文档库 最新最全的文档下载
当前位置:文档库 › 磷钨酸降解壳聚糖的研究

磷钨酸降解壳聚糖的研究

磷钨酸降解壳聚糖的研究
磷钨酸降解壳聚糖的研究

壳聚糖改性工艺的研究

壳聚糖改性工艺的研究 壳聚糖[是自然界中唯一大量存在的高分子碱性氨基多糖,与合成高分子材料相比,具有来源广泛、价格低廉、性质稳定、无刺激、无致敏、无致突变、良好的生物相容性和生物可降解性、低免疫原性以及生物活性等优点,已被广泛应用于工业、农业、生物工程、医药、食品、日化、污水处理、纺织印染等领域。壳聚糖不溶于普通溶剂,使其应用受到了一定限制,因此,对壳聚糖进行化学改性,提高其溶解性,并赋予其一些其他功能,扩大其应用领域成为了一个研究热点。 20116壳聚糖的结构和性质 1. 1壳聚糖的结构特性 壳聚糖具有复杂的双螺旋结构,其功能基团有氨基葡萄糖单元上的6位伯经基、3位仲羟基和2位氨基或一些N位乙酰氨基以及糖酐键,其结构式如图1所示。 1. 2.壳聚糖的一般理化性质 壳聚糖是生物界中惟一的一种碱性多糖,它是白色、无定型、半透明、略有珍珠光泽的固体,因原料和制备方法不同,其相对分子质量也从数十万至数百万不等。 1. 3壳聚糖的溶解性质 壳聚糖可溶于稀的盐酸、硝酸、醋酸等无机酸和大多数有机酸但不溶于稀硫酸和稀磷酸。影响壳聚糖溶解的主要因素有脱乙酰度、壳聚糖的相对分子质量、酸的种类等。 2壳聚糖的改性研究 由于壳聚糖自身性能的局限性,科研工作者对其进行了改性研究,通过控制反应条件在壳聚糖上引人其他基团来改变其理化性质[6]。本文将介绍壳聚糖改性的研究进展及应用,并对目前的一些改性方法进行了较全面的总结。 2. 1化学改性 壳聚糖分子上有许多经基和氨基,可通过对其进行分子设计实现可控化学修饰,从而改善壳聚糖本身性能的一些不足。根据壳聚糖的化学性质,可以从酰化、酯化、烷基化等几个方面对其进行化学改性。 2.1.1酸化改性 壳聚糖可与多种有机酸的衍生物如酸酐,酰卤等反应,可引人不同相对分子质量的脂肪族或芳香族的酰基进行改性。酰化反应既可在轻基上反应(O位酰化)生成酯,也可在氨基上反应(N位酞化)生成酰胺。酰化化改性后的产物的溶解度有所改善,它具有良好的生物相容性,是一种潜在的医用生物高分子材料。如脂肪族酰化化产物可作为生物相 容性材料,N一甲酰化产物可增强人造纤维的物理性能。

