球的万有引力作用而移近大球,使悬挂扭秤的悬丝扭转。激光器发射的激光被固定在扭秤

r

m m G F 2

2

1

上的小镜子反射到远处的光屏上,通过测量光屏上扭秤平衡时光点的位置可以得到对应的扭转角度, 从而计算出万有引力常数 G 。

假设开始时扭秤扭转角度θ0=0,把大球移动贴近盒子放置,大小球之间的万有引力为F ,小球受到力偶矩N =2 Fl 而扭转,悬挂扭秤的金属丝因扭转产生与力偶矩N 相平衡的反向转矩N ’= K(θ/2),扭秤最终平衡在扭角θ的位置:

F=G M m /d 2

2Fl= K(θ/2)

其中 K 是金属悬丝的扭转常数,M 是大球的质量,m 是小球的质量,d 是大球小球的中心的连线距离,l 是小球中心到扭秤中心的距离。

由转动方程可求得悬丝的扭转常数:通过转动惯量I 和测量扭秤扭转周期T 就可以得到金属丝的扭转系数K :

假设小球相对大球是足够轻,那么转动惯量l

m I

2

2=

因此由上述几式得,扭转角l

d

2

2

2

π

T

2GM θ=

当大球转动到相反的对称位置后,新平衡位置是-θ, 因此平衡时的总扭转角为

l

d

2

22

πT

GM 2θ=

通过反射光点在光屏上的位移S 可以得到悬丝扭转角度。由于万有引力作用很弱,使得扭秤平衡时扭转角很小,此时可以认为:D

S

θ2=,其中D 是光屏到扭秤的距离。

T

I

K 2

2

π

4=

因此万有引力常数D

M lS T

d

G 22

2π=。

万有引力常数G 计算公式的修正:

由卡文迪许扭秤法原理图可知,小球受到大球M 1作用F 的同时也受到斜后方另一个大球M 2 的作用力 f ,考虑f 作用时,G 值应修正为

D

M lS

T d G 2

2

2π)

1(1

β--=

,其中)

4(222

/33

l d d +=

β。

四、实验内容及操作步骤

1、选择主菜单中的“开始实验”选项开始实验。

2、在开始实验显示的实验场景中,在卡文迪许扭秤位置鼠标左键双击打开扭秤

调节窗口,激光器位置双击打开激光器窗口,光屏位置双击打开放大的光屏读数窗口,场景中鼠标右键单击实验窗口弹出选择菜单。

3、选择“实验场景测量”显示实验场景示意图,通过读取鼠标的位置测量两个小球间距2l ,反射镜和光屏之间距离D , 贴近盒子的大球中心到对应小球中心之间距离d 。将数据记录于表格一。

4、如卡文迪许扭秤法原理图所示,按下列方法调整扭秤位于盒子的中央。

● 打开激光器电源:双击电源弹出放大的激光器电源面板。鼠标单击开关

打开电源,可以看见激光被镜子反射到远处的光屏上。

● 确定平衡位置C :鼠标双击实验窗口中的卡文迪许扭秤进行调节。 通过右键菜单可打开卡文迪许扭秤顶视图。通过的鼠标调节扭丝转角调节旋钮,可对扭秤初始转角进行粗调。

双击锁紧螺钉使得扭秤下落,并且作最大振幅的扭转振动(撞击玻璃板)。

记录此时光点在光屏两端最远点的位置x1, x2。 Xc = (x1+ x2)/2。

●确定实际平衡位置C’:当扭秤振动衰减到不接触盒子两边玻璃板后, 按

下图2 曲线记录下光屏两端光点运动的最远点位置.

●平衡位置X c’可以按照下面方法计算得到:

(Xc’–x2) / (x1–Xc’) = (x3–Xc’) / (Xc’–x2)

或 Xc’= (x2–x1x3) / (2x2–x1–x3)

如果如果X c = X c’,那么扭秤就基本平衡了. 否则需要调整扭角度调整旋钮,直到Xc = X c’:鼠标右键扭秤窗口弹出菜单,选择扭秤顶视图显示扭秤顶端。通过单击鼠标右键或者左键旋转“扭角调整”旋钮到合适位置。

5.测扭秤的固有振动周期T: 将大球放置在支撑架上,支撑架旋转臂垂直于扭

秤,此时扭秤受力平衡。双击锁紧螺钉使得扭秤下落,等待扭秤振动到最大幅度时小球不和两边玻璃壁碰撞后,用秒表记录光点连续摆动4个周期所需时间。实验窗口鼠标右键弹出菜单,选择“显示秒表”。记录数据于表二。

测量万有引力作用下光点的位移S

6、在扭秤窗口选择“前视图”,通过在扭秤上大球位置单击鼠标右键或者左键

转动大球,使得大球按照卡文迪许扭秤法原理图中黑线大球的位置贴近盒子。

7、等待扭秤振动到最大幅度时小球不和两边玻璃壁碰撞后,记录光点连续摆动

3个周期中光屏两端极值点的位置a1,a2,a3,a4,a5,a6。则光点静止时位置坐标A可由下述平均法计算:

2

21

2

a a

a A i i i

i

++++=

(i=1,2,3,4)

==4

1

41i i

A A

8. 转动大球到反向对称位置(卡文迪许扭秤法原理图中虚线大球的位置),等

待扭秤振动到最大幅度时小球不和两边玻璃壁碰撞后,记录光点连续摆动3个周期中光屏两端极值点的位置b 1,b 2,b 3,b 4,b 5,b 6。则光点静止时位置坐标B 可由上述平均法计算:

∑==4

1

41i i B B

9. 在把大球转到卡文迪许扭秤法原理图中黑线大球的位置,等待扭秤振动到最

大幅度时小球不和两边玻璃壁碰撞后,记录光点连续摆动3个周期中光屏两端极值点的位置a

1

,a ’2,a ’3,a ’4,a ’5,a ’6。 求出A ’。

由A,B,A ’可算出2组位移量:B A S -=1, B A S -='1

平均值:S=(S 1+S 2)/2。 10. 计算万有引力常数G 。

五、实验数据处理

表一:实验场景测量

由D M lS T d G 22

2

π=代入数据得G=5.82X10

-11

而修正系数)

4(222

/33

l d d +=

β=1.087

故最终由D

M lS T d G 2

2

2π)

1(1

β--=

得G=6.33 x10-11,E G =5.10%

六、实验总结

因为G 的数值非常微小,所以在地球表面上物体之间的引力很微小,以至于通常可以忽略。因此卡文迪许扭秤法测量万有引力常数G 的实验是一个非常精致的实验。本次试验要求试验中有足够耐心,对光点的观察要仔细。

七、思考题

1.假设 M = 1kg, l = 10 cm, d =5cm , m = 15g 。 1) 扭秤的周期 T ?

由l

d 222πT

GM 2θ= D S

θ2=得:DGM Sl T d 2

2π==293.08Hz

2) 悬丝的扭转常数 K ?

