文档库 最新最全的文档下载
当前位置:文档库 › 脱硝喷氨自动控制优化在大型火电厂中应用案例分析

脱硝喷氨自动控制优化在大型火电厂中应用案例分析

脱硝喷氨自动控制优化在大型火电厂中应用案例分析
脱硝喷氨自动控制优化在大型火电厂中应用案例分析

脱硝喷氨自动控制优化在大型火电厂中应用案例分析

摘要:本文叙述了华润首阳山发电厂两台630MW 机组脱硝喷氨控制系统,该控制系统采用常规PID控制策略和模糊控制共同完成,能够准确的测量、控制相关设备,达到脱硝控制系统的安全、稳定、经济的运行.

关键词:脱硝常规PID控制模糊自控制优化

1、引言

根据我国环保政策要求,目前烟气脱硫项目已基本覆盖所有燃煤火电机组,但烟气脱硝还未大规模的开展应用。有相关研究资料表明,如果还继续不加强对烟气中氮氧化物的控制,氮氧化物的总量和在大气污染物中的比重都将上升,并有可能取代二氧化硫成为大气中的主要污染物。

随着我国对工业环保标准逐渐严格,仅靠低氮燃烧已明显不能满足更加严格的排放标准。SCR烟气脱硝技术是目前减少氮氧化物排放的有效方法,河南华润电力首阳山有限公司利用原设计基础上在2013年更改设计,投产脱硝装置,引进丹麦SCR烟气脱硝技术,采用SCR (Selective Catalytic Reduction,选择性催化还原法)方法,SCR脱硝工艺中,氮氧化物在催化剂作用下被氨还原为无害的氮气和水,不产生任何二次污染,反应通常可在温度250~450 oC 下进行,其化学反应如下:

4NH3 + 4NO + O2 →4N2 + 6H2O

6NO2 + 8NH3 →7N2 + 12H2O

SCR 法一般是将氨类等还原剂喷入烟气中,利用催化剂将烟气中的NOX通过催化反应生成氮气和水,不影响环境,而除氮氧化物效果明显,能够达到90%以上。

2、脱硝自动控制常规控制策略分析:

2.1设备概况:

华润首阳山电厂分别在2013年5月和10月对二台超超临界的630MW机组进行了脱硝改造,其SCR烟气脱硝装置主要由液氨卸载/储存系统、注统、SCR反应系统、吹灰系统、干除灰系统组成。其工艺流程见图1。

图一工艺流程图

锅炉分A\B二侧,每侧有一个供氨调门,该调门进行对喷氨量的控制,从而参与控制出口烟囱NOx含量,并且二个调门保持平衡,防止催化剂的老死或者堵塞等现象,

2.2设备运行原理:

SCR脱硝系统的工艺流程示意图如下图所示。脱硝系统的工艺装置主要组成部分包括两个装有催化剂的反应器、两个液氨存储罐及一套氨气注入系统。来自存储罐的液氨靠自身的压力进入蒸发器中,被热水加热蒸发成氨气。从氨气积压器出来的氨气经由稀释风机来的空气在氨气/空气混合器混合稀释,通过注入系统被注入到烟气中,被稀释的氨气和烟气在SCR前被充分混合均匀后进入两层催化剂,进而产生化学反应,氮氧化物就被脱除。其工艺流程见图2。

图二 SCR 法的基本原理流程图

2.3 自动控制的测量原理:

SCR烟气脱硝控制系统依据确定的NH3/NOx摩尔比来提供所需要的气氨流量,进口NOx浓度和烟气流量的乘积产生NOx流量信号,此信号乘上所需NH3/NOx摩尔比就是基本氨气流量信号(前馈信号),根据烟气脱硝反应的化学反应式,一摩尔氨和一摩尔NOx进行反应。摩尔比对应关系的决定是在现场调试期间来决定并记录在气氨流量控制系统的程序上。所计算出的气氨流量需求信号送到DCS控制器并和真实气氨流量的信号相比较,所产生的误差信号经比例加积分动作处理送氨气流量控制阀进行定位