壳聚糖降解研究进展

技术进展 Technology Progre ss 壳聚糖降解研究进展 李 治 刘晓非 杨冬芝 管云林 姚康德 (天津大学材料科学与工程学院,天津,300072) 提 要 壳聚糖已被广泛应用于化工、环保、医药等众多领域,将壳聚糖降解到需要的分子量是其应用的前提。 本文介绍并评述了化学降解、物理降解和生物降解等壳聚糖降解方法的研究进展。 关键词 壳聚糖,降解,分子量,低聚物 壳聚糖是甲壳素的脱乙酰化产物,在自然界中的储量非常丰富,广泛存在于虾、蟹和昆虫的外壳及藻类、菌类的细胞壁之中,是年产量仅次于纤维素的第二大天然高分子,也是迄今为止发现的唯一天然碱性多糖。壳聚糖是分子链由β2(104)222乙酰胺基2 D2葡糖单元和β2(104)222氨基2D2葡糖单元组成的共聚物,以分子量和脱乙酰化度来表征。 近年来随着研究的深入,壳聚糖在化工、 环 图1 壳聚糖 保、食品、印染、纺织、生物医药等方面展现出广 泛而独特的应用价值:可用作微量金属离子提取 剂、纸张添加剂、胶卷增感剂、废水处理中的高效 絮凝剂、化妆品中的保湿剂、食品添加剂和保藏剂 以及印染固色剂[1~4];可用于制造催化功能膜和各 种形式的能量转换膜,可提高巨噬细胞的吞噬功 能,抑制肿瘤生长[5~7];是肠道有益细菌双歧杆菌 的增殖因子,能降低胆固醇和血脂[8];可用于制造 药物可控释放膜、可吸收的手术缝合线以及人工透 析膜等等[9~11]。 但是,一般由甲壳素脱乙酰化制得的壳聚糖分 子量很大,并且有紧密的晶体结构,不溶于普通溶 剂,只能在某些酸性介质中溶解,这使壳聚糖的应 用受到极大限制;另外,研究表明分子量对壳聚糖 的性质有很大影响,不同分子量的壳聚糖性质差异 很大,有时甚至表现出截然相反的特性[12,13],而 壳聚糖的许多独特功能只有在分子量降低到一定程 度时才表现出来。因此,选择适当的方法对壳聚糖 进行降解就显得尤为重要。目前,国内外学者提出 的降解方法主要有化学降解、物理降解和生物降解 三大类。 1 化学降解 111 用N a N O2降解 将壳聚糖溶解于质量分数为10%乙酸溶液中, 在搅拌下缓慢滴入一定量的NaNO2溶液,于4℃下 静置一段时间,使—NH2发生重氮化反应,脱去一 分子N2,引起分子内重排使大分子链断裂,再用 NaBH4还原端基,完成降解反应[13]。反应过程如 图2所示。 这是传统的化学降解方法,降解产物的分子量 可以通过改变NaNO2的加入量和反应时间来控制, 国内常用此法降解壳聚糖并提取产物中的单糖组 分。该法的主要缺陷在于:(1)产品的分子量分布 太宽,均一性差;(2)降解过程中破坏了氨基,理 论上加入1摩尔NaNO2就要消耗1摩尔氨基,而壳 聚糖良好的生物相容性主要由氨基提供[14],同时 分子链上存在足够数量的氨基也是壳聚糖进行进一 步改性的重要前提,氨基数量的减少将会使壳聚糖 的应用受到限制;(3)生产的三废污染严重。 国家自然科学基金资助项目,N o.59773002。

壳聚糖微球给药系统

um regulating horm ones[J ].J Controlled Release ,2000,66 (223):12721331 [接受日期] 2006203216 3  通讯作者: 周建平,教授;研究方向: 药物新制剂与新剂型; T el :025*********; E 2m ail :zhoujp60@1631com 壳聚糖微球给药系统 张祖菲, 周建平3, 霍美蓉 (中国药科大学药剂学教研室,江苏南京210009) [摘 要] 主要介绍壳聚糖微球的制备方法,影响其载药的主要因素,及其在缓控释、靶向给药、黏膜给药、生物 大分子给药等方面的应用。近年来壳聚糖微球作为新型给药系统备受关注。 [关键词] 壳聚糖微球;药物载体;制备方法;缓控释 [中图分类号] R944.9;T Q314.1 [文献标识码] A [文章编号] 1001-5094(2006)06-0261-06 Chito san Micro sphere s Drug Delivery Systems ZH ANG Zu 2fei , ZH OU Jian 2ping 3, H UO Mei 2rong (Department o f Pharmaceutics ,China Pharmaceutical Univer sity ,Nanjing 210009,China ) [Abstract] The preparation methods and technology ,factors affecting the drug loading efficiency ,applica 2tion and the prospect of chitosan microspheres were reviewed.Chitosan microspheres ,as a novel drug delivery system ,have been widely investigated in recent years. [K ey w ords] Chitosan microspheres ;Drug carrier ;Preparation methods ;C ontrolled release 壳聚糖(chitosan )是甲壳素脱乙酰化的产物,是地球上仅次于纤维素的最丰富的天然聚合物,来源丰富、制备简单,具有良好的生物相容性。壳聚糖分子结构中含有呈弱碱性的游离氨基,能结合氢离子,使壳聚糖分子表面荷正电,因此,壳聚糖在酸性条件下呈现为线性高分子电解质,形成的溶液具有一定的黏度,溶液的浓度越高,壳聚糖的分子质量越大,相应的黏度则越大。壳聚糖的氨基属于较活泼的一级氨基,在中性介质中能与芳香醛或脂肪醛形成Schiff 碱,可以与具有双官能团的醛或者酸酐等交联,产物不易溶解,溶胀程度也较小,理化性质稳定。微球系以天然、合成或半合成高分子材料为基质,将药物均匀分散或包埋在骨架中而制成的球形 载体给药系统,属基质型骨架微粒,常见粒径为1~ 40μm 。目前,以壳聚糖为材料制备缓控释制剂的研究已经取得了较大的进展,其中壳聚糖微球因具有控制释药、组织靶向、提高药物稳定性等多方面的优势,已成为近年来新型给药系统研究的热点。本文就壳聚糖微球给药系统的研究进展进行综述。1 壳聚糖微球的制备方法 壳聚糖分子中含有氨基,易与其他化合物相应的活性基团发生反应,进一步交联形成微球。根据药物、载体材料壳聚糖的性质以及所需微球的释药性能和临床给药途径可选择不同的制备方法。目前,制备壳聚糖微球的方法主要有乳化交联、“液中

