文档库 最新最全的文档下载
当前位置:文档库 › 差分放大电路要点

差分放大电路要点

差分放大电路要点
差分放大电路要点

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 ()e s BE EE R 12R U V β++-

(1)差模信号输入时的动态分析 如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压 be s c s1o1s2s1o2o1id o ud r R R 22u u A +-==--== βv v v v v v

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。

差分放大电路

方案三差分放大电路 【项目目标】 知识目标 掌握场效应管的类型、场效应的电压控制作用及共源极放大电路的分析与应用。 能力目标 具有识别场效应管的能力,具有共源极放大的分析能力。

将J8、J9与 J6、J7之间分别加一毫安表,J10、J11连接与J12 改变电位器RP6.将测量的结果记录如下: A1间的电流 A2间的电流 知识点导入 镜像电流源的基本特性。 知识点讲解 基本镜像电流源电路如图所示。 T 1、T 2参数完全相同(即β1=β2,I CEO1=I CEO2)。 原理:因为V BE1=V BE2,所以I C1=I C2 β C1 C1B C1REF 2 2I I I I I +=+= I REF ——基准电流:C2REF C1/21I I I =+=β 推出,当β>>2 时,I C2= I C1≈ I REF ()6060B1 Rp R U U Rp R V BE CC ++--=+-= ≈6 CC Rp R V + 优点: (1)I C2≈I REF ,即I C2不仅由I REF 确定,且总与I REF 相等。 (2)T 1对T 2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B 减少,所以I C2减少)。 缺点: (1)I REF (即I C2)受电源变化的影响大,故要求电源十分稳定。 (2)适用于较大工作电流(mA 数量级)的场合。若要I C2下降,则R 就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。 (3)交流等效电阻R o 不够大,恒流特性不理想。 (4)I C2与I REF 的镜像精度决定于β。当β较小时,I C2与I REF 的差别不能忽略。 巩固训练:将电路图中的值按照电位的阻值代入进行计算?看测量结果与理论之间的误差? 电路测试2 将J8、J9与 J6、J7之间分别加一毫安表,改变电位器RP6.将测量的结果A1间的电流 图3.1.4 基本镜像电流源电路

差分放大电路仿真

苏州市职业大学实验报告姓名:学号:班级:

图2 差分放大器电路调零 R12kΩ R2 2kΩ R36.8kΩ R46.8kΩ R55.1kΩ R6510Ω R7510Ω R812kΩ Rp1 100ΩKey=A 50% V112 V V212 V Q1 2N3903Q2 2N390316 710 11 0U1 DC 1e-009W 1.089m A + - 125 U3 DC 1e-009W -0.015m A +- 140 4U2 DC 10M W 5.303 V + - 3 2 图3差分放大器电路静态工作点测量

R1 2kΩ R2 2kΩR3 6.8kΩ R4 6.8kΩ R5 5.1kΩ R6 510|?R7 510Ω R8 12kΩ Rp1 100Ω Key=A 50% V1 12 V V2 12 V Q1 2N3903 Q2 2N3903 16 7 10 11 0 2 XFG1 XSC1 A B Ext Trig + + _ _+_ 8 5 12 4 3 图4 测量差模电压放大倍数 图5 差模输入差分放大电路输入、输出波形图 3.测量共模放大倍数

将函数信号发生器XFG1的“+”端接放大电路的共同输入端,COM 接地,构成共模输入方式,如图6所示。在输出负载端用万用表测量输出电压值,打开仿真开关,测得8R 两端输出电压值为pV 038.1,几乎为0,所以共模双端输出放大倍数也就近似为0。 图6 共模输入、双端输出电压放大倍数测量 示波器观察到的差分放大电路输入、输出波形如图7所示。

图7共模输入差分放大电路输入、输出波形 R1 2k|? R2 2k|?R3 6.8k|? R4 6.8k|? R5 5.1k|? R6 510|?R7 510|? R8 12k|? Rp1 100|? Key=A 50% V1 12 V V2 12 V Q1 2N3903 Q2 2N3903 16 7 10 11 0 2 XSC1 A B Ext Trig + + _ _+_ 5 XFG1 34 8 9 图8 单端输出差分放大电路