同时根据设计脱硝38.0%,依据入口NOx浓度和设计中要求的最大≤5.0ppm的氨逃逸率计算出修正的摩尔率(反馈信号)并输入在气氨流量控制系统的程序上。SCR控制系统根据计算出的氨气流量需求信号去定位气氨流量控制阀,实现对脱硝的自动控制。通过在不同负荷下的对气氨流量的调整,找到最佳的喷氨量。

2.4 常规自动控制逻辑设计

1)根据目前国内脱硝系统的运行情况,对脱硝氨气流量控制一般采用基本控制方式Constant Mole Ratio Control (固定摩尔比控制方式)。该控制方式是基于脱硝效率和催化剂脱硝能力的控制方式,在该控制方式下系统按照固定的氨氮摩尔比脱除烟气中NOx ,这种控制方式是设定值可调的单回路控制系统,控制回路简单易于调试和整定,这是这种控制方式的优点,其缺点是会过度脱氮,增加运行成本。

2)脱硝系统的关键参数为喷氨量,因此采用良好的控制措施对供氨调门进行控制是脱硝自动的重点。

图三脱硝控制常规PID控制SAMA图

控制主体原则为前馈串级控制,控制的主参数为脱硝出口烟道NOx的含量,副参数为氨气流量,前馈量为根据进口NOx的流量算出的基本氨气需求量。主回路PID出口用于调整摩尔比修正值,副回路PID出口用于控制调门开度。在控制中3个氨气流量需要由计算流量公式得到,算出的氨气流量三取中后做滤波处理。

脱硝进口烟道NOx修正值=(脱硝进口烟道NOx检测×15)/(21-脱硝进口烟道含氧量检测)。脱硝出口烟道NOx 修正值=(脱硝出口烟道NOx检测×15)/(21-脱硝出口烟道含氧量检测)。设定负荷跟实际负荷的偏差对于氨气量的修正根据实际情况得到。

由于脱硝喷氨自动系统具有较大的延迟性,目前用常规控制策略,容易导致脱硝喷氨控制系统不稳定,目前在国内不建议利用该方法进行喷氨自动控制。

3、脱硝喷氨系统模糊控制策略分析

3.1设备概况:

在国内,针对比如SCR脱硝控制系统这样大滞后、大延时的控制,引进了针对控制对象的预测控制技术、融合改进的状态变量控制、相位补偿控制技术,代替了经典PID控制。能够提前预测被调量未来变化趋势,根据被调量未来变化量进行控制、提前调节,提高了脱硝系统闭环稳定性和抗扰动能力。华润首阳山电厂脱硝大胆引入了由东南大学研究的英菲迪控制系统,通过和DCS常规系统的耦合,达到了精准的控制。

3.2模糊控制的特点

3.2.1实时动态特性校正和补偿

采用智能前馈技术对脱硝控制系统受到扰动进行动态补偿,从反应源头消除NOx浓度剧烈波动;模糊控制系统采用竞争型神经网络学习算法来实时校正上述动态补偿算法中各项特性参数,使得整个系统始终处于在线学习状态,控制结果不断向最优目标逼近。

3.2.2 增加AGC指令频繁变化特别节氨算法

AGC指令变化频繁将导致脱硝出口NOx浓度反复波动,若控制系统采用常规PID控制策略,因反馈调节作用与AGC指令变化同相位而造成叠加振荡,使控制品质明显变差。模糊控制系统根据机组AGC指令变化,实时预测NOx 浓度波动规律,调整控制算法始终保持与AGC指令变化反相位,减少不必要的控制调节,氨气消耗明显减少。

3.2.3在线评估测量仪表数据

模糊控制系统根据机组运行参数对NOx测量数据进行在线评估;系统发现测量参数失真现象后立即调整该测量参数在控制系统中的权重占比,将测量值失真给控制系统造成的影响降至最低,从而保证脱硝控制系统长期可靠运行。