T

I K 2

2

=

=

T

l

m 2

2

28π

=3.45x10-8

2. 对测量结果进行分析,分析影响测量结果的主要因素。

本实验测量结果为G=6.33 x10-11

,E G =5.10%。误差相对较小。但是,从

D

M lS T d G 2

2

2π)

1(1

β-

-=可见,d 与T 的测量,对结果影响较大。

英国物理学家亨利·卡文迪许的轶事

英国物理学家亨利·卡文迪许的轶事 一、生平简介 1.视名利如天上的浮云 有一次卡文迪许出席宴会,一位奥地利来的科学家当面奉承卡文迪许几句,他听了起初大为忸怩,继而手足无措,终于坐不住站了起来,冲出室外径自坐上马车回家了。卡文迪许沉默寡言,对慕名来访的客人常常一言不发陪坐在旁,脑中想着科学问题,使一些帮闲文人尴尬扫兴。他一生致力于科学研究,成果丰硕,但只发表过两篇并不重要的论文。 2.最富有的学者,最博学的富豪 据说卡文迪许很有素养,但是没有当时英国的那种绅士派头。他不修边幅,几乎没有一件衣服是不掉扣子的;他不好交际,不善言谈,终生未婚,过着奇特的隐居生活。卡文迪许为了搞科学研究,把客厅改作实验室,在卧室的床边放着许多观察仪器,以便随时观察天象。他从祖上接受了大笔遗产,成为百万富翁。不过他一点也不吝啬。有一次,他的一个仆人因病生活发生困难,向他借钱,他毫不犹豫地开了一张一万英镑的支票,还问够不够用。卡文迪许酷爱图书,他把自己收藏的大量图书,分门别类地编上号,管理得井井有序,无论是借阅,甚至是自己阅读,也都毫无例外地履行登记手续。卡文迪许可算是一位活到老、干到老的学者,直到79岁高龄、逝世前夜还在做实验。卡文迪许一生获得过不少

外号,有“科学怪人”,“科学巨擘”,“最富有的学者,最博学的富豪”等。 3.卡文迪许实验室 人们为纪念这位大科学家,特意为他树立了纪念碑。卡文迪许一生勤俭,逝世后留下了大笔遗产,其中一部分由它的家族在1871年捐赠给剑桥大学创办卡文迪许实验室,这个实验室曾经对物理科学的进步作出了巨大的贡献,先后培养出26名诺贝尔奖获得者。 4.沉睡了一百年的手稿 1810年卡文迪许逝世后,他的侄子齐治把卡文迪许遗留下的20捆实验笔记完好地放进了书橱里,谁也没有去动它。谁知手稿在书橱里一放竟是70年,一进到了1871年,另一位电学大师麦克斯韦应聘担任剑桥大学教授并负责筹建卡 文迪许实验室时,这些充满了智慧和心血的笔记获得了重返人间的机会。麦克斯韦仔细阅读了前辈在100年前的手搞,不由大惊失色,连声叹服说:“卡文迪许也许是有史以来最伟大的实验物理学家,他几乎预料到电学上的所有伟大事实。这些事实后来通过库仑和法国哲学家的著作闻名于世。”此后麦克韦决定搁下自己的一些研究课题,呕心沥血地整理这些手稿,使卡文迪许的光辉思想流传了下来。真是一本名著,两代风流。不啻是科学史上的一段佳话. 卡文迪许,1731年出生在英国。他一生都在实验室和图

计算机仿真实验:万有引力常数的测定

实验简介 测量万有引力常数G的物理意义是极大的。然而在自然界中万有引力非常微小,对于G的测量需要非常精确的方法。1798年卡文迪许(S. H. Cavendish)用扭秤法测量了两个已知质量球体之间的引力,成为精确测量万有引力常数第一人。19世纪,坡印亭(Poynting)和坡依斯(Boys)又对卡文迪许的实验做了重大改进。随着科学技术的发展,现在公认的万有引力常数G的值为。 测量引力常数G的意义是极大的。例如,根据牛顿运动定律和万有引力定律可以推算出太阳系中天体的运动情况(与天文观测结果几乎完全一致);可以根据万有引力定律和卡文迪许实验所算出的G值来确定地球的质量,算出地球的质量和体积,就可以推断出地球内部的物质密度,获得地核性质方面的知识等。 因为G的数值非常微小,所以在地球表面上物体之间的引力很微小,以至于通常可以忽略。因此卡文迪许扭秤法测量万有引力常数G的实验是一个非常精致的实验。时至今日,这个实验的思构思、思想、实验方法仍具有现世的指导意义,并被广泛使用。本实验要求学生: 1.掌握在扭秤摆动中求平衡位置的方法。 2.掌握如何通过卡文迪许扭秤法测量万有引力常数。 实验原理 根据牛顿万有引力定律,间距为r, 质量为 m1 和m2 的两球之间的万有引力F方向沿着两球中心连线,大小为 其中G为万有引力常数。 (1)

实验仪器如卡文迪许扭秤法原理图所示。卡文迪许扭秤是一个高精度的仪器,非常灵敏,为保护仪器和防止外界干扰影响实验测量,扭秤被悬挂在一根金属丝上,装在镶有玻璃板的铝框盒内,固定在底座上。 实验时,把两个大球贴近装有扭秤的盒子,扭秤两端的小球受到大球的万有引力作用而移近大球,使悬挂扭秤的悬丝扭转。激光器发射的激光被固定在扭秤上的小镜子反射到远处的光屏上,通过测量光屏上扭秤平衡时光点的位置可以得到对应的扭转角度, 从而计算出万有引力常数 G。 假设开始时扭秤扭转角度,把大球移动贴近盒子放置,大小球之间的万有引力为 F,小球受到力偶矩N =2 Fl而扭转,悬挂扭秤的金属丝因扭转产生与力偶矩N相平衡的反向转矩N’= K(/2),扭秤最终平衡在扭角的位置: F = G M m / d2 2F l= K( /2) 其中 K是金属悬丝的扭转常数,M是大球的质量,m是小球的质量,d 是大 球小球的中心的连线距离,l 是小球中心到扭秤中心的距离。 由转动方程可求得悬丝的扭转常数:通过转动惯量I 和测量扭秤扭转周期T 就可以得到金属丝的扭转系数K