差分放大电路

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

[应用]差动放大电路原理介绍

[应用]差动放大电路原理介绍 从电路结构上说,差动放大电路由两个完全对称的单管放大电路组成。由于电路具有许多突出优点,因而成为集成运算放大器的基本组成单元。一、差动放大电路的工作原理 最简单的差动放大电路如图7-4所示,它由两个完全对称的单管放大电路拼接而成。在该电路中,晶体管T、T型号一样、特性相同,R为输入回路限流电12B1 阻,R为基极偏流电阻,R为集电极负载电阻。输入信号电压由两管的基极输入,B2C 输出电压从两管的集电极之间提取(也称双端输出),由于电路的对称性,在理想情况下,它们的静态工作点必然一一对应相等。 图7-4 最简单的差动放大电路 1(抑制零点漂移 在输入电压为零, u= u= 0 的情况下,由于电路对称,存在I= I,i1 i2 C1 C2所以两管的集电极电位相等,即 U= U,故 C1 C2 u= U- U= 0。 o C1 C2 当温度升高引起三极管集电极电流增加时,由于电路对称,存在,导致两管集电极电位的下降量必然相等,即

所以输出电压仍为零,即。 由以上分析可知,在理想情况下,由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。 抑制零点漂移是差动放大电路最突出的优点。但必须注意,在这种最简单的差动放大电路中,每个管子的漂移仍然存在。 2(动态分析 差动放大电路的信号输入有共模输入、差模输入、比较输入三种类型,输出方式有单端输出、双端输出两种。 (1)共模输入。 在电路的两个输入端输入大小相等、极性相同的信号电压,即,这种输入方式称为共模输入。大小相等、极性相同的信号为共模信号。 很显然,由于电路的对称性,在共模输入信号的作用下,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。说明差动放大电路对共模信号无放大作用。共模信号的电压放大倍数为零。 (2)差模输入。 在电路的两个输入端输入大小相等、极性相反的信号电压,即u = -ui1i2 ,这种输入方式称为差模输入。大小相等、极性相反的信号,为差模信号。 在如图7-4所示电路中,设u> 0 u< 0,则在u的作用下,T管的集电i1 i2 i11极电流增大,导致集电极电位下降(为负值);同理,在U的作用下,T管i22的集电极电流减小,导致集电极电位升高(为正值),由于 = ,很显然,和大小相等、一正一负,输出电压为 u- o =

差动放大电路(

§5、1差动放大电路(第三页) 这一页我们来学习另一种差动放大电路和差动放大电路的四种接法 一:恒流源差动放大电路 我们知道长尾式差动电路,由于接入Re,提Array高了共模信号的抑制能力,且Re越大,抑制能 力越强,但Re增大,使得Re上的直流压降增 的值, 大,要使管子能正常工作,必须提高U EE 这样做是很不划算的。因此我们用恒流源代替 Re,它的电路图如右图所示: 代替Re即可恒流源差动放大电路的指标运算,与长尾式完全一样,只需用r o3 二:差动放大电路的四种接法 差动放大电路有两个输入端和两个输出端,因此信号的输入、输出方式有四种情况。 (1)双端输入、双端输出

(2)双端输入、单端输出 (3)单端输入、双端输出 (4)单端输入、双端输出

三:总结 由以上我们可以看出:差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同;如为单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。 下一节 返回 §5、2 集成运算放大器 集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路 一:集成运放的组成 它有四部分组成:1、偏置电路; 2、输入级:为了抑制零漂,采用差动放大电路 3、中间级:为了提高放大倍数,一般采用有源负载的共射放大电路。 4、输出级:为了提高电路驱动负载的能力,一般采用互补对称输出级电路 二:集成运放的性能指标(扼要介绍) 1、开环差模电压放大倍数 Aod 它是指集成运放在无外加反馈回路的情况下的差模电压的放大倍数。 2、最大输出电压 Uop-p 它是指一定电压下,集成运放的最大不失真输出电压的峰--峰值。 3、差模输入电阻r id 它的大小反映了集成运放输入端向差模输入信号源索取电流的大小。要求它愈大愈好。