壳聚糖改性研究与应用

壳聚糖改性研究与应用 赵朝霞(1142032224)四川大学化学学院2011级本科 摘要:甲壳素是一种天然多糖,脱除乙酰基的产物是壳聚糖,作为新型功能生物材料,它们已在水处理、日用化学品、生物工程和医药等领域得到了应用。本文综述了近年来关于壳聚糖改性研究进展,以及将其应用到医学、食品、化学工业等各个领域的概况,重点介绍了化学和物理修饰方法的应用研究。 关键词:壳聚糖化学改性与修饰物理改性与修饰功能材料 甲壳素的化学名称为(1,4)一2一乙酰氨基一2一脱氧一β—D—葡聚糖,它是通过β-1-4糖苷键相连的线性生物高分子,分子量从几十万到几百万。甲壳素脱除乙酰基后的产物是壳聚糖,其化学名称为(1,4)一2一氨基一2—脱氧—β一D—葡聚糖。甲壳素和壳聚糖具有与纤维素很相近的化学结构,它们的区别仅是在C位上的羟基分别被一个乙酰氨基和氨基所代替(如图) 但它们的化学性质却有较大差别。甲壳素和壳聚糖具有生物降解性、细胞亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖[1-4]。因此,它们已在废水处理、食品工业、纺织、化工、日用化学品、农业、生物工程和医药等方面得到应用。 医药领域 聚乳酸一羟基乙酸共聚物(PLGA)微粒广泛用于蛋白、多肽、核酸等生物大分子给药。由于PL-GA纳米微球表面缺乏可用于共价修饰的基团,所以难以在表面负载生物活性物质如DNA、配体和疫苗等,不易于通过受体或抗体进行靶向给药。因此,人们尝试用不同方法将PLGA 表层包裹不同的聚合物以达到物理改性PLGA微球表面的目的。如阳离子表面修饰是基于PLGA表层负电荷而设计的,这种方式使PLGA的表面活化成为可能。将壳聚糖(CHS)选做纳米微球表面修饰材料是因为它具有阳离子电荷,生物可降解,黏膜黏附性等特性。阎晓霏等以溶菌酶为模型蛋白,将改性PLGA与溶菌酶通过化学键结合并以CHS修饰得到一种新型阳离子纳米微球,达到增大纳米微球的包封率、载药量并促进蛋白类药物吸收的目的[5]。 壳聚糖在医药测定方面也有着十分积极的作用。Zhang等[6]首先制备了壳聚糖包覆的CdSe /ZrKS量子点作为Her2/neu基因小分子干扰RNA(small interfering RNA,siRNA)的载体。并通过跟踪量子点的荧光信号证实药物载体靶向传送到乳腺肿瘤细胞,利用荧光索酶和酶联免疫分析验证导入细胞的siRNA的基因沉默效应。钟文英[7]等壳聚糖包覆的Ccrre量子点为荧光探针,基于荧光猝灭法建立了吉米沙星定量测定方法。以壳聚糖为载体合成新型疏水色谱填料[8],有效分离提纯枯草芽孢杆菌α一淀粉酶、鸡卵粘蛋白、AS 1.398中性蛋白酶以及伪单孢杆菌脂肪酶[9],以壳聚糖为载体的亲和吸附剂和壳聚糖固定化蛋白酶均具有广泛应用价值. 壳聚糖羧甲基化后,与磷酸钙生成螯合物,它可促进骨骼的矿化,在医药上可作为成骨的促进剂[10]。 二、化工领域 武美霞[11]等以壳聚糖为络合剂、稳定剂或保护剂,通过简单的化学还原法制备了具有超小尺寸的非晶态NiB.CS催化剂,并且使活性组分Ni分散均匀。壳聚糖修饰炭黑负载Pt—Au 催化剂,对原电极有相当好的物理极化学性质的改良作用。Sugunan[12]等认为,壳聚糖之所以能够捕获并起到稳定金纳米粒子的作用,一是由于两者之间存在静电作用;二是壳聚糖具有足够大的立体位阻效应,从而避免了金纳米粒子的聚集并能使金纳米粒子功能化。因此,