4、常规控制和模糊控制共同在机组喷氨系统上的应用

4.1 实施方式

常规控制以目前DCS为载体,而模糊控制系统以PLC为载体,采用SCL、STL语言开发高级算法模块,采用封装技术建立比DCS系统功能更强大的组态函数库,通过函数调用完成模糊控制系统的建立;模糊控制系统与机组DCS采用标准MODBUS通讯方式交换数据,取得机组负荷、NOx浓度、NOx设定等数据,借用常规控制逻辑的某些逻辑通道,将优化计算后控制指令传至DCS,与原有DCS脱硝控制系统进行切换完成喷氨自动调节。

4.2 二种控制方式的数据交换

常规控制采用喷氨调门开度、烟囱入口NOx浓度、烟囱入口O2浓度、脱硝氨气流量、脱硝入口NOx测量值、脱硝出口NOx测量值、脱硝入口O2测量值、脱硝出口O2测量值、脱硝出口氨测量值、脱硝效率、分析仪故障等信号,而模糊控制系统采集除了上述信号外,还包括了锅炉指令、速率限制之前的功率指令、速率限制之后的功率指令、锅炉总风量等,这些数据充分反映系统运行状况。

图四模糊控制指令生成图

4.3 系统投运

在DCS脱硝画面增加模糊控制系统投退按钮,投入模糊控制控制方式后,将A侧和B侧喷氨调节阀投入自动即可实现模糊控制系统对SCR出口NOx浓度自动控制;模糊控制自动投入与A、B侧喷氨自动的投入不分先后。模糊控制系统投入与退出均实现无扰切换。

在火电厂中,NOX的有二组数据,一组为脱硫出口数据、一组为脱硝出口,为了更有效的控制,我们在控制中,把二组NOX数据都引入到模糊控制中,根据实际情况,进行随时切换,达到预期目标。

图五模糊控制投入图图六常规PID控制投入图

模糊控制系统投运后,若某侧测量信号存在问题或喷氨调节阀存异常,则自动切换到常规自动控制,或者由运行人员接触自动,进行手动控制;二次均是独立自动方式,相互操作不受影响。

5、应用效果

模糊控制系统投运以来,控制品质明显改善,机组负荷稳定、快速变负荷及启停制粉系统状况下,SCR出口的Nox 浓度均控制在合理范围内。

图七喷氨自动实施曲线图

6、结束语

通过近一年的实际应用,模式控制技术先进、性能可靠、控制效果满意;调节灵敏、系统抗干扰性能强,能适应负荷大幅变化及个别参数异常;常规PID控制对模糊控制的有利的补充,当模糊控制出现各种参数监测异常,模糊控制系统无扰切换至常规控制稳定运行;

目前在国内采用常规PID和模糊控制共同组合的这种方式,能够有效的提升热控自动化水平,满足国家环保部门及其对大型排污企业监控要求,取得了社会和企业双重效益。

参考文献:

[1] 马瑞《河南华润首阳山电厂逻辑说明》

[2] 吕剑虹预测控制在热工过程控制中的应用研究,东南大学博士学位论文

[3] 黎明《华润首阳山电厂运行自动投入操作指导书》

[4] 王露华 SCR烟气脱硝技术在国华台电600MW机组的应用

脱硝系统运行喷氨量优化调整

脱硝系统运行喷氨量优化调整 摘要:本文介绍了上安电厂脱硝系统流程及运行调整情况,针对运行中出现的 问题进行总结,并根据经验提出了优化调整方式策略,对电厂运行具有借鉴意义。 关键词:脱硝;节能;优化调整 0 引言 为了响应国家环保政策要求,上安电厂#1—#6机组相继利用检修机会进行了 脱硝系统改造。上安电厂SCR 脱硝工艺采用选择性催化还原方法,即在装有催化 剂的反应器里,烟气与喷入的氨在催化剂的作用下发生还原反应,生成无害的氮 气(N2)和水蒸汽(H2O),实现脱除氮氧化合物的目的。 1 系统简介 1.1 系统流程 上安电厂锅炉烟气脱硝技改工程 SCR 脱硝装置,由东方锅炉股份有限公司承接。本工程 SCR 脱硝装置采用选择性催化还原烟气脱硝技术(简称 SCR)。本工 程采用液氨来制备脱硝还原剂,氨站系统含液氨储存、制备、供应系统包括液氨 卸料压缩机、储氨罐、液氨蒸发器、液氨泵、氨气缓冲器、氨气稀释槽、废水泵、废水池等。液氨的供应由液氨槽车运送,利用液氨卸料压缩机将液氨由槽车输入 储氨罐内,储氨罐内的液氨由液氨泵输送到液氨蒸发器内蒸发为氨气,经氨气缓 冲器来控制一定的压力及其流量,然后与稀释空气在混合器中混合均匀,再送达 脱硝反应器。氨气系统紧急排放的氨气则排入氨气稀释槽中,经水的吸收排入废 水池,再经由废水泵送至废水处理厂处理。 图 1 上安电厂脱硝系统画面 1.2 运行中存在问题 系统投运后,由于环保要求的标准越加严格,加之氨逃逸率高、自动调节品 质差、运行经验欠缺等诸多原因,导致系统氨耗率偏高,造成脱硝喷氨量增加, 且逃逸的部分氨气与烟气中的硫化物反应生成硫酸氢氨,极易造成空预器的堵塞,增加了风机耗电率,给设备的安全运行带了来很大隐患。 为了解决上述问题,对脱硝喷氨量进行优化控制,在保证烟囱入口NOX排放 浓度均小时不超标的前提下,加强运行调整,通过进行喷氨调平优化试验、制定 相应奖惩措施、与检修配合进行控制逻辑优化等相关工作,实现单位发电量下氨 耗率下降的目标,降低脱硝运行成本,提高运行经济性的同时,减缓空预器的堵 塞速率。 1. 3 解决方案 配合检修人员进行相应的NOX消耗量试验;保证NOX相关数据真实可靠; 通过检修人员配合进行相关试验及逻辑上的优化,进行脱硝喷氨调门控制优化, 加强机组运行调整,减少NOX产生量;制定相应奖惩机制,激励运行人员积极调整;完全可以在NOX排放值与氨气消耗量上找到一个合理的平衡点,使氨气消耗量降低,从而解决相关一系列上述问题。 2 技术实施方案 2.1制定脱硝系统运行优化竞赛细则,对单机组氨耗率控制指标排名前三的机组予以奖励,以此激发机组人员运行调整的积极性。 2.2对NOX排放指标的控制标准作出明确规定:根据环保要求#1、2、3、4 机组烟囱入口NOX控制目标值在25~35mg/Nm3之间,#5、6机组烟囱入口NOX

烟气SCR脱硝系统喷氨优化调整-河北(上海湛流环保工程有限公司)

