文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学竞赛讲座 动态几何的定值

九年级数学竞赛讲座 动态几何的定值

九年级数学竞赛讲座 动态几何的定值
九年级数学竞赛讲座 动态几何的定值

动态几何的定值

内容提要

1.动态几何是指用运动的观点研究几何图形的位置、大小的相互关系.

用动的观点看几何定理,常可把几个定理归为一类.例如:

①梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线;

②两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点

距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上;

③相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长

定理等等.

2.动态几何的轨迹、极值和定值.几何图形按一定条件运动,有的几何量随着运动的变化

而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题.例如:

半径等于R A的圆A与半径为R B(R B>R A)的定圆B内切.那么:

动点A有规律地变化,形成了一条轨迹:以B为圆心,以R B-R A的长为半径的圆.

而A,B两点的距离,却始终保持不变:AB=R B-R A.

若另有一个半径为R C的圆C与圆B外切,则A,C两点的距离变化有一定的范围:R B+R C-(R B-R A)≤AC≤R B+R C+(R B-R A).

即R C+R A≤AC≤2R B+R C-R A .

所以AC有最大值:2R B+R C-R A ;且有最小值:R C+R A.

3.解答动态几何定值问题的方法,一般有两种:

第一种是分两步完成:

①先探求定值.它要用题中固有的几何量表示.

②再证明它能成立.

探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.

第二种是采用综合法,直接写出证明.

例题

例1.已知:△ABC中,AB=AC,点P是BC上任一点,过点P作BC的垂线分别交AB,AC或延长线于E,F.

求证:PE +PF 有定值.

分析:(探求定值)用特位定值法.

① 把点P 放在BC 中点上. 这时过点P 的垂线与AB ,AC 的交点都是点A , PE +PF =2PA ,从而可确定定值是底上的高的2倍. 因此原题可转化:

求证:PA +PB =2AD (AD 为底边上的高). 证明:∵AD ∥PF ,

BD BP AD PE =; BD PD

CD CD CP AD PF +=

=. ∴2BD

BD

2BD PD CD BD BP AD PF AD PE ==++=+.

即2AD

PF PE =+.

∴PE +PF =2AD. ② 把点P 放在点B 上.

这时PE =0,PF =2AD (三角形中位线性质), 结论与①相同.

还可以由PF =BC×tanC ,把定值定为:BC×tanC. 即求证PE +PF =BC×tanC. (证明略)

同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可. 例2. 已知:同心圆为O 中,AB 是大圆的直径,点P 在小圆上

求证:PA 2+PB 2有定值.

分析:用特位定值法.设大圆,小圆半径分别为R ,r. ① 点P 放在直径AB 上.

得PA 2+PB 2=(R +r )2+(. R -r )2=2(R 2+r 2). ② 点P 放在与直径AB 垂直的另一条直径上 也可得PA 2+PB 2= R 2+r 2+R 2+r 2=2(R 2+r 2).

证明: 设∠POA =α,根据余弦定理,得

PA 2=R 2+r 2-2RrCosα, PB 2=R 2+r 2-2RrCos(180-α). ∵Cos(180-α)=Cosα. ∴PA 2+PB 2=2(R 2+r 2).

本题一般知道定值是用两个圆的半径来表示的,所以可省去探求定值的步骤,直接列出PA ,PB 与R, r 的关系式,关键是引入参数α.

例3. 已知:△ABC 中,AB =AC ,点P 在中位线MN 上,BP ,CP 的延长线分别交AC ,AB 于E ,F.

求证:

CE

1

BF 1+

有定值, 分析:

来表示的, 为便于计算引入参数t, 用计算法证明.

证明:设MP 为t, 则NP=

2

1

a -t. ∵MN ∥BC ,

BF MF BC MP =, CE

NE

BC NP =

. 即=a

t BF ac t a BF c

a t a c BF 12

121BF 21=

-?=-?-; CE ab

t

a CE

b a t a CE b CE a t a 12

12121212121=

+?=+?-=- ∴CE

1BF 1+=c ac t

a t a 32121=++- ∵c 是定线段,∴c

3

是定值.