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

壳聚糖降解研究进展_李治

技术进展 Te chnolo gy Pro gress 壳聚糖降解研究进展 李 治 刘晓非 杨冬芝 管云林 姚康德 (天津大学材料科学与工程学院,天津,300072) 提 要 壳聚糖已被广泛应用于化工、环保、医药等众多领域,将壳聚糖降解到需要的分子量是其应用的前提。 本文介绍并评述了化学降解、物理降解和生物降解等壳聚糖降解方法的研究进展。 关键词 壳聚糖,降解,分子量,低聚物 壳聚糖是甲壳素的脱乙酰化产物,在自然界中的储量非常丰富,广泛存在于虾、蟹和昆虫的外壳及藻类、菌类的细胞壁之中,是年产量仅次于纤维素的第二大天然高分子,也是迄今为止发现的唯一天然碱性多糖。壳聚糖是分子链由β-(1,4)-2-乙酰胺基-D-葡糖单元和β-(1,4)-2-氨基-D-葡糖单元组成的共聚物,以分子量和脱乙酰化度来表征。 近年来随着研究的深入,壳聚糖在化工、 环 图1 壳聚糖 保、食品、印染、纺织、生物医药等方面展现出广 泛而独特的应用价值:可用作微量金属离子提取 剂、纸张添加剂、胶卷增感剂、废水处理中的高效 絮凝剂、化妆品中的保湿剂、食品添加剂和保藏剂 以及印染固色剂[1~4];可用于制造催化功能膜和各 种形式的能量转换膜,可提高巨噬细胞的吞噬功 能,抑制肿瘤生长[5~7];是肠道有益细菌双歧杆菌 的增殖因子,能降低胆固醇和血脂[8];可用于制造 药物可控释放膜、可吸收的手术缝合线以及人工透 析膜等等[9~11]。 但是,一般由甲壳素脱乙酰化制得的壳聚糖分 子量很大,并且有紧密的晶体结构,不溶于普通溶 剂,只能在某些酸性介质中溶解,这使壳聚糖的应 用受到极大限制;另外,研究表明分子量对壳聚糖 的性质有很大影响,不同分子量的壳聚糖性质差异 很大,有时甚至表现出截然相反的特性[12,13],而 壳聚糖的许多独特功能只有在分子量降低到一定程 度时才表现出来。因此,选择适当的方法对壳聚糖 进行降解就显得尤为重要。目前,国内外学者提出 的降解方法主要有化学降解、物理降解和生物降解 三大类。 1 化学降解 1.1 用NaNO2降解 将壳聚糖溶解于质量分数为10%乙酸溶液中, 在搅拌下缓慢滴入一定量的Na NO2溶液,于4℃下 静置一段时间,使—NH2发生重氮化反应,脱去一 分子N2,引起分子内重排使大分子链断裂,再用 NaB H4还原端基,完成降解反应[13]。反应过程如 图2所示。 这是传统的化学降解方法,降解产物的分子量 可以通过改变NaNO2的加入量和反应时间来控制, 国内常用此法降解壳聚糖并提取产物中的单糖组 分。该法的主要缺陷在于:(1)产品的分子量分布 太宽,均一性差;(2)降解过程中破坏了氨基,理 论上加入1摩尔NaNO2就要消耗1摩尔氨基,而壳 聚糖良好的生物相容性主要由氨基提供[14],同时 分子链上存在足够数量的氨基也是壳聚糖进行进一 步改性的重要前提,氨基数量的减少将会使壳聚糖 的应用受到限制;(3)生产的三废污染严重。 国家自然科学基金资助项目,No.59773002。