SCR脱硝系统喷氨优化调整 为了调高脱硝系统效率,在满足环保超低排放标准的前提下,减少喷氨量、降低氨逃逸率、降低空预器堵塞风险,对某电厂超临界2×700MW燃煤机组脱硝系统进行喷氨优化调整试验。通过调整喷氨手动门开度,合理调节SCR喷氨量,使SCR脱硝系统出口氮氧化物浓度分布的均匀性得到改善,降低了局部氨逃逸峰值,降低了空预器堵塞的风险。 随着火电厂最新大气污染排放标准的颁布及煤电节能减排升级与改造行动计划的实施,燃煤电厂必须更加严格地控制烟气中NOx的排放量。选择性催化还原(SCR)脱硝技术因脱硝效率高且运行稳定可靠,而被广泛应用于燃煤电厂。 脱硝效率、喷氨量大小和氨气逃逸率是衡量SCR脱硝系统运行是否良好的重要依据。电厂在实际运行过程中,由于负荷、锅炉燃烧工况、煤种、喷氨格栅阀门开度、烟道流场均匀性、吹扫间隔时间等因素均会影响SCR脱硝效率和氨逃逸率。逃逸氨在空预器中会生成黏性的硫酸铵或硫酸氢铵,减小空预器流通截面,造成空预器堵灰。空预器堵灰不仅影响锅炉运行的经济性而且显著降低锅炉安全性,严重影响脱硝机组的安全稳定运行。 目前燃煤电厂可以选择新型的SCR脱硝系统喷氨格栅类型、布置方式及改造喷氨管,调整喷氨量和喷复均匀性,改进催化剂入口氨氮比,优化烟气导流板布置、烟气流速的均布性,或研发与应用烟气脱硝系统自动控制技术。通过提升自控系统稳定性和可靠性等措施,可提高SCR脱硝系统出口NOx分布均匀性,防止局部氨选逸超标,减轻空预器堵灰、腐蚀、运行阻力等问题。 某厂由于投产时间早,投产时由于国家环保要求不高,脱硝系统按出口氮氧化物排污浓度200mg/m3设计。随着国家环保要求的提升,为满足发改能源〔2014〕2093号文件《煤电节能减排升级与改造行动计划(2014—2020年)》的要求,该厂将氮氧化物排放浓度稳定的控制到50mg/m3以下,该厂进行了SCR烟气脱硝提效改造,主要是加装5号炉第三层及6号炉第二层催化剂来达到NOx浓度超低排放。 通过上述改造措施,能够将氮氧化物浓度控制到50mg/m3以下,但运行过程中存在局部氨逃逸偏大,自动跟踪系统满足不了运行要求等问题,导致还原剂耗量高、空预器阻力上升较快等问题。因脱销系统投产时SCR烟气脱硝系统采用传统的线性控制式喷氨格栅技术。 而目前脱硝系统新型结构改造经济成本高、周期长,在现有SCR脱硝系统中开展喷氨优化调整试验,是目前提高氨利用率、减少NOx污染物排放的主要手段,调节SCR脱硝系统喷氨量,改善SCR脱硝系统出口NOx分布均匀性和氨利用率。(河北湛流:一三八一六一四八六一五)

关于630mw机组SCR脱硝喷氨优化调整的研究(DOC)

关于630MW机组SCR脱硝喷氨优化调整的研究 【摘要】:今年来,随着SCR脱硝装置成为大型火电机组的必备设备,在使用过程一些问题逐渐显现出来,其中之一就是喷氨不均带来的氨逃逸率局部过高,引起空预器阻塞的问题,这个问题甚至在很多机组造成过机组被迫停运的严重后果。本文将就该问题的产生和如何解决展开研究,以获得一个良好的解决方案保证设备的稳定运行。 【关键词】:SCR脱硝喷氨氨逃逸空预器堵塞 1 前言 随着近年来环保部门不断制定更高的排放标准,脱硝系统已经几乎成为所有火电机组的标配,另外由于催化剂工艺技术的不断提高,SCR逐步成为主流脱硝技术。在实际的使用过程中,很多问题也渐渐暴露出来,如氨气不纯带来的管道腐蚀、吹灰效果差带来的催化剂堵塞和损坏等等,都对设备甚至整个机组的稳定运行带来风险,而本文所讨论的喷氨不均的问题是其中风险最大的,其带来的不良后果,逐渐引起人们的重视。 烟气脱硝SCR装置在设计阶段通常会进行CFD流畅模拟和物理模型试验对烟道内的流场进行优化以保证SCR入口截面的烟气流速和NOx分布较为均匀。但往往由于现场空间限制或安装等因素影响,加上调试阶段对喷氨格栅的优化调整重视不够,实际运行过程中出现SCR出口截面NOx分布偏差大,部分区域氨逃逸超过设计保证值(3μL/L)的现象。这会影响系统整体的脱硝效果,并会增加空预器的硫酸氢铵腐蚀和堵塞风险,给系统的经济稳定运行带来很大的危害。因此,十分有必要对SCR装置进行喷氨优化调整,即通过调整SCR入口每根喷氨支管上的手动调阀改变不同位置的喷氨量,从而改善出口NOx 和NH3分布的均匀性,在保证装置脱硝效果的同时, 减少装置的运行成本, 提高装置的可用率。 图一SCR反应器侧视图