即CE 1BF 1+有定值c

3. 例

4. 已知:在以AB 为弦的弓形劣弧上取一点M(不包括A 、B 两点),以M 为圆心作圆

M 和AB 相切,分别过A ,B 作⊙M 的切线,两条切线相交于点C. 求证:∠ACB 有定值.

分析: ⊙M 是△ABC 的内切圆,∠AMB 是以定线段AB 为弦的定弧所含的圆周

角,它是个定角.(由正弦定理Sin ∠AMB=R

2AB

), 所求定值可用它来表示.

证明:在△ABC 中,∠MAB+∠MBA=180-∠AMB ,

∵M 是△ABC 的内心,

∴∠CAB+∠CBA=2(180-∠AMB). ∴∠ACB=180-(∠CAB+∠CBA )

=180-2(180-∠AMB) = 2∠AMB -180.

由正弦定理

R 2AMB S AB =∠in , ∴Sin ∠AMB=

R

2AB

. ∵弧AB 所在圆是个定圆,弦AB 和半径R 都有定值, ∴∠AMB 有定值.

∴∠ACB 有定值2∠AMB -180.

练习63

1. 用固有的元素表示下列各题中所求的定值 (不写探求过程和证明): ①.等腰三角形底边上的任一点到两腰距离的和有定值是___________. ②.等边三角形内的任一点到三边距离的和有定值是________. ③.正n 边形内的任一点到各边距离的和有定值是_________.

④.延长凸五边形A 1A 2A 3A 4A 5的各边,相交得五个角:∠B 1,∠B 2,∠B 3,∠B 4,∠B 5它们的度数和是________,延长凸n 边形 (n≥5)的各边相交,得n 个角,它们的度数和是___________. (2001年希望杯数学邀请赛初二试题) ⑤.两个定圆相交于A ,B ,经过点B 任意作一条直线交 一圆于C ,交另一圆于D , 则

.AD

AC

有定值是_____________. ⑥.在以AB 为直径的半圆内,任取一点P ,AP ,BP 的延长线分别交半圆于C ,D ,

则AP×AC+BP×BD 有定值是_________.

⑦.AB 是定圆O 的任意的一条弦,点P 是劣弧AB 上的任一点(不含A 和B),PA ,

PB 分别交AB 的中垂线于E ,F.则OE×OF 有定值是__________.

2. 已知:点P 是⊙O 直径AB 上的任一点,过点P 的弦CD 和AB 相交所成的锐角45.

求证:PC 2+PD 2有定值.

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

初中平面几何中的定值问题

平面几何中的定值问题 开场白:同学们,动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综合分析和解决问题的能力。这类问题中就有一类是定值问题,下面我们来看几道题: 【问题1】已知一等腰直角三角形的两直角 边AB=AC=1,P 是斜边BC 上的一动点,过 P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF= 。 方法1:特殊值法:把P 点放在特殊的B 点或C 点或 BC 中点。此种方法只适合小题。 方法2:等量转化法:这是绝大部分同学能够想到的 方法,PF=AE,PE=BE,所以PE+PF=BE+AE 。 方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ???=+??=?+? AB PE PF ?=+ 总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的 不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。 设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自己讲掉。此题可叫差生或中等偏下的学生回答(赛比艳,艾科) (设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。) 过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的等腰三角形,问题有没有变化,又该如何解决?请看: 【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6, 过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF 还是定值吗?若是,是多少? 若不是,为什么? 方法1:三角形相似进行量的转化 ABM PBE PCF ???,AM PE PF AM PB AM PC PE PF AB PB PC AB AB ???==?== ()4624 55 AM PB PC AM BC PE PF AB AB +???+==== (板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线的 长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静) 方法2:等面积法: ABC ABP APC S S S BC AM AB PE AC PF ???=+??=?+? 6424 55 BC AM PE PF AB ???+= ==(M 为BC 中点) (板书) (解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段 有关的量的常用方法。)