差动放大电路

建平县职业教育中心备课教案 课题模块(单元)项目(课)差动放大电路 授课班级11电子授课教师安森授课类型新授授课时数 2 教学目标知识目标差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和共模 信号的不同处理方法 能力目标差动放大电路动态参数计算 情感态度目标培养学生的学习兴趣,培养学生的爱岗敬业精神 教学核心教学重点典型差动放大电路——长尾电路的特点,静态和动态计算。 教学难点1、差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和 共模信号的不同处理方法; 2、差动放大电路动态参数计算; 思路概述本讲以教师讲授为主。用多媒体演示典型差动放大电路——长尾电路的特点、静态和动 态计算等,便于学生理解和掌握。 教学方法读书指导法、演示法。 教学工具电脑,投影仪 教学过程 一、组织教学:师生互相问候,安全教育,上实训课时一定要听从老师的指挥,在实训室不要乱动电源。 二、复习提问: 三、导入新课: 1、直接耦合放大电路的零点漂移 直接耦合放大电路的零点漂移主要是晶体管的温漂造成的。在基本差动放大电路中,利用参数的对称性进行补偿来抑制温漂。在长尾电路和具有恒流源的差动放大电路中,还利用共模负反馈或恒流源抑制每只放大管的温漂。 2、差动放大电路组成及特点 1)电路组成 差分放大器是由对称的两个基本放大电路通过射极公共电阻耦合构成的。“对称”的含义是两个三极管的特性一致,电路参数对应相等,即Rc1=Rc2,Rb1=Rb2,1=2,VBE1=VBE2,rbe1= rbe2,ICBO1=ICBO2。 2)电路特性 (1)差动放大电路对零漂在内的共模信号有抑制作用; (2)差动放大电路对差模信号有放大作用; (3)共模负反馈电阻Re的作用:①稳定静态工作点。②对差模信号无影响。③对共模信号有负反馈作用:Re越大对共模信号的抑制作用越强;也可能使电路的放大能力变差。 3、差动放大电路的输入和输出方式 1)差动放大电路可以有两个输入端:同相输入端和反相输入端。根据规定的正方向,在某输入端加上一定极性的信号,如果输出信号的极性与其相同,则该输入端称为同相输入端。反之,如果输出信号的极性与其相反,则该输入端称为反相输入端。 2)信号的输入方式:若信号同时加到同相输入端和反相输入端,称为双端输入;若信号仅从

基于Multisim的差分放大电路仿真分析

基于Multisim的差分放大电路仿真分析 差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。 1 Multisim8软件的特点 Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。它具有这样一些特点: (1)系统高度集成,界面直观,操作方便。将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。操作方法简单易学。 (2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。

(3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。 (4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。 2 差分放大电路仿真分析 运行Muhisim 8,在绘图编辑器中选择信号源、直流电源、三极管、电阻,创建双端输入双端输出差分放大电路(双入双出差分放大电路)如图1所示,标出电路中的结点编号。 该次仿真中,采用虚拟直流电压源和虚拟晶体管,差分输入信号采用一对峰值为5 mV、频率为1 kHz的虚拟正弦波信号源。设置虚拟晶体管的模型参数BF= 150,RR=300Ω。

差分放大电路的四种接法

1.双端输入单端输出电路 电路如右图所示,为双端输入、单端输出差分放大电路。由于电路参数不对称,影响了静态工作点和动态参数。 直流分析: 画出其直流通路如右下图所示,图中和是利用戴维宁定理进行变换得出的等效电源和电阻,其表达式分别为:

交流分析:

在差模信号作用时,负载电阻仅取得T1管集电极电位的变化量,所以与双端输出电路相比,其差模放大倍数的数值减小。 如右下图所示为差模信号的等效电路。在差模信号作用时,由于T1管与T2管中电流大小相等方向相反,所以发射极相当于接地。 输出电压 一半。如果输入差模信号极性不变,而输出信号取自T2管的集电极,则输出与输入同相。当输入共模信号时,由于两边电路的输入信号大小相等极性相同。与输出电压相关的 T1管一边电路对共模信号的等效电路如下

可见,单端输入电路与双端输入电路的区别在于:差模信号输入的同时,伴随着共模信号输入。 输出电压 静态工作点以及动态参数的分析完全与双端输入、双端输出相同。 3.单端输入、单端输出电路 如右图所示为单端输入、单端输出电路,该电路对静态工作点、差模增益、共模增益、输入

与输出电阻的分析与单端输出电路相同。对输入信号的作用分析与单端输入电路相同。 改进型差分放大电路 在差分放大电路中,增大发射极电阻Re的阻值,可提高共模抑制比。但集成电路中不易制作大阻值电阻;采用大电阻Re要采用高的稳压电源,不合适。如设晶体管发射极静态电流为0.5mA,则Re中电流为1mA。当Re为10kΩ时,电源VEE的值为10.7V。在同样的静态工作电流下,若Re=100kΩ,VEE的值约为100V。 为了既能采用较低的电源电压,又能采用很大的等效电阻Re,可采用恒流源电路来取代Re。

差动放大电路解读

差动放大电路 教学目的: 1、掌握基本差动放大电路的组成、工作原理、静态工作情况的分析 2、掌握恒流源差动放大电路的组成、工作原理、静态工作情况的分析 教学重点、难点: 差动放大电路对差模信号的放大作用,对共模信号的抑制作用 教学内容: 1 直接耦合放大器存在的问题 1.1前后级静态工作点的相互影响 在直接耦合放大器中, 由于级与级之间无隔直(流)电容, 因此各级的静态工作点相互影响, 从而要求在设计电路时, 合理安排, 使各级都有合适的静态工作点。 1.2零点漂移 若将直接耦合放大器的输入端短路(ui=0), 理论上讲, 输出端应保持某个固定值不变。然而, 实际情况并非如此, 输出电压往往偏离初始静态值, 出现了缓慢的、无规则的漂移, 这种现象称为零点漂移。 2 基本差分放大电路 2.1电路组成 2.2工作原理 输入信号为零, 即u i1=u i2=0, 放大电路处于静态, 由于电路完全对称, 由下式可知对共模信号具有抑制作用.

I BQ1=I BQ2=I BQ I EQ1=I EQ2=I EQ I CQ1=I CQ2=I CQ U CQ1=U CQ2=U CC -I CQ Rc U O =U CQ1-U CQ2=0 2.3 静态工作点的计算 当输入信号为零时, 放大电路的直流通路如图所示, 由基极回路可得直流电压方程式为 U R I U R I EE e BEQ b BQ =++Re β ++-= = 122 1 R R U U I I b e BEQ EE BQ EQ ) (22121 2 11 2 12 1 R R I U U U U I I I I I I R U I I e c CQ EE CC CEQ CEQ CQ BQ BQ EQ CQ CQ e EE EQ EQ +-+≈== =≈= ≈=β 2.4动态性能分析 (1) 输入信号的类型 1、差模输入信号 在放大器两输入端分别输入大小相等、 相位相反的信号,即u i1=-u i2时,差模输入信号用u id 来表示。 2、共模输入信号 在放大器两输入端分别输入大小相等、相位相同的信号,即u i1=u i2时,共模输入信号常用u ic 来表示。 u i1=-u i2=1/2u id u i1=u i2=u ic 3、输入任意大小信号 不敷出在放大器两输入端分别输入大小不相等时,将其分解成差模信号和共模信号。 u id = u i1-u i2 uic =1/2( u i1+u i2) (2) 对差模信号的放大作用 当从两管集电极取电压时,其差模电压放大倍数表示为 R r R u u u u u u u u A b be c i o i i o o id od ud +- ==--= =β221 12 1 21 当在两个管子的集电极接上负载R L 时, ) 2///(' 'R R R R r R A L c L b be L ud =+- =β )(2r R r be b id += R r c od 2=