卡文迪许与卡文迪许扭秤实验

卡文迪许与卡文迪许扭秤实验 程光洪、次珍 一、卡文迪许简介 卡文迪许(Henry Cavendish,1731~1810年)英国化学家、物理学家。1731年10月10日生于法国尼斯。1742—1748年他在伦敦附近的海克纳学校读书。1749—1753年期间在剑桥彼得豪斯学院求学。在伦敦定居后,卡文迪许在他父亲的实验室中当助手,做了大量的电学、化学研究工作。他的实验研究持续达50年之久。1760年卡文迪许被选为伦敦皇家学会成员,1803年又被选为法国研究院的18名外籍会员之一。 1810年3月10日,卡文迪许在伦敦逝世,终身未婚。 与伽利略和开普勒等科学家不同,卡文迪许非常富有,从不为自己的生存而担心。略玩笑的说:“他是一切有学问的人当中最富有的,一切富有的人当中最有学问的”。与众多的科学家一样,卡文迪许具有很多怪癖的性格。据说卡文迪许很有素养,但是没有当时英国的那种绅士派头。他不修边幅,几乎没有一件衣服是不掉扣子的;他不好交际,不善言谈,终生未婚,过着奇特的隐居生活。卡文迪许为了搞科学研究,把客厅改作实验室,在卧室的床边放着许多观察仪器,以便随时观察天象。他从祖上接受了大笔遗产,成为百万富翁。不过他一点也不吝啬。有一次,他的一个仆人因病生活发生困难,向他借钱,他毫不犹豫地开了一张一万英镑的支票,还问够不够用。卡文迪许酷爱图书,他把自己收藏的大量图书,分门别类地编上号,管理得井井有序,无论是借阅,甚至是自己阅读,也都毫无例外地履行登记手续。卡文迪许可算是一位活到老、干到老的学者,直到79岁高龄、逝世前夜还在做实验。卡文迪许一生获得过不少外号,有“科学怪人”,“科学巨擘”,“最富有的学者,最博学的富豪”等。 另外,卡文迪许最厌恶和害怕两件事物,一是奉承,他听到奉承的话常常十分窘迫、不知所措:一是女人,他最怕和女人接触,所以终生未婚,而且他每天和女管家之间都用纸条来联系。卡文迪许的一生,一心扑在科学研究上面。他一生经常涉足的地方只有两处,一是英国皇家学会的聚会,二是在参加班克斯爵士每星期日晚上宴请各科学家的聚会。 卡文迪许虽然爱好孤独的生活,但对于别人所作的研究工作却是很感兴趣,例如,他曾将一些钱送给青年科学家戴维作实验之用,有时还亲自跑到皇家学会去参加戴维的分解碱类的实验。电学研究与称量地球卡文迪许于1773年底前就完成了一系列的静电实验,可是他没有发表那些重要的成果。当时发表的两篇论文,只包括了一些次要的部分。100年之后,剑桥大学物理学教授的麦克斯韦发现和整理了卡文迪许在1771年至1781年间的实验论文,才以《尊敬的卡文迪许的电学研究》为题于1879年出版。麦克斯韦指出“这些论文证明卡文迪许几乎预料到电学上所有的伟大事实,这些伟大事实后来通过库仑和法国哲学家们的著作而闻名于科学界”;卡文迪许还深入地研究了电容器的电容量。他用“电时”表示相同电容器的球体的电容。卡文迪许曾把49个莱顿瓶组成电容器组,发现它含有321,000“电时”的电容(约1/2微法);他曾测了几种物质的电容率,例如,他得出石蜡的电容率为1.81到2.47,而现在对石蜡的电容率为2.1;卡文迪许用实验揭示了静电荷分布在导体表面的性质,还用实验精确地验证了点电荷之间的静电力跟距离的平方成反比的规律,并确认至少不会与这个比率相差1/50以上;1781年,他进行了相当于预测欧姆定律的探讨。 二、实验背景 我们生活在地球上,可是,你知道地球有多重吗?你知道如何去称量地球吗?对一般人来说,这可真是个难以回答的问题。我们知道,要称量一个物体,我们用的是天平或者杆秤。可是,地球那么重,到哪里才能找到这么大的一杆秤呢?就算找到了,我们又怎么能够把地球放到秤上去呢?第一个回答称量地球这个问题的人,是英国科学家卡文迪许。 牛顿虽然发现了万有引力定律,却没能给出准确的引力常量。这是因为一般物体间的引力非常小,由于当时实验条件和技术的限制,很难用实验的方法将它显示出来,直到1798年,即在牛顿发现万有引力定律

基于扭秤法精确测量万引力常量方法的分析

龙源期刊网 https://www.wendangku.net/doc/4418279876.html, 基于扭秤法精确测量万引力常量方法的分析作者:曹飞张冬霞 来源:《智富时代》2019年第05期 【摘要】萬有引力常数G是基本物理学常数,其在理论物理、天体物理和地球物理等许多领域中扮演着重要角色。两百多年来,人们共测量出了200 多个G值,但G的测量精度仍然是所有物理学常数中最差的,这一现象反映了测G工作本身的复杂性和困难性。本文简要概述了利用扭秤法精确测量万引力常量G值的方法,并分析了此方法的优缺点。 【关键词】万有引力常数G;精密测量;扭秤法 一、引言 有引力定律的发现是17 世纪自然科学最伟大的成果之一。它把地面上物体运动和天体运动的规律统一起来,对物理学和天文学的发展奠定了坚实的基础。它第一次解释了自然界中 四种基本相互作用之一的引力相互作用,在人类认识自然的历史上树立了一座里程碑.在万有引力定律中,引力常数G是一个普适常数,不受物体的大小、形状、组成成分等因素的影响. 由于引力的不可屏蔽性,在大尺度的天体之间,万有引力起支配作用。在与有心力问题相关的天体力学以及轨道动力学中均含有G或其他隐含的类似因子,譬如地球引力常数GM,其中M 为地球的质量。 到目前为止,在CODATA-2014 收录的14 个G值中,精度最高的是2000 年美国华盛顿大学的引力研究组采用扭秤角加速度反馈法测量的结果.在其他结果中,采用扭秤周期法获得的实验结果有六个,分别为NIST-82 , TR&D-96, LANL-97, HUST-05, HUST-09 和UCI-14,所用测量方法有扭秤周期法、簧片扭秤补偿法/直接倾斜法,双单摆F-P 腔法,扭秤静电补偿法,天平补偿法,和冷原子干涉法等。 二、扭秤倾斜法测量G及静电补偿法 直接倾斜法和静电补偿法通常采用精密扭秤作为检验质量。扭秤由一根细丝悬挂,可在 水平面内自由转动,这种设计的最典型特点是将待测的引力信号置于与地球重力场正交的水 平面内,以此减少地球重力场及其波动的影响。直接倾斜法是扭秤最直接的工作模式. 如图1所示,其基本原理是利用扭秤自身的回复力矩平衡吸引质量施加在扭秤上的引力力矩,通过对扭秤的扭转角度θ进行高精度的测量,并使用胡克定律建立起引力力矩和扭秤偏转角之间 的关系,从而给出G值。直接倾斜法的难点在于要求对扭秤旋转角θ进行绝对测量,且扭丝的性质如非线性、热弹性、平衡位置漂移等会对结果造成直接影响。为了减小扭丝特性的影响,一种解决方案是使用静电力对引力力矩进行实时补偿,使扭丝不扭转,扭秤始终保持原来的静止状态,从而将直接倾斜法中对角位移的直接测量转换为对电信号的测量。由于在实 验过程中扭丝只起到悬挂扭秤的作用,因此其自身特性并不会影响到G值测量结果,所以极