重点解读SCR脱硝系统喷氨优化调整试验

SCR脱硝系统喷氨优化调整试验 为了调高脱硝系统效率,在满足环保超低排放标准的前提下,减少喷氨量、降低氨逃逸率、降低空预器堵塞风险,对某电厂超临界2×700MW燃煤机组脱硝系统进行喷氨优化调整试验。通过调整喷氨手动门开度,合理调节SCR喷氨量,使SCR脱硝系统出口氮氧化物浓度分布的均匀性得到改善,降低了局部氨逃逸峰值,降低了空预器堵塞的风险。 随着火电厂最新大气污染排放标准的颁布及煤电节能减排升级与改造行动计划的实施,燃煤电厂必须更加严格地控制烟气中NO x的排放量。选择性催化还原(SCR)脱硝技术因脱硝效率高且运行稳定可靠,而被广泛应用于燃煤电厂。 脱硝效率、喷氨量大小和氨气逃逸率是衡量SCR脱硝系统运行是否良好的重要依据。电厂在实际运行过程中,由于负荷、锅炉燃烧工况、煤种、喷氨格栅阀门开度、烟道流场均匀性、吹扫间隔时间等因素均会影响SCR脱硝效率和氨逃逸率。逃逸氨在空预器中会生成黏性的硫酸铵或硫酸氢铵,减小空预器流通截面,造成空预器堵灰。空预器堵灰不仅影响锅炉运行的经济性而且显著降低锅炉安全性,严重影响脱硝机组的安全稳定运行。 目前燃煤电厂可以选择新型的SCR脱硝系统喷氨格栅类

型、布置方式及改造喷氨管,调整喷氨量和喷复均匀性,改进催化剂入口氨氮比,优化烟气导流板布置、烟气流速的均布性,或研发与应用烟气脱硝系统自动控制技术。通过提升自控系统稳定性和可靠性等措施,可提高SCR脱硝系统出口NO x分布均匀性,防止局部氨选逸超标,减轻空预器堵灰、腐蚀、运行阻力等问题。 某厂由于投产时间早,投产时由于国家环保要求不高,脱硝系统按出口氮氧化物排污浓度200mg/m3设计。随着国家环保要求的提升,为满足发改能源〔2014〕2093号文件《煤电节能减排升级与改造行动计划(2014—2020年)》的要求,该厂将氮氧化物排放浓度稳定的控制到50mg/m3以下,该厂进行了SCR烟气脱硝提效改造,主要是加装5号炉第三层及6号炉第二层催化剂来达到NO x浓度超低排放。 通过上述改造措施,能够将氮氧化物浓度控制到50mg/m3以下,但运行过程中存在局部氨逃逸偏大,自动跟踪系统满足不了运行要求等问题,导致还原剂耗量高、空预器阻力上升较快等问题。因脱销系统投产时SCR烟气脱硝系统采用传统的线性控制式喷氨格栅技术。 而目前脱硝系统新型结构改造经济成本高、周期长,在现有SCR脱硝系统中开展喷氨优化调整试验,是目前提高氨利用率、减少NO x污染物排放的主要手段,调节SCR脱硝系