2011初三数学竞赛试题答案

2011年四川省初中数学联合竞赛试题 (4月10日上午8﹕45——11﹕15) 考生注意:1. 本试五大题,全卷满分140分.2. 用圆珠笔、签字笔或钢笔作答. 一、选择题(本题满分42分,每小题7分) 本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填 在题后的括号内.每小题选对得7分;不选、选错或选出的代号 字母超过一个(不论是否写在括号内),一律得0分. 1.已知2=+b a , 4)1()1(2 2-=-+-a b b a ,则ab 的值为 ( ) A .1. B .1-. C .2 1- . D .21 . 2.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高 线长的最大值为 ( ) A .5. B .6. C .7. D .8. 3.方程)2)(324(|1|2+-=-x x 的解的个数为 ( ) A .1个 B .2个 C .3个 D .4个 4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有 ( ) A .5组. B .7组. C .9组. D .11组. 5.如图,菱形ABCD 中, 3=AB ,1=DF ,?=∠60DAB ,?=∠15EFG ,BC FG ⊥,则=AE ( ) A .21+. B .6. C .132-. D .31+. 市(区、县) 学校 姓名 性别 报考号_________________________ (密封装订线内不要答题) C E

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

九年级数学竞赛讲座锐角三角函数附答案

【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 13 5,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==; (2)R C c B b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,B C=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.

注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换. 【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值. 思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比. 【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC , (1)求证:AC =BD ; (2)若sinC=13 12,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明; (2) sinC= AC AD =1312,引入参数可设AD=12k ,A C =13k . 【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件; (2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦? 思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约

人教版八年级下册数学专题19:动态几何之定值问题探讨

【中考攻略】专题19:动态几何之定值问题探讨 动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。 结合全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。 一、线段(和差)为定值问题: 典型例题: 例1:(黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R . (1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 5 12(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想. 【答案】解:(2)图2中结论PR +PQ=12 5 仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。 ∵四边形ABCD 为矩形,∴∠BCD=90°。 又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。 ∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125 。

九年级数学竞赛试题(附答案)