壳聚糖的_射线辐射降解研究

壳聚糖的 射线辐射降解研究 李 治 刘晓非 徐怀玉 管云林* 姚康德 (天津大学材料科学与工程学院 天津300072) 摘 要 用 射线照射壳聚糖使之发生辐射降解,研究了降解反应的动力学、辐射对壳聚糖脱乙酰化度的影响以及大分子链的断链机理.结果表明:壳聚糖在 射线照射下发生的辐射降解遵循无规降解动力学规律;降解过程中壳聚糖的脱乙酰化度略有升高;降解反应主要由壳聚糖分子链上的C 1—O —C 4键断裂引起,在降解过程中生成了 -内酯结构的端基. 关键词 壳聚糖,辐射降解,动力学,无规降解,断链机理 中图分类号:O 636.1 文献标识码 A 文章编号 1000-0518(2001)02-0104-04 2000-03-15收稿,2000-07-10修回国家自然科学基金资助项目(59773002) 一般由甲壳素脱乙酰化制得的壳聚糖分子量很大,溶解性差,这使它的应用受到极大限制;另外,研究表明分子量对壳聚糖的性质有很大影响,不同分子量的壳聚糖性质差异很大,有时甚至表现出截然相反的特性[1,2],而且壳聚糖许多独特的功能只有在分子量降低到一定程度时才能表现出来.因此,选择适当的方法对壳聚糖进行降解就显得十分重要.目前,已见报道的降解方法有NaNO 2降解法[2] 、无机酸水解法[3] 、氧化降解法[4]、酶降解法[5,6]和超声波降解法[7]等.本文用成本低、工艺简单的辐射降解法,分别在大气环境和真空环境下用不同辐射剂量的 射线照射壳聚糖使之发生降解反应,研究了壳聚糖辐射降解的动力学和断链机理. 1 实验部分 固体片状壳聚糖由青岛药物研究所提供,粘度法[8]测定分子量为27.4万,电位滴定法[9]测定脱乙酰化度为0.740;乙酸、盐酸、氢氧化钠以及其它化学试剂均为分析纯. 60 Co 辐射源由天津市技术物理研究所提供, 辐射剂量率35Gy /min.将固体片状壳聚糖分别装入12个玻璃瓶中,用胶塞封口,其中6瓶用真空泵将瓶内气压抽至133.32Pa 以下,使壳聚糖处于真空环境之中.用60Co 辐射源照射这些样品,通过控制不同的照射时间来调节辐射剂量,使壳聚糖在大气环境和真空环境下均发生不同程度的降解. 将降解后的壳聚糖用0.1m ol /L 乙酸-0.2mo l /L 氯化钠缓冲溶液溶解,于(25±0.1)℃下用乌氏粘度计测定特性粘数[ ],用Mark-Houw ink 方程[8] 计算分子量:[ ]=K M v ,取常数为K =1.81×10-3, =0.93. 准确称取0.1g 壳聚糖降解产物,溶解于0.2mo l/L 标准HCl 溶液中,用电位滴定法 [9] 测 脱乙酰化度.将降解后的壳聚糖样品粉末干燥至恒重,与石蜡油混合,用Nico let 560E .S .P .FT IR 红外光谱仪测其红外光谱图.取不同环境下、辐射剂量200kGy 时壳聚糖的降解产物,分别溶于CF 3COOD 的D 2O 溶液中(10g/L),在Br uker AC-P 200型核磁共振谱仪上测其质子去偶的13C 核磁共振谱图.以CF 3COOD 为内标,磁场强度为200MHz . 2 结果与讨论 2.1 壳聚糖辐射降解的动力学 射线在大气环境和真空环境下对壳聚糖的照射都使壳聚糖发生了明显的降解反应,如图1所示.无论是大气环境还是真空环境,随着辐射剂量的增加,壳聚糖的分子量都明显降低,当辐射剂量达到250kGy 时,大气环境下壳聚糖的分子量从27.4万下降到2.4万,而真空环境下则下降到2.0万. 高聚物的辐射降解一般服从无规降解动力学,分子链上任何一处的同类化学键都有均等的断裂机会,也就是说,光量子的能量引起化学反应 第18卷第2期应用化学 V ol.18N o.22001年2月 CHI NESE JOU RN AL O F A P PL IED CHEM IST RY Feb.2001