典型差分放大电路

典型差分放大电路 SANY GROUP system office room 【SANYUA16H-

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 (1)差模信号输入时的动态分析 ()e s BE EE R 12R U V β++-

如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压增益与单管放大电路的电压增益相同,无负载的情况下: c o1o2o1o ud R 2u A -==-== βv v v

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

差分放大电路仿真分析

差分放大电路仿真分析 差分放大电路是集成运算放大器的主要单元电路之一,它具有很强的抑制零点漂移的能力。作为集成运算放大器的输入级,差分放大电路几乎完全决定着集成运算放大器的差模输入特性、共模抑制特性、输入失调特性和噪声特性。 差分放大电路经由两个参数完全相同的晶体管组成,电路结构对称。电路具有两个输入端和两个输出端,因此差分放大电路具有四种形式:单端输入单端输出、单端输入双端输出、双端输入单端输出以及双端输入双端输出。 实验内容: 一、理想差分放大电路 1、绘制电路图 启动Capture CIS程序,新建工程,利用Capture CIS绘图软件,绘制如下的电路原理图。 双击正弦电压源VS+的图标,在弹出的窗口中设置AC为10mV,DC为0V,VOFF为0,V AMPL为10m,VFREQ1kHz。VS-的设置除AC为-10mV外,其余均与VS+同。 2、直流工作点分析 选择Spice | New Simulation Profile功能选项或单击按钮,打开New Simulation对话框,在Name文本框中输入Bias,单击Create按钮,弹出Simulation Settings-Bias对话框,设置如下:

保存设置,启动PSpice A/D仿真程序,调出PSpice A/D窗口,可以在PSpice A/D窗口中选择View | OutPut Filse功能菜单选项,查看输出文件。

在Capture CIS窗口中,单击I 、V按钮,此时电路图中显示电路的静态工作电压与电流值,如下图: 3、双端输入是的基本特性 上面的电路是双端输入的形式,可以利用上面的电路来分析双端输入时的电路特性。 将分析类型设为交流扫描分析AC Sweep。选择PSpice | New Simulation

差动放大电路

实验五 差动放大电路 一、实验目的 1. 熟悉差动放大电路工作原理。 2. 掌握差动放大电路的基本测试方法。 二、实验仪器 1. 模拟电路实验箱 2. 示波器 3. 信号发生器 三、预习要求 1. 差动放大电路的工作原理。 -12V v 2. 差动放大电路的工作特性: a) 零点漂移的抑制 b) 放大电路对共模信号没有放大作用:0≈c A c) 放大电路对差模信号具有放大作用:111i o d v v A = ,i o d v v A =

d) 共模抑制比c d CMR A A K = 表明放大器对共模信号的抑制能力 四、实验内容 1. 测量静态工作点 按图接线,两输入端接地(输入信号为零)。反复调整R P ,使放大器两输出端的对地电压相等,即V o = 0。测量放大电路的静态工作点。 2. 测量差模电压放大倍数 先将DC 信号源OUT 1和OUT 2分别接入差动放大电路的两输入端,然后调节DC 信号源,使其输出为+0.1V 和-0.1V 。 3. 测量共模电压放大倍数 将差动放大电路的两输入端同时与DC 信号源OUT 1或OUT 2连接,使放大电路引入共模信号。 4. 单端输入差动放大电路 按图接线,组成单端输入差动放大电路。在输入端分别接入 1±=i V V 或v i = 50mV 、f = 1kHz 的正弦波信号,测量放大器的电压放大倍数。并与双端输入时的单端及双端差模电压放大倍数进行比较。 输入正弦信号时,用示波器监视v c 1和v c 2的波形,若有失真现象可减小输入信号。