九年级数学测验二 满分:120分 时间:150分钟 一、填空题(共9小题,每小题3分,满分27分) 1.实数x 、y 满足等式22 92|3|0x y xy x y xy -++-=,则x y -的取值范围为 。 2.关于x 的方程1 1 3267 a a x x a +=-++无解,则实数a 的可能取值有 。 3. 已知111Rt A B C ?的直角边长分别为1a 、1b ,斜边长为1x ,222Rt A B C ?的直角边长分别为2a 、2b ,斜边长为2x ;请以111Rt A B C ?与222Rt A B C ?的直角边长构造出Rt ABC ?的直角边: ,使得其斜边长为 12x x 4.在ABC ?中,P 为其内部一点,请你构造出一对全等三角形,使得以下结论分别成立: 当 时,ABC ?为以BC 为底边的等腰三角形; 当 时,ABC ?为以AC 为底边的等腰三角形,且P 为它外接圆的圆心; 当 时,ABC ?为等边三角形。 5.在四边形ABCD 中,P 、Q 、R 、S 分别为AB 、BC 、CD 、DA 四边中点,记四边形ABCD 的对角线长度之和为 1l ,四边形PQRS 的对角线长度之和为2l ,令1 2 l k l = ,则k 的取值范围为 。 6.已知函数2 1y ax ax a =++-与直线0x ay a ++=只有一个交点,那么这个交点的坐标为 。 7.给出三个关于x 的方程:2 2 2 20,20,20ax bx c bx cx a cx ax b ++=++=++=, 若2 2 0a b ac bc -+-≠,且这三个方程有相同的根,则这个根为 ; 若0abc ≠,则前两个方程均有实根的概率为 ; 若0ab >,在这三个方程中恰有某个方程存在唯一实根,则它们共有 个不相等的实根。 8. 已知某梯形的边长与对角线可构成三组长度相等的线段,那么最短边 与最长边之比为 。 9.如图,给出反比例函数3 k y x =,这里1k >;在x 轴正半轴上依次排列 2010个点122010,,,A A A L ,点n A 的坐标为(,0)(1,2,,2010)n x n =L , 1(1,2,,2009)n n x x d n +=+=L ,1(1)x d k =-;过点n A 作x 轴的垂线交反比例函数于点n P ,记12n n n P P P ++?的 面积为(1,2,,2008)n S n =L ,那么122008S S S +++=L 。 二、选择题(共9小题,每小题3分,满分27分) 10.若22221a ab b ++= ,那么a 、b ( ) A.一个为无理数、一个为有理数 B.均为分数 C 均为无限不循环小数 D.不是实数 11.下列整式中哪个不能在实数范围内因式分解?( ) A. 3 2 333k k k -+- B. 3 2 331k k k ++- C. 3 2 332k k k +-+ D. 3 2 332k k k -++ 12.如图,在无限单位正方形网格中,任意找三个正方形顶点构成一个角,以下特殊角中不可能得到的有( )个:①22.5? ②30? ③36? ④45? A.4 B.3 C.2 D.1 13.将一个多边形中所有的点连结成线段后,边长及对角线长共有n 种取值,那么在这些线段构成的角中,最小的角是( )度。 A. 180(2)n n -或180(1)1n n -+ B. 90n 或18021n + C. 180n 或360 21 n + D. 180(1)n n -或180(21)21n n -+ 14.如图,一开口向下的抛物线与x 轴负半轴交于A 、B 两点,与y 轴交于点Q (0,-3),其顶点为P ,若 ~PAB BAQ ??,则抛物线的方程为( ) A. 2143 333y x x =- -- B. 2123363y x x =-- - C. 2323y x x =-- D. 2 343y x x =-- 15.如图,在半径为r 的O e 中,有内接矩形ABCD ,AB 中点E 与圆上逆时针排列的三点 F 、G 、H 构成边长为a 的菱形,若2GDH EFG ∠=∠,则DG 的长为( ) A. 2242r a -2242r a + B. 242r ra -242r ra +C. 2 42ra a -2 42ra a + D. 22a r r -或2 2a r r + 16. 如图,在直角坐标系中,直线340x y a ++=与y 轴、反比例函数k y x =和x 轴 依次交于A 、B 、C 、D 四点,若2BC AB CD =+,且2AC BD ?=,则 a k =( )

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

九年级数学竞赛讲座讲直线与圆附答案

注:点与圆的位置关系和直线与圆的位置关系的确定有共同的精确判定方法,即量化的方法(距离与半径的比较),我们称“由数定形”,勾股定理的逆定理也具有这一特点. 【例题求解】 【例1】如图,AB是半圆O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若EA=1,ED=2,则BC的长为. 思路点拨从C点看,可用切线长定理,从E点看,可用切割线定理,而连OD,则OD⊥EC,又有相似三 角形,先求出⊙O的半径. 注:连结圆心与切点是一条常用的辅助线,利用切线的性质可构造出直角三角形,在圆的证明与计算中有广泛的应用. 【例2】如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一个动点,则∠BPC的度数是( ) A.65° B.115° C.60°和115° D.130°和50° (山西省中考题) 思路点拨略 【例3】如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是

⊙O 的切线. 问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 为半径的圆的交BC 于D ,DE ⊥AC 的条件不变,那么上述结论是否还成立?请说明理由; (2)如果AB=AC=5cm ,sinA=5 3,那么圆心O 在AB 的什么位置时,⊙O 与AC 相切? (2001年黑龙江省中考题) 【例4】 如图,已知Rt △ABC 中,AC=5,BC=12,∠ACB=90°,P 是AB 边上的动点(与点A 、B 不重合),Q 是BC 边上的动点(与点B 、C 不重合). (1)当PQ ∥AC ,且Q 为BC 的中点时,求线段PC 的长; (2)当PQ 与AC 不平行时,△CPQ 可能为直角三角形吗?若有可能,求出线段CQ 的长的取值范围;若不可能,请说明理由. (广州市中考题) 思路点拨 对于(2),易发现只有点P 能作为直角顶点,建立一个研究的模型——以CQ 为直径的圆与线段AB 的交点就是符合要求的点P ,从直线与圆相切特殊位置入手,以此确定CQ 的取值范围. 注:判定一直线为圆的切线是平面几何中一种常见问题,判定的基本方法有: (1)从直线与圆交点个数入手; (2)利用角证明,即证明半径和直线垂直; (3)运用线段证明,即证明圆心到直线的距离等于半径. 一个圆的问题,从不同的条件出发,可有不同的添辅助线方式,进而可得不同的证法,对于分层次设问的问题,需整体考虑;