1798年英国物理学家卡文迪许

1798年英国物理学家卡文迪许 你对英国物理学家卡文迪许了解多少?下面是本人整理的1798年英国物理学家卡文迪许,以供大家阅读。 1798年英国物理学家卡文迪许简介 亨利·卡文迪许(Henry Cavendish,1731.10.10~1810.3.10)英国化学家、物理学家。公元1731年10月10日 生于法国尼斯。1742—1748年他在伦敦附近的海克纳学校读书。1749—1753年期间在剑桥彼得豪斯学院求学。在伦敦定 居后,卡文迪许在他父亲的实验室中当助手,做了大量的电学、化学研究工作。他的实验研究持续达50年之久。1760年卡文 迪许被选为伦敦皇家学会成员,1803年又被选为法国研究院 的18名外籍会员之一。 1798年英国物理学家卡文迪许称量地球 1797年卡文迪许完成了对地球密度的精确测量。他 使用的装置是约翰·米切尔设计,但米切尔本人不久去世,将装置遗留给了沃拉斯顿,后被转送给卡文迪许。装置是由两个重达350磅的铅球和扭秤系统组成。为了消除气流干扰,卡文迪许将装置安装在一个不透风的房间,自己则在室外用望远镜观测扭矩的变化。之后他向皇家学会提交报告,给出了目前看来仍然比较精确的地球密度值。这一测量被称为开创了“弱力测量的新时代”。很多文章称卡文迪许求出了万有引力常量,实际上卡文迪许当时只关心地球的密度,并没有涉及其他。而采用卡文迪许的测量结果通过计算可以求出万有引力常量和地球的质量。 1798年英国物理学家卡文迪许扭秤实验 1789年,英国物理学家卡文迪许(H.Cavendish)利

用扭秤,成功地测出了引力常量的数值,证明了万有引力定律的正确。卡文迪许解决问题的思路是,将不易观察的微小变化量,转化为容易观察的显著变化量,再根据显著变化量与微小量的关系算出微小的变化量。 1798年英国物理学家卡文迪许趣闻 科学怪人 据说卡文迪许很有素养,但是没有英国的那种绅士派头。他不修边幅,几乎没有一件衣服是不掉扣子的;他不好交际,不善言谈,终生未婚,过着奇特的隐居生活。卡文迪许为了搞科学研究,把客厅改作实验室,在卧室的床边放着许多观察仪器,以便随时观察天象。他从祖上接受了大笔遗产,成为百万富翁。不过他一点也不吝啬。有一次,他的一个仆人因病生活发生困难,向他借钱,他毫不犹豫地开了一张一万英镑的支票,还问够不够用。卡文迪许酷爱图书,他把自己收藏的大量图书,分门别类地编上号,管理得井井有序,无论是借阅,甚至是自己阅读,也都毫无例外地履行登记手续。卡文迪许可算是一位活到老、干到老的学者,直到79岁高龄、逝世前夜 还在做实验。卡文迪许一生获得过不少外号,有“科学怪人”,“科学巨擘”,“最富有的学者,最博学的富豪”等。 视名利如浮云 有一次卡文迪许出席宴会,一位奥地利来的科学家当面奉承卡文迪许几句,他听了起初大为忸怩,继而手足无措,终于坐不住站了起来,冲出室外径自坐上马车回家了。卡文迪许沉默寡言,对慕名来访的客人常常一言不发陪坐在旁,脑中想着科学问题,使一些帮闲文人尴尬扫兴。他一生致力于科学研究,成果丰硕,但只发表过两篇并不重要的论文。(其实是 因为他这个人孤僻腼腆到“病态”的程度,连他和管家之间都

经典物理学实验——库仑扭秤实验

经典物理学实验——库仑扭秤实验 在物理学发展的前期,人们对微弱作用的测量感到困难,因为这些微弱的作用人们通常都感觉不到。后来,物理学家们想到了悬丝,要把一根丝拉断需要较大的力,而要使一根悬丝扭转,有一个很小的力就可以做到了。根据这个设想,法国物理学家库仑和英国的科学家卡文迪许于1785年和1789年分别独立地发 定角度的扭转;另一方面在悬丝上固定一平面镜,它可以把入射光线反射到距离平面镜较远的刻度尺上,从反射光线射到刻度尺上的光点的移动,就可以把悬丝的微小扭转显现出来。 一、库仑与库仑定律 查利·奥古斯丁·库仑(1736 --1806),法国工程师、物理学家。1736年6 月14日生于法国昂古莱姆。1806年8月23日在巴黎逝世。主要贡献有扭秤实验、库仑定律、库伦土压力理论等。同时也被称为“土力学之始祖”。 电荷的单位库仑就是以他的姓氏命名的,简称库,符号C。若导线中载有1安培的稳定电流,则在1秒内通过导线横截面积的电量为1库仑。 库仑曾就学于巴黎马扎兰学院和法兰西学院,服过兵役。1774年当选为法

国科学院院士。1784年任供水委员会监督官,后任地图委员会监督官。1802年,拿破仑任命他为教育委员会委员,1805年升任教育监督主任。 1773年发表有关材料强度的论文,所提出的计算物体上应力和应变分布情况的方法沿用至今(2018),是结构工程的理论基础。1777年开始研究静电和磁力问题。当时法国科学院悬赏征求改良航海指南针中的磁针问题。库仑认为磁针支架在轴上,必然会带来摩擦,提出用细头发丝或丝线悬挂磁针。研究中发现线扭转时的扭力和针转过的角度成比例关系,从而可利用这种装置测出静电力和磁力的大小,这导致他发明扭秤。他还根据丝线或金属细丝扭转时扭力和指针转过的角度成正比,因而确立了弹性扭转定律。他根据1779年对摩擦力进行分析,提出有关润滑剂的科学理论,于1781年发现了摩擦力与压力的关系,表述出摩擦定律、滚动定律和滑动定律。设计出水下作业法,类似现代的沉箱。1785~1789年,用扭秤测量静电力和磁力,导出著名的库仑定律。 库仑用自己发明的扭秤建立了静电学中著名的库仑定律。他在给法国科学院的《电力定律》的论文中详细地介绍了他的实验装置,测试经过和实验结果。库仑终于找出了在真空中两个点电荷之间的相互作用力与两点电荷所带的电量及它们之间的距离的定量关系,这就是静电学中的库仑定律,即两电荷间的力与两电荷的乘积成正比,与两者的距离平方成反比。库仑定律是电学发展史上的第一个定量规律,它使电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。 二、库仑扭秤实验 库仑制造的扭秤的构造是: 在一个直径和高度均为12英寸的玻璃圆筒上,盖一块直径为13英寸的玻璃板,板的正中钻有一孔,并装上高为24英寸的玻璃管,管子上端装有扭转测微计。端部中间有一只夹子,夹持一根极细的银丝,银丝连着一根浸过西班牙蜡的麦杆,杆的一端有一小木髓球,另一端贴一小纸片与之平衡,使麦杆呈水平位置,这一部分都装在玻璃筒内。在玻璃盖板上另开有侧孔,孔内放入另一只小木髓球,它可以与麦杆上的小木髓球接触。这样,只要使侧孔处的小木髓球带电,然后与麦杆上的另一只小木髓球接触,两只小球就带同种电荷,相互排斥而分开,银丝就呈现扭转。玻璃圆筒上刻有360个刻度,使悬丝自由松开时,横杆上小木髓球