燃气电厂余热锅炉SCR烟气脱硝系统的喷氨优化调整

燃气电厂余热锅炉SCR烟气脱硝系统的喷氨优化调整 发表时间:2019-07-08T09:58:57.853Z 来源:《电力设备》2019年第5期作者:赵丹[导读] 摘要:SCR脱硝反应器出口NOX质量浓度分布不均匀会造成氨逃逸率高、还原剂消耗量增加等问题。(上海电气电站环保工程有限公司上海 201612)摘要:SCR脱硝反应器出口NOX质量浓度分布不均匀会造成氨逃逸率高、还原剂消耗量增加等问题。某电厂燃气-蒸汽联合循环机组300 MW余热锅炉SCR烟气脱硝系统经优化调整,SCR反应器出口NOX质量浓度分布不均匀度由44.2%降低至14.5%,SCR系统脱硝效率由72.99%提高到75.12%,平均氨逃逸浓度由7.98 ppm降低至3.73 ppm。关键词:SCR烟气脱硝系统;余热锅炉;NOX浓度;氨逃逸;喷氨优化 Optimal Adjustment of Ammonia Injection for Flue Gas SCR-De-NOx Facility of Heat Recovery Steam Generator ZHAO Dan (Shanghai Electric Power Generation Environment Protection Engineering Co.,Ltd.,Shanghai 201612,China) Abstract:The uneven distribution of NOx concentration at the SCR denitration system outlets will cause problems such as high ammonia slip rate and increased consumption of reducing agent.The SCR flue gas De-NOx facility of a 300 MW heat recovery steam generator was optimized.The distribution of NOx concentration at the SCR denitration system outlets was reduced from 44.2% to 14.5%,the denitration efficiency was increased from 72.99% to 75.12%,and the mass concentrations of ammonia slip were declined from 7.98 ppm to 3.73 ppm. Key words:flue gas De-NOx facility;heat recovery steam generator;NOx;ammonia escape;optimal design of ammonia injection 前言 随着经济的发展,每年大气污染物的排放量急剧增加,2014年9月,国家发改委、环保部、国家能源局联合印发《煤电节能减排升级与改造行动计划(2014-2020年)》,首次提出了煤电行业的超低排放标准为:6%基准氧条件下,烟气中主要污染物含量:烟尘 < 5mg/Nm3,O2 < 35mg/Nm3,NOx < 50mg/Nm3。近年来,随着环保科技行业的发展,超低排放已经不仅仅是火电行业的标杆,也是包括化工、新能源,钢铁等各个行业的方向和标杆。3月5日李克强总理在2019年政府工作报告中,明确指出今年大气污染治理目标:SO2,NOx排放总量下降3%,化学需氧量,氨氮排放量下降2%,要进一步加强固体废弃物和城市垃圾的分类处置。3月19日,国家生态环境部门发布关 于垃圾电厂超标排放的征求意见表示:对于环保排放不达标的电厂,将被核减电价补贴资金,并限制享受退税政策。 1 SCR烟气脱硝优化改造试验 1.1试验目的 喷氨优化调整是通过手动调节SCR烟气脱硝装置入口每根喷氨支管的喷氨量,使SCR烟气脱硝系统出口NOX和NH3分布更均匀,提高SCR烟气脱硝系统的可用率[1]。根据华北地区某燃气-蒸汽联合循环机组300 MW余热锅炉的实际情况,制定如下试验方案。 1.2试验内容 1.2.1满负荷工况测试 测量机组满负荷运行时反应器出口的NOX浓度分布和氨逃逸浓度分布,初步评估脱硝装置氨喷射流量分配状况。 1.2.2喷氨格栅优化调整 在机组满负荷下,根据SCR反应器出口截面的NOX浓度分布,对反应器入口竖直烟道上喷氨格栅的手动阀门开度进行调节,最大限度提高出口的NOX浓度分布均匀性。 1.2.3性能评估测试 在完成喷氨优化调整之后,在机组满负荷下测量SCR反应器出口NOX浓度分布和氨逃逸浓度,并在50%负荷下进行校核测试。 1.3试验方法 1.3.1测点布置 本试验地点为北京某电厂燃气-蒸汽联合循环机组2号余热锅炉尾部烟道SCR烟气脱硝装置。试验采用网格法分区测量,SCR烟气脱硝装置出口烟道由北到南平均分为7个区域,每一区域6个测点,共计42个点。喷氨管道由北向南均匀分布,共分为七个区域,每个区域有三个喷氨阀门,分别调节区域内的喷氨流量。 1.3.2理论计算 烟气中NOX浓度(标干态,氧量15%)计算公式[2]为: (1) 其中,为标准状态,15 %氧含量,干烟气下NOX质量浓度;为实测干烟气中NOX的体积含量;为实测干烟气中的氧含量;2.05为NO2由体积含量ppm到质量浓度mg/Nm3的转化系数。试验中NOX浓度不均匀度用CV表示,计算公式为如下:(2) (3) (4) 其中,为标准偏差,为平均值,n为测点数,本试验为42。脱硝效率 计算公式为: (5) 其中Cin、Cout分别为SCR入口和出口NOX浓度。烟气氨逃逸浓度测量方法见标准文件DL/T260-2012《燃煤电厂烟气脱硝装置性能验试验规范》[3]。 1.3.3试验仪器 本试验用到的主要仪器如表1所示:表1 试验仪器