v -12V 五、实验报告 1.整理实验数据,计算各种接法的电压放大倍数,并与理论估算结 果相比较。 2.总结差放电路的性能和特点。

常规放大电路和差分放大电路

0、小叙闲言 有一个两相四线的步进电机,需测量其A、B两相的电流大小,电机线圈的电阻为0.6Ω,电感为2.2mH。打算在A、B相各串接一个0.1Ω的采样电阻,然后通过放大电路,送到单片机采样(STM32,12位AD采样),放大的电压值是最大应为3v。电路如下。我在这里讨论其中的采样放大电路。很多东西平时在书本上学到烂熟,但真正在实战时,还是碰到了不少问题。纸上得来终觉浅,绝知此事要躬行。因此,在这里总结一下,供自己学习之用,或许也可给大家一点点帮助。 图1 步进电机系统结构图 这里暂时不讨论放大电路的工作原理,直接使用放大器的虚短(短路)和虚断(断路)性质来分析这一类电路,之所以在前面加个虚字,是因为放大器的两端并不是真正的短路或断路。如下图所示,虚短:UP=UN,虚断:IP=0; IN=0。无论放大器接在何种电路中,这两个式子都是成立的。 图2 放大器性质 1.1、电压跟随器

电压跟随,听名字应该就能想到,它的作用就是输出电压Uo应该是随着输入电压Ui变化而变化的(Uo=Ui),如下图所示,由上面讲到的虚短性质,很容易得到Ui=Up=Un=Uo。有人会疑问,直接把Ui接到Uo,岂不是更加方便,要这个做什么。这个就要看电路需求而定了。电压跟随器的作用一般是起到隔离的作用,输入的电流太大的话,也不影响到输出的电流。 图3 电压跟随器电路图 1.2、电压放大电路 说了这么多,也没有看到放大器起到放大的作用,那么它是如下做到放大的电压作用的呢,且看下面这个电路。

图4 电压放大电路 从图4可以看到电路将输入电压放大了-3倍,这个负号来源,在图4中的公式推导已经说得很明白了。充分利用虚短和虚断的性质,加上外接电路,可以实现放大电压的功能(当然也可以缩小电压)。这个电路有一个小小的问题,就是它放大电压后有一个负号,平时我们要的都是输出电压与输入电压同符号,那么如何做到输出电压与同向呢,其实也很容易,且看下面电路图5。它的放大倍数也很好计算,元器件没有比上面多。但是这里又引是入一个新的问题,从下图4的公式推导中,可以明显看到,Uo/Ui>1,那么在我们需要将电压值缩小的场合,这个电路将不再适用。

差分放大电路的作用原理

差分放大电路的作用原理 差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。差分放大电路按输入输出方式分为双端输入双端输出、双端输入单端输出、单端输入双端输出和单端输入单端输出四种类型。按共模负反馈的形式分为典型电路和射极带恒流源的电路两种。 基本状态

差放的外信号输入分差模和共模两种基本输入状态。当外信号加到两输入端子之间,使两个输入信号Vi1、Vi2的大小相等、极性相反时,称为差模输入状态。此时,外输入信号称为差模输入信号,以Vid表示,且: 当外信号加到两输入端子与地之间,使Vi1、Vi2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以Vic表示,且: 当输入信号使Vi1、Vi2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号Vic两部分组成,其中动态时分差模输入和共模输入两种状态。

(1)对差模输入信号的放大作用 当差模信号Vid输入(共模信号Vic=0)时,差放两输入端信号大小相等、极性相反,即Vi1=-Vi2=Vid/2,因此差动对管电流增量的大小相等、极性相反,导致两输出端对地的电压增量,即差模输出电压Vod1、Vod2大小相等、极性相反,此时双端输出电压Vo=Vod1-Vod2=2Vod1=Vod,可见,差放能有效地放大差模输入信号。 要注意的是:差放公共射极的动态电阻Rem对差模信号不起(负反馈)