经典物理学实验--卡文迪许扭秤实验

经典物理学实验--卡文迪许扭秤实验 一、卡文迪许简介 卡文迪许(Henry Cavendish,1731 ~ 1810 年) 英国化学家、物理学家。1731 年10 月10 日生于 法国尼斯。1742—1748 年他在伦敦附近的海克纳 学校读书。1749— 1753 年期间在剑桥彼得豪斯学 院求学。在伦敦定居后,卡文迪许在他父亲的实验 室中当助手,做了大量的电学、化学研究工作。他 的实验研究持续达50 年之久。1760 年卡文迪许被 选为伦敦皇家学会成员,1803 年又被选为法国研 究院的18名外籍会员之一。1810年3 月10 日,卡文迪许在伦敦逝世,终身未婚。 与伽利略和开普勒等科学家不同,卡文迪许非常富有,从不为自己的生存而担心。伽利略玩笑的说:“他是一切有学问的人当中最富有的,一切富有的人当中最有学问的”。与众多科学家一样,卡文迪许具有很多怪癖的性格。据说卡文迪许很有素养,但是没有当时英国的那种绅士派头。他不修边幅,几乎没有一件衣服是不掉扣子的;他不好交际,不善言谈,终生未婚,过着奇特的隐居生活。卡文迪许为了搞科学研究,把客厅改作实验室,在卧室的床边放着许多观察仪器,以便随时观察天象。他从祖上接受了大笔遗产,成为百万富翁。不过他一点也不吝啬。有一次,他的一个仆人因病生活发生困难,向他借钱,他毫不犹豫地开了一张一万英镑的支票,还问够不够用。卡文迪许酷爱图书,他把自己收藏的大量图书,分门别类地编上号,管理得井井有序,无论是借阅,甚至是自己阅读,也都毫无例外地履行登记手续。卡文迪许可算是一位活到老、干到老的学者,直到79 岁高龄、逝世前夜还在做实验。卡文迪许一生获得过不少外号,有“科学怪人”,“科学巨擘”,“最富有的学者,最博学的富豪”等。 卡文迪许虽然爱好孤独的生活,但对于别人所作的研究工作却是很感兴趣,例如,他曾将一些钱送给青年科学家戴维作实验之用,有时还亲自跑到皇家学会去参加戴维的分解碱类的实验。卡文迪许于1773 年底前就完成了一系列的静电实验,可是他没有发表那些重要的成果。当时发表的两篇论文,只包括了一些

卡文迪许扭秤实验

卡文迪许扭秤法测量万有引力常数 一 实验目的 1. 掌握在扭秤摆动中求平衡位置的方法。 2. 掌握如何通过卡文迪许扭秤法测量万有引力常数。 二 实验原理 根据牛顿万有引力定律,间距为r, 质量为 m 1 和m 2 的两球之间的万有引力F 方向沿着两球中心连线,大小为 221r m m G F 其中 G 为万有引力常数。 图1 卡文迪许扭秤法原理图 实验仪器如卡文迪许扭秤法原理图所示。卡文迪许扭秤是一个高精度的仪器,非常灵敏,为保护仪器和防止外界干扰影响实验测量,扭秤被悬挂在一根金属丝上,装在镶有玻璃板的铝框盒内,固定在底座上。 实验时,把两个大球贴近装有扭秤的盒子,扭秤两端的小球受到大球的万有引力作用而移近大球,使悬挂扭秤的悬丝扭转。激光器发射的激光被固定在扭秤上的小镜子反射到远处的光屏上,通过测量光屏上扭秤平衡时光点的位置可以得到对应的扭转角度, 从而计算出万有引力常数G 。

假设开始时扭秤扭转角度00=θ,把大球移动贴近盒子放置,大小球之间的万有引力为F ,小球受到力偶矩N =2 Fl 而扭转,悬挂扭秤的金属丝因扭转产生与力偶矩N 相平衡的反向转矩N ’= K(θ/2),扭秤最终平衡在扭角θ的位置: 2/F GMm d = 2(/2)Fl K θ= l d GMm K 24=θ 其中 K 是金属悬丝的扭转常数,M 是大球的质量,m 是小球的质量,d 是大球小球的中心的连线距离,l 是小球中心到扭秤中心的距离。 由转动方程可求得悬丝的扭转常数:通过转动惯量I 和测量扭秤扭转周期T 就可以得到金属丝的扭转系数K 224T I K π= 假设小球相对大球是足够轻,那么转动惯量 22ml I = 因此扭转角 l d GMT 222 2πθ= 当大球转动到相反的对称位置后,新平衡位置是θ-,因此平衡时的总扭转角为 l d GMT 222 2πθ= 通过反射光点在光屏上的位移S 可以得到悬丝扭转角度。由于万有引力作用很弱,使得扭秤平衡时扭转角很小,此时可以认为: D S = θ2 其中D 是光屏到扭秤的距离。 因此万有引力常数

引力常量的测定卡文迪许扭秤实验

引力常量的测定——卡文迪许扭秤实验牛顿认为公式中的引力常数G是普适常数,不受物体的形状、大小、地点和温度等因素影响,引力常数的准确测定对验证万有引力定律将提供直接的证据。英国物理学家卡文迪许(H.Cavendish 1731-1810)根据牛顿提出的直接测量两个物体间的引力的想法,采用扭秤法第一个准确地测定了引力常数。 卡文迪许实验所用的扭秤是英国皇家学会的米歇尔神父制作的。米歇尔制作扭秤的目的是为了测定地球的密度,并与卡文迪许讨论过这一问题。但是,米歇尔还未用它来进行测定,便去世了。米歇尔去世后,这架仪器几经辗转传到了剑桥大学杰可逊讲座教授沃莱斯顿神父手里,他又慷慨地赠送给了卡文迪许,这时卡文迪许已是年近古稀的老人了。卡文迪许首先根据自己实验的需要对米歇尔制作的扭秤进行的分析,他认为有些部件没有达到他所希望的方便程度,为此,卡文迪许重新制作了绝大部分部件,并对原装置进行了一些改动。卡文迪许认为大铅球对小铅球的引力是极其微小的,任何一个极小的干扰力就会是实验失败。他发现最难以防止的干扰力来自冷热变化和空气的流动,为了排除误差来源,卡文迪许把整个仪器安置在一个关闭房间里,通过望远镜从室外观察扭秤臂杆的移动。扭秤的主要部分是一个轻而坚固的T形架,倒挂在一根金属丝的下端。T形架水平部分的的两端各装一个质量是m的小球,T形架的竖直部分装一面小平面镜M,它能把射来的光线反射到刻度尺上,这样就能比较精确地测量金属丝地扭转。实验时,把两个质量都是m'地大球放在如图所示的位置,它们跟小球的距离相等。由于m