中考压轴冲刺二 动态几何定值问题解析

中考压轴冲刺二动态几何定值问题解析 类型一【线段及线段的和差为定值】 例1、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E. (1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F. ①写出旋转角α的度数; ②求证:EA′+EC=EF; (2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB,求线段 P A+PF的最小值.(结果保留根号) 【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°. ②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM. ∵∠CED=∠A′CE+∠CA′E=45°+15°=60°, ∴∠CEA′=120°, ∵FE平分∠CEA′, ∴∠CEF=∠FEA′=60°, ∵∠FCO=180°﹣45°﹣75°=60°, ∴∠FCO=∠A′EO,∵∠FOC=∠A′OE, ∴△FOC∽△A′OE,

∴OF A O' = OC OE , ∴OF OC = A O OE ' , ∵∠COE=∠FOA′, ∴△COE∽△FOA′, ∴∠F A′O=∠OEC=60°, ∴△A′CF是等边三角形, ∴CF=CA′=A′F, ∵EM=EC,∠CEM=60°, ∴△CEM是等边三角形, ∠ECM=60°,CM=CE, ∵∠FCA′=∠MCE=60°, ∴∠FCM=∠A′CE, ∴△FCM≌△A′CE(SAS), ∴FM=A′E, ∴CE+A′E=EM+FM=EF. (2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M. 由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′, ∴△A′EF≌△A′EB′, ∴EF=EB′, ∴B′,F关于A′E对称, ∴PF=PB′, ∴P A+PF=P A+PB′≥AB′,

2020年九年级数学竞赛试卷

2017年九年级数学竟赛试卷 (本卷满分120分,考试时间120分钟) 一、选择题(每小题5分,共35分) 1.已知ABC △的三边长为a ,b ,c ,且满足方程a 2x 2—(c 2—a 2—b 2)x+b 2=0, 则方程根的情况是( )。 A 、有两相等实根 B 、有两相异实根 C 、无实根 D 、不能确定 2.已知a +b 1=a 2 +2b ≠0,则b a 的值为 ( ) (A )-1 (B ) 2 (C ) l (D )不能确定 3.已知1x B -2-x A 2-x -x 43x 2+=+,其中为常数,则4A -B 的值为( ) (A )7 (B ) 13 (C ) 9 (D )5 4.在一个多边形中,除了二个内角外,其内角之和为2002°,则这个多边 形的边数为 ( ) (A )12 (B )12或13 (C )14 (D )14或15 5.已知abc ≠0,而且a b b c c a p c a b +++===,那么直线y=px+p 一定通 过( )。 A 、第一、二象限 B 、第二、三象限 C 、第三、四象限 D 、 第一、四象限 6.已知一次函数y =kx -k ,若y 随x 的减小而减小,则该函数的图象经过 ( ) (A )第一、二、三象限 (B )第一、二、四象限 (C )第一、三、四象限 (D )第二、三、四象限 7、如图8-4,矩形ABCD 的长AD =9cm ,宽AB =3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 ( ) A. 4cm cm 10 B. 5cm cm 10 C. 4cm cm 32 D. 5cm cm 32 二、填空题(每小题6分,共36分) 7.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b= 。 图8-4