脱硝SCR喷氨优化常态化管理

龙源期刊网 https://www.wendangku.net/doc/4a18681318.html, 脱硝SCR喷氨优化常态化管理 作者:饶红建 来源:《科技风》2018年第36期 摘要:华电新乡发电有限公司超低排放改造后,脱硝系统两侧烟气流场不均,局部区域存在少喷、漏喷现象,严重影响脱硝SCR喷氨均匀性。新乡公司采用脱硝SCR喷氨优化常态化管理,可以定期、实时、高效对脱硝系统进行优化,减小氨气逃逸率,减少硫酸氢铵生成量,解决长周期运行造成空预器堵塞问题,提高机组安全经济可靠运行效率。 关键词:脱硝;喷氨优化;常态化;管理 1 技术概要 华电新乡发电有限公司(以下简称新乡公司)超低排放改造后,两台机组脱硝出口氮氧化物控制≤50mg/m3。正常运行期间脱硝SCR喷氨均匀性较差,为了控制脱硝出口氮氧化物浓度,局部时段长期低于35mg/m3,造成过量喷氨,脱硝系统两侧烟气流场不均,局部区域存在少喷、漏喷现象,严重影响脱硝SCR喷氨均匀性,氨气逃逸率大,硫酸氢铵生成量增加,长周期运行造成空预器蓄热元件堵塞严重,严重影响机组安全稳定运行。 新乡公司采用脱硝SCR喷氨优化常态化管理,可以定期、实时、高效对脱硝系统进行优化,减小氨气逃逸率,减少硫酸氢铵生成量,解决长周期运行造成空预器堵塞问题,提高机组安全经济可靠运行效率。 2 技术原理和内容 2.1 技术原理 1)开展喷氨优化试验,定期开展喷氨优化试验确定脱硝系统氮氧化物数值,通过调整就地喷氨调门调整脱硝系统两侧喷氨均匀,实现脱硝SCR喷氨准确性、均匀性,减少过喷、少喷、漏喷现象。 2)根据喷氨优化试验结果,组织开展喷氨优化调整,主要针对脱硝系统SCR喷氨调整跟踪测量,调整喷氨量大小进行喷氨优化校正,保证脱硝SCR出口NOx均布,降低氨气逃逸率,减少硫酸氢铵生成量。 2.2 关键技术、工艺流程 新乡公司1、2号脱硝系统均采用选择性催化还原法(SCR)。以液氨为还原剂,脱硝入口设计NOx浓度为650mg/Nm3,出口NOx按国家排放标准低于50mg/Nm3。

相关文档