受到m'的吸引,T形架受到力矩作用而转动,使金属丝发生扭转,产生相反的扭转力矩,阻碍T形架转动。当这两个力矩平衡时,T形架停下来不动。这时金属丝扭转的角度可以从小镜M反射的光点在刻度尺上移动的距离求出,再根据金属丝的扭转力矩跟扭转角度的关系,就可以算出这时的扭转力矩,进而求得m与m'的引力F。他利用扭秤进行了一系列十分仔细的测量,测得引力常量G=6.754×10-11m3kg-1s2,与目前的公认值只差百分之一,在此后得89年间竟无人超过他得测量精度。卡文迪许完成了这一重要常数的测定两年之后就与世长辞了。这一成果也就成了卡文迪许用毕生精力进行科学研究的终结和最后的献礼。

【大学物理实验】扭秤法测万有引力常数

西安交通大学实验报告 大学物理 能动学院 装备02 张宏宇 2011年12月20日

西安交通大学实验报告 课程 大学物理实验 实验名称 扭秤法测万有引力常数 第 1 页 共 8 页 系 别___能动学院 ______________ 实 验 日 期 2011年12 月 20 日 专业班级___装备02__组别_____________ 实 验 报 告 日 期 2011年12 月 20 日 姓 名___张宏宇_______学号_2010037047____ 报 告 退 发 ( 订正 、 重做 ) 同 组 人__________无___________________ 教 师 审 批 签 字 一.实验目的 1.掌握在扭秤摆动中求平衡位置的方法。 2.掌握如何通过卡文迪许扭秤法测量万有引力常数。 二.实验仪器 卡文迪许扭秤,激光发射器,光屏,米尺,秒表,电源。 三.实验原理 根据牛顿万有引力定律,间距为r, 质量为 m 1 和m 2 的两球之间的万有引力F 方向沿着两球中心连线,大小为 2 2 1r m m G F (1) 其中 G 为万有引力常数。 实验仪器如卡文迪许扭秤法原理图所示。卡文迪许扭秤是一个高精度的仪器,非常灵敏,为保护仪器和防止外界干扰影响实验测量,扭秤被悬挂在一根金属丝上,装在镶有玻璃板的铝框盒内,固定在底座上。

实验时,把两个大球贴近装有扭秤的盒子,扭秤两端的小球受到大球的万有引力作用而移近大球,使悬挂扭秤的悬丝扭转。激光器发射的激光被固定在扭秤上的小镜子反射到远处的光屏上,通过测量光屏上扭秤平衡时光点的位置可以得到对应的扭转角度, 从而计算出万有引力常数 G 。 假设开始时扭秤扭转角度00=θ,把大球移动贴近盒子放置,大小球之间的万有引力为F ,小球受到力偶矩Fl N 2=而扭转,悬挂扭秤的金属丝因扭转产生与力偶矩N 相平衡的反向转矩)2/('θK N =,扭秤最终平衡在扭角θ的位置: 2/d GMm F = )2/(2θK Fl = l d GMm K 2 4 =θ 其中 K 是金属悬丝的扭转常数,M 是大球的质量,m 是小球的质量,d 是大球小球的中心的连线距离,l 是小球中心到扭秤中心的距离。 由转动方程可求得悬丝的扭转常数:通过转动惯量I 和测量扭秤扭转周期T 就可以得到金属丝的扭转系数K 2 2 4T I K π= 假设小球相对大球是足够轻,那么转动惯量22ml I =,因此扭转角

卡文迪许扭秤法测量万有引力常数

卡文迪许扭秤法测量万有引力常数 班级核工程82 学号 08182022 姓名刘勇

卡文迪许扭秤法测量万有引力常数 一、实验目的 1. 掌握在扭秤摆动中求平衡位置的方法。 2. 掌握如何通过卡文迪许扭秤法测量万有引力常数。 二、实验仪器 卡文迪许扭秤,激光发射器, 光屏,米尺,秒表,电源 三、实验原理 根据牛顿万有引力定律,间距为r, 质量为 m1 和m2 的两球之间的万有引力F 方向沿着两球中心连线,大小为 其中G 为万有引力常数。 实验仪器卡文迪许扭秤法原理图所示。卡文迪许扭秤是一个高精度的仪器,非常灵敏,为保护仪器和防止外界干扰影响实验测量,扭秤被悬挂在一根金属丝上,装在镶有玻璃板的铝框盒内,固定在底座上。 实验时,把两个大球贴近装有扭秤的盒子,扭秤两端的小球受到大球的万有引力作用而移近大球,使悬挂扭秤的悬丝扭转。激光器发射的激光被固定在扭秤 r m m G F 2 2 1

上的小镜子反射到远处的光屏上,通过测量光屏上扭秤平衡时光点的位置可以得到对应的扭转角度, 从而计算出万有引力常数 G 。 假设开始时扭秤扭转角度θ0=0,把大球移动贴近盒子放置,大小球之间的万有引力为F ,小球受到力偶矩N =2 Fl 而扭转,悬挂扭秤的金属丝因扭转产生与力偶矩N 相平衡的反向转矩N ’= K(θ/2),扭秤最终平衡在扭角θ的位置: F=G M m /d 2 2Fl= K(θ/2) 其中 K 是金属悬丝的扭转常数,M 是大球的质量,m 是小球的质量,d 是大球小球的中心的连线距离,l 是小球中心到扭秤中心的距离。 由转动方程可求得悬丝的扭转常数:通过转动惯量I 和测量扭秤扭转周期T 就可以得到金属丝的扭转系数K : 假设小球相对大球是足够轻,那么转动惯量l m I 2 2= 因此由上述几式得,扭转角l d 2 2 2 π T 2GM θ= 。 当大球转动到相反的对称位置后,新平衡位置是-θ, 因此平衡时的总扭转角为 l d 2 22 πT GM 2θ= 通过反射光点在光屏上的位移S 可以得到悬丝扭转角度。由于万有引力作用很弱,使得扭秤平衡时扭转角很小,此时可以认为:D S θ2=,其中D 是光屏到扭秤的距离。 T I K 2 2 π 4=