几个常用经典差动放大器应用电路详解

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作围超过 80°C,因此必须考虑电阻的温度系数。

全差分电路放大分析详解

全差分放大的分析 Introduction 本文通过分析增益和噪声来更深入地探讨该话题,全差分放大器有着多个反馈路径,并且电路分析需要密切注意细节。我们必须注意包含Vcom 引脚从而保证一次完整分析。 Circuit Analysis 全差分放大器的电路分析遵循与通常单端放大器一样的规则,但是这里有一些微妙的地方可能不会被完全领会直到全部分析被做完为止。图1所示的分析电路使用来计算归一化电路公式和框图的,从这里开始,待定的dialup 配置可以被较容易地解决。电压定义也被需要使用从而达到特定的解决方案。 AF 是用来代表放大器的开环差分增益即V out+ -V out- =AF (VP-VN )。这样认为差动放大器两边的增益时完美匹配的并且增益的变化也无关紧要。在负反馈的情况下,当AF>>1时,这通常是典型情况。 Input voltage definitions: ID IN IN V V V +-=-(1) 2 IN IN IC V V V +-+=(2) Output voltage definitions: OD OUT OUT V V V +-=-(3) 2 OUT OUT OC V V V +-+=(4) ()OUT OUT P N V V AF V V +--=-(5) V oc=V ocm (6) 这里有两个运算放大器:主差分放大器(从Vin 到V out )和VOCM 误差放大器。VOCM 误

差放大器的操作是两者中较为简单的并且将会被我们优先考虑。他可以帮助我们回顾参考1中所示简化后的原理图。 V out+ 和Vout-被内部的RC 网络滤除并且求和。VOCM 放大器采集该电压并且将它与送入VOCM 引脚的电源相比较。内部反馈环路被用于驱动VOCM 误差放大的“误差”电压(在输入引脚之间的电压)至零,从而V oc=V ocm.这是上述方程给出的电压定义的基础。 在这里没有简单的方法分析主差分放大器,除了坐下来并写出一些节点分方程然后做代数运算将他们以实际的形式呈现出来。我们将会首先或缺一个仅基于节点分析的解决方案。然后我们将会利用方程1-6中给出的电压定义来得到输出电压的解决方案,即将他们看成是单端的;举个例子,V out+和V out-.这些是用于计算VOD 的。 解出Vn 和Vp 处的节点方程得到: 11()(1)()P IN OUT V V V ββ+-=-+和343434 ()( )()P IN OUT R R V V V R R R R +-=+++ 通过设定: 3134R R R β=+and 1212 R R R β=+ VN 和 VP 可以被重新写成: 22()(1)()N IN OUT V V V ββ-+=-+(7) and 11()(1)()P IN OUT V V V ββ+-=-+(8) 利用上述方程,主差动放大器的框图可以被建立,就像图2所示的那样。框图是理解电路工作和调查其他变量的非常实用的工具。 根据5、7、8方程联立可以计算出: 2112()(1)()(1)[()(1)()(1)]OUT F OUT F F IN IN V A V A A V V ββββ+-+-+-+=---(9) 虽然这样很精确,但是当反馈路径部队称的时候,方程9有点不方便。通过实用方程1-4和方程6中给出的电压定义,我们可以得到更多实用的公式。 代替(V out-)=2V oc-(V out+) 和V oc= V ocm 我们可以写出: 21112()(2)2()(1)[()(1)()(1)]OUT F F OCM F F IN IN V A A V A A V V βββββ++-++-+=---

差动放大器实验报告61228

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 2.4.2. 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 1.13mA 6.4V 7.1V 双出 A m 100.43-? 1.13mA 6.4V 7.1V 单出 A m 100.43-? 1.13mA 3.2V 3.9V 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 1.12mA 6.4V 7.1V 双出 A m 109.83-? 1.12mA 6.4V 7.1V 单出 A m 100.93-? 1.10mA 3.2V 4.0V 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 -93.3 15k Ω 10k Ω ∞ 单出 -46.7 15k Ω 5k Ω 184.2 分析内容 u A i R o R CMR K 空载 -179.4 15k Ω 10k Ω ∞ 双出 -90.1 15k Ω 10k Ω ∞ 单出 -45.5 15k Ω 5k Ω 189.4

相关文档
相关文档 最新文档