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

九年级上学期数学竞赛与答案

1 九年级数学竞赛试卷 班级:_____________ 姓名: ________________ 分数: 一、选择(本题共8个小题,每小题5分,共40分) 1、篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分) ( ) 2、已知两圆的半径R 、r 分别为方程0652 =+-x x 的两根,两圆的圆心距为1,两圆的位置关 系是( ) A .外离 B . 外切 C .相交 D .内切 3、已知:4x =9y =6,则y 1x 1+等于( )A 、2 B 、1 C 、21 D 、2 3 4、抛物线 c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( ) A .b=2,c=0 B. b=2, c=2 C . b= -2,c=-1 D. b= -3, c=2 5、若不等式组?? ?>++<+-m x x m x 110 4的解集是4>x ,则( ) A 、29≤m B 、5≤m C 、29 =m D 、5=m 6、已知0221≠+=+b a b a ,则b a 的值为( )A 、-1 B 、1 C 、2 D 、不能确定 7、任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种 分解:q p n ?=(q p ≤)可称为正整数n 的最佳分解,并规定q p n F =)(.如:12=1×12=2 ×6=3×4,则43)12(=F ,则在以下结论: ①21)2(=F ②8 3 )24(=F ③若n 是一个完 全平方数,则1)(=n F ④若n 是一个完全立方数,即3 a n =(a 是正整数),则a n F 1)(=。 中,正确的结论有:( )A 、4个 B 、3个 C 、2个 D 、1个 8、如图3,在四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于 ( ) A 、134 B 、38 C 、12 D 、310 如图3 二、填空(本题共8个小题,每小题5分,共40分) 9、若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…, 则100!98! = 。 10、设-1≤x ≤2,则22 1 2++- -x x x 的最大值与最小值之差为 11、给机器人下一个指令[s ,A ](0≥s , 1800<≤A ),它将完成下列动作:①先在原地向 左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离。现机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向,要想让机器人移动到点(5-,5)处,应下指令: 。 12、设a b ,是方程220090x x +-=的两个实数根,则2 2a a b ++的值是 13、已知抛物线y=3(x -2)(x+4)则抛物线的对称轴是__________________ 14、汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费 税每升提高0.8元。若某车一年的养路费是1440元,百公里耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图4中的1l 、2 l 所示,则1l 与2l 的交点的横坐标=m (不考虑除养路费和燃油费以外的其它费用) 。 图(4) 15、已知⊙O 的半径为5cm ,AB 、CD 是⊙O 的弦,且 AB=8cm ,CD=6cm ,AB ∥CD ,则AB 与CD 之间的距离为__________. 16、设322 13031 x 2(a x a x a x a +++=+),这是关于x 的一个恒等式(即对于任意x 都成立)。则31a a +的值是 . 三、解答(40分) 17、(12分=5分+7分)如图,矩形纸片ABCD 中,8AB =,将纸片折叠,使顶点B 落在边AD 的E 点上,折痕的一端G 点在边BC 上,10BG =. (1)当折痕的另一端F 在AB 边上时,如图(5),求EFG △的面积; (2)当折痕的另一端F 在AD 边上时,如图(6),证明四边形BGEF 为菱形,并求出折痕GF 的长。 图 1

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

【九年级数学竞赛讲座】第17讲 解直角三角形

第十七讲解直角三角形 利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用: 1.为线段、角的计算提供新的途径. 解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限. 2.解实际问题. 测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形. 【例题求解】 【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(2 4-)m,则电线杆AB 6 2 的长为. 思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件. 【例2】如图,在四边形ABCD中,AB=2 4-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( ) A.60°B.67.5°C.75°D.无法确定 思路点拨通过对内分割或向外补形,构造直角三角形. 注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除. 在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解. 【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠

ADC 是方程2)1(5)1 (322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件. 【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米) 思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路 【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求: (1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高? (2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米? 思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可. 注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.

初中九年级数学专题复习教案:动态几何之定值问题探讨

【2013年中考攻略】专题3:动态几何之定值问题探讨 动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。 结合2011年和2012年全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。 一、线段(和差)为定值问题: 典型例题:例1:(2012黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R . (1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 512(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想. 【答案】解:(2)图2中结论PR +PQ=125 仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。 ∵四边形ABCD 为矩形,∴∠BCD=90°。 又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。 ∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125 。

相关文档
相关文档 最新文档