万有引力常数精确测量

科学研究方法 --万有引力常数G 的自由落体法精确测量 我们从伽利略的自由落体实验到牛顿自然哲学数学原理的发表,感受微积分带给我们的方向,到经典物理大厦的倒塌,爱因斯坦的相对论的产生,到如今的拓扑学和计算机的出现,这每一次的看似新知识的出现,都出现着新的科学研究方法的变革,认识世界的方法,认识客观世界的基本思维方法。 现在我们真实的感受下科学研究方,我们客观的认识一下研究新事物的一种思维方法。万有引力常数G 是一个与理论物理、天体物理和地球物理等密切相关的物理学基本常数, 它的精确测量在引力实验乃至整个实验物理学中占据着特殊地位. 尽管两个多世纪以来科学家们为此竭尽全力, 但G 的测量精度仍然是物理学基本常数中最差的. 现在我们认识实验室测量万有引力常数G 。 测G 的困难 在过去的200 多年中, 人们在万有引力常数G 的测量过程中付出了极大的努力, 但引力常数G 测量精度的提高却非常缓慢, 几乎是每一个世纪才提高一个数量级. 这一领域的研究进展之所以如此缓慢,其原因是众所周知的. 首先, 万有引力是自然界四种基本相互作用力中最微弱的。例如, 一个电子与一个质子之间的电磁相互作用约是它们之间的万有引力相互作用的1039倍。 微弱的引力信号极易被其他干扰信号所湮没, 因此在实验中必须克服电磁力、地面振动、温度变化等因素对实验的干扰, 测量必须在一些采取特别措施的实验室进行。其次, 万有引力是不可屏蔽的, 因此检验质量必然会受到除了实验专门设置的吸引质量以外的其他物体的引力干扰, 比如实验仪器、实验背景质量、实验人员等. 另外, 移动的质量体, 如实验室附近驶过的车辆以及行人都会给实验带来引力扰动. 即使在十分偏僻安静的实验室,云层气压、雨雪等天气的变化等都会干扰测量结果。第三, 到目前为止, 还没发现G 与任何其他基本常数之间存在确定的联系, 因此不可能用其他基本常数来间接确定G 值, 只能根据牛顿万有引力定律。 第四,实验精度受到了测量仪器精度的限制。 目前G 的测量精度基本上代表了现有机械加工与测量的水平.最后, 用于探测微弱引力的工具, 如各种形式的扭秤和天平等, 存在各种寄生耦合效应和系统误差, 最终限制了测量精度的提高。 表1 CODATA-06 收录的测G 实验结果和2002, 2006 CODATA 推荐值No 实验者 代号实验方法G (2 131110---s kg m )u r (ppm)1 Karagioz et al.TR&D-96 [40]扭秤周期法 6.6729(5)752 Bagley et al LANL-97[41]扭秤周期法 6.6740(7)1053 Gundlach et al UWash-00[42]角加速度法 6.674255(92)144Quinn et al BIMP-01[43]簧片扭秤补偿法 6.67559(27) 40对全部高中资料试卷电气设备,在安装过程中以

平方反比定律的验证实验

卡文迪许的同心球电荷分布实验,比库仑的扭 秤实验精确且早几十年,但是卡文迪许并没有 发表自己的著作。直到1871年麦克斯韦主持剑 桥大学的卡文迪许实验室后,卡文迪许的手稿 才转到了麦克斯韦手中,麦克斯韦亲自动手重 复了卡文迪许的许多实验,手稿经麦克斯韦整 理后出版,他的工作才为世人所知。 1769年,英国苏格兰人罗宾逊,设计了一个杠杆 装置, 他把实验结果用公式表述出来,即电力F与距离r的n次方成反比。先假设指数n不是准确为2 ,而是,得到指数偏差。 1773年,卡文迪许用两个同心金属球壳做实验,如右图,外球壳由两个半圆装配而成,两半球合起来正好把内球封在其中。通过一根导线将内外球连在一起,外球壳带点后,取走导线,打开外壳,用木髓球验电器试验有没有带电,结果发现木髓球验电器没有指示,内球不带电荷。根据这个实验,卡文迪许确定指数偏差,比罗宾逊1769年得出的0.06更精确。 1936年,美国沃塞斯特工学院的Plimpton和Lawton,在新的基础上验证了库仑定律,他们运用新的测量手段,改进了卡文迪许和麦克斯韦的零值法,消除和避免了试验中几项主要误差,从而大大地提高了测量精度,试验线路和装置如右图所示。 他们用这套装置进行了多次试验,不同的实验者都确认电流计除了由于热运动造成的1微伏指示外没有其他振动,他们用麦克斯韦对出的公式进行计算,得到 1971年,美国Wesleyan大学的Edwin R.Williams,James E.Faller及Henry A.Hill 用现代测试手段,将平方反比定律的指数偏差又延伸了好几个数量级。在此之前已有好几起实验结果,不断地刷新纪录。Williams等人采用高频高压信号、锁定放大器和光学纤维传输来保证实验条件,但基本方法和设计思想跟卡文迪许和麦克斯韦是一脉相承的。 右图是简单示意图,他们用五个同心金属壳,而不是两个,采用十二面体形,而不是球形。峰值为10千伏的4兆赫高频高压信号加在最外面两层金属壳上,检测器接到最里面的两层,检验是否接收到信号。 他们根据麦克斯韦的公式,得到的平方反比定律的指数偏差

卡文迪许实验室

卡文迪许实验室 卡文迪许实验室是英国剑桥大学的物理实验室,实际上就是它的物理系。剑桥大学建于1209年,历史悠久,与牛律大学同为英国的最高学府。 剑桥大学的卡文迪许实验室建于187l~1874年间,是当时剑桥大学的一位校长威廉·卡文迪许私人捐款兴建的。他是十八~十九世纪对物理学和化学做出过巨大贡献的科学家亨利·卡文迪许的近亲。这个实验室就取名卡文迪许实验室,当时用了捐款8450英镑,除去盖成一栋实验楼馆,还买了一些仪器设备。 英国是十九世纪最发达的资本主义国家之一。把物理实验室从科学家私人住宅中扩展出来,成为一个研究单位,这种做法顺应了十九世纪后半叶工业技术对科学发展的要求,为科学研究的开展起了很好的促进作用。随着科学技术的发展,科学研究工作的规模越来越大,社会化和专业化是必然的趋势。卡文迪许实验室后来几十年的历史,证明剑桥大学这位校长是有远见的。 负责创建卡文迪许实验室的是著名物理学家、电磁场理论的奠基人麦克斯韦。他还担任了第一届卡文迪许实验物理学教授,实际上就是实验室主任或物理系主任,直至1879年因病去世(年仅四十八岁)。在他的主持下,卡文迪许实验室开展了教学和多项科学研究,按照麦克斯韦的主张,在系统地讲授物理学的同时,还辅以表演实验。表演实验则要求结构简单,学生易于掌握。他说:“这些实验的教育价值,往往与仪器的复杂性成反比,学生用自制仪器,虽然经常出毛病,但他却会比用仔细调整好的仪器,学到更多的东西。仔细调整好的仪器学生易于依赖,而不敢拆成零件。”从那个时候起,使用自制仪器就形成了卡文迪许实验室的传统。 实验室附有工厂,可以制作很精密的仪器,麦克斯韦很重视科学方法的训练,特别是科学史的研究。例如:他用了几年的时间整理一百年前H.卡文迪许有关电学实验的论著,并带领大家重复和改进卡文迪许做过的一些实验。有人不理解他的想法,但是后来证明麦克斯韦是有远见的。同时,卡文迪许实验室还进行了多项研究,例如:地磁、电磁波速度、电气常数的精密测量、欧姆定律实验、光谱实验、双轴晶体等等,这些工作起了为后人开辟道路的作用。 麦克斯韦的继任者是斯特技特即瑞利第三。他在声学和电学方面很有造诣。在他主持下,卡文迪许实验室系统地开设了学生实验。1884年,瑞利因被选为皇家学院教授而辞职,由二十八岁的J.J.汤姆逊继任。 J.J.汤姆逊对卡文迪许实验室有卓越贡献,在他的建议下,从1895年开始,卡文迪许实验室实行吸收外校(包括国外)毕业生当研究生的制度,一批批的优秀青年陆续来到这里,在J.J.扬姆逊的指导下进行学习与研究。在他任职的三十五年间,卡文迪许实验室的工作人员开展了如下工作:进行了气体导电的研究,从而导致了电子的发现;进行了正射线的研究,发明了质谱仪,从而导致了同位素的研究;对基本电荷进行测量,不断改进方法,为以后的油淌实验奠定了基础;膨胀云室的发明,为基本粒子的研究提供了有力武器;电磁波和热电子的研究导致了真空二极管和三极管的发明,促进了无线电电子学的发展和应用。其他如X射线,放射性以及α、β射线的研究都处于世界领先地位。 卡文迪许实验室在J.J.汤姆逊的领导下,建立了一整套研究生培养制度和良好的学风。他培养的研究生当中,著名的有卢瑟福、朗之万、汤森德、麦克勒伦、W.L.布拉格、C.T.R.威尔逊、H.A.威尔逊、里查森、巴克拉等等,这些人都有重大建树,其中有多人得诺贝尔奖,有的后来调到其他大学主持物理系工作,成为科学研究的中坚力量。 1919年,J.J.汤姆逊让位于他的学生卢瑟福。卢瑟福是一位成绩卓著的实验物理学家,是原子核物理学的开创者。卢瑟福更重视对青年人的培养。在他的带领下,查德威克发现了中子,考克拉夫特和瓦尔顿发明静电加速器,布拉凯特观察到核反应,奥利法特发现氰,卡皮查在高电压技术和低温研究取得硕果,另外还有电离层的研究,空气动力学和磁学的研究等等。 1937年,卢瑟福去世后,由W.L.布拉格继任第五届教授,以后是莫特和皮帕德。七十年代以后,古老的卡文迪许实验室大大地扩建了,研究的领域包括天体物理学,粒子物理学,固体物理以及生物物理等等。卡文迪许实验室至今仍不失为世界著名实验室之一。

论文实例:万有引力常数G的精确测量与扭秤特性研究

万有引力常数G的精确测量不仅对于揭示引力相互作用的性质非常关键,而且对于理论物理学、地球物理学、天文学、宇宙学以及精密测量技术等领域的研究都具有重要的意义,因而得到理论和实验工作者的广泛关注。自Cavendish测出万有引力常数的第一个实验值以来,人们对此进行了大量的实验研究,并给出了近300个G的测量结果。但令人遗憾的是,作为最早被认识和测量的物理基本常数,与其它基本常数相比,G的测量精度迄今为止是最差的。这是因为万有引力相互作用十分微弱且不可屏蔽,而且涉及到质量、长度和时间等基本量的绝对测量,因此G的精确测量是一项艰巨而复杂的系统工作,它不仅需要好的物理思想和巧妙的实验方案,而且也极力追求实验检测技术的极限。因而作为一个热点和难点,万有引力常数G的精确测量为各国科学家所关注。近三十年来,大多数实验者都认为自己的测G实验达到了10-4数量级的相对精度,但事实上他们的测量结果之间的吻合度仅达到10-3数量级。由于G的测量值之间不吻合,国际基本物理学常数委员会在1999年调整基本常数时,将G的推荐值的相对不确定度由CODATA-86的128m(1m=)增加到CODATA-98的1500m。这也使G成为此次基本常数更新中唯一不确定度下降的物理学基本常数。这些现象充分说明测G的艰巨性和重要性,同时也意味着存在未被认识的系统误差。人们不禁要问:万有引力常数G 的绝对数值究竟是多大?为了回答这一问题,我选择了万有引力常数G的精确测量这一基础研究课题,并希望能在基本物理学常数中写入中国人自己测出的值。该课题得到国家自然科学创新研究群体、国家杰出青年科学基金、国家自然科学基金重点项目、国家自然科学基金面上项目、国家科委九五攀登预研项目等7项课题资助。围绕万有引力常数G的精确测量和精密扭秤特性研究,本文主要介绍以下四个方面的研究工作:HUST—99扭秤周期法测G实验。扭秤可以绕着悬丝在水平面内自由转动,以探测作用于检验质量上水平方向的待测外力作用。作为一种高灵敏度的弱力检测工具,精密扭秤已被广泛应用于万有引力和电磁力等弱力的精密测量以及材料特性研究等诸多研究领域。扭秤周期法测量引力常数G的原理为:通过比较作为检验质量的扭秤系统在吸引质量两种不同引力场配置下的周期变化而测得G值。一根直径25长度为513mm的钨丝悬挂两32g的铜球检验质量构成扭秤,扭秤系统置于真空容器中,自由震荡周期为3484秒。当两个6.25kg的圆柱体吸引质量置于一个检验质量两侧时,其周期增加到4441秒。我们实验的创新之处在于采用了长周期高Q值扭秤,并使之在一个恒温(日变化小于0.005°C)环境下工作,从而克服了扭丝滞弹性和热弹性对测G的影响。我们采用的非对称扭秤可以使得较小的吸引质量产生较大的待测信号,但是这种设计使扭秤系统易受外界干扰的影响,同时也会增加扭秤运动的非线性效应,且对扭秤运动信号的周期拟合提出了更高要求。我们的实验结果的相对精度达到105m,该测量结果被国际物理学基本常数委员会推荐的CODATA-98值所采用,并被命名为“HUST-99”。扭秤系统周期拟合数据处理方法研究。在周期法测量引力常数G的实验中,扭秤周期的测量精度直接影响G的测量精度。扭秤的周期一般从几分钟到小时量级,周期越长,灵敏度越高。但长周期的基频高精度拟合是一件很困难的事,用传统的傅氏变换、极值序列拟合和非线性最小二乘拟合等方法难以满足实验精度的要求。周期法测G实验对扭秤运动的基频的测量精度要求很高,而对振幅和位相等的测量精度要求相对较低。根据这一具体要求,本文提出了对扭秤运动周期的单参量直接基频拟合。单参量直接基频拟合的基本思想是只给出周期的最佳估计值,而对其他参量不作任何限制,即采用仅对信号周期敏感的方差作为判据,利用最小二乘原理给出周期的最可信赖值。理论分析和数值模拟表明该方法可有效克服周期法测G实验中的主要干扰,即由于非线性效应而寄生的高次谐波振荡;由于阻尼的存在引起的扭秤运动振幅的衰减;由于扭丝的蠕变及实验环境的变化而引起的扭秤静平衡点的漂移等。单参量直接基频拟合能高精度给出信号的周期,代价是牺牲了其它参量的测量精度。因为它未对其他参量作任何限制,换而言之给出了其他参量很大的变化范围,从而有可能高精度地将周期限制在较小的范围内,这类似于量子力学中的测不准原理。此外,单参量直接基频拟合与非线性最小二乘拟合相结合,不

相关文档
相关文档 最新文档