改性壳聚糖富集研究综述范文【精编】

改性壳聚糖富集研究综述 摘要:壳聚糖及其衍生物是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。本文综合概述了壳聚糖的结构、性质、富集及其化学改性的方法,简单介绍了它们的应用领域。 关键词:壳聚糖;富集;化学改性;应用。 引言: 壳聚糖具有许多独特的化学物理性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。通过对甲壳质和壳聚糖进行化学修饰与改性来制备性能独特的衍生物已经成为当今世界应用开发的一个重要方面。 1、壳聚糖及其改性吸附剂 壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素N-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-D-葡萄糖。 壳聚糖本身的基本结构是葡萄糖胺聚合物,与纤维素类似。但因多了一个胺基,带有正电荷,所以使其化学性质较为活泼。且因其聚合分子结合键角度自然扭转之故,对于小分子或元素会发生凝集螫合作用。根据甲壳素脱乙酰化时的条件不同,壳聚糖的脱乙酰度和分子量不同,壳聚糖的分子量通常在几十万左右。但一般来说N-乙酰基脱去55%以上的就可称之为壳聚糖。 壳聚糖本身性质十分稳定,不会氧化或吸湿。鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、生物制药、水处理方面显示出非常诱人的应用价值。近年来,国内外对壳聚糖的开发研究十分活跃。 2、壳聚糖富集工艺的研究现状 由于壳聚糖吸附剂有以上的优点,学者们对其富集的工艺已经有了较为深入的研究。 李斌,崔慧[1]研究了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量Cu(Ⅱ)的方法,于波长325nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。此法的优点在于简便、快速、选择性好、经济实用、效果良好。但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

壳聚糖改性与在水处理方面的应用

《文献检索与科技论文写作》作业 壳聚糖的改性在水处理中的应用进展 年级: 学院: 专业:高分子材料 学生: 学号: 指导教师: 提纲

0 引言 壳聚糖是性能优异、应用广泛且具有开发价值的天然高分子絮凝剂。虽然在应用中有一些不足,但可以通过物理或化学改性来提高其性能,拓展其应用围。本文主要介绍壳聚糖改性后在水处理中的应用进展。 1 壳聚糖的改性在饮用水处理中的应用 从对氟离子的吸附及对浊度的降低介绍改性壳聚糖的应用效果; 2 壳聚糖的改性在工业废水中的应用 2.1 印染废水 从对偶氮染料的吸附及对阳离子染料的吸附介绍改性壳聚糖的应用; 2.2 重金属离子 2+、Th4+的吸附及对Cr(VI)的吸附,主要从对铜离子、对镍离子的吸附;对UO 2 来介绍改性壳聚糖的应用; 2.3 造纸废水 主要介绍接枝改性壳聚糖和壳聚糖微球对造纸废水的处理效果; 3 壳聚糖的改性在城市污水和海水中的应用 主要介绍改性壳聚糖对SS、浊度、BOD5及COD等的处理效果; 4 结语与展望 介绍目前的改性研究情况及未来研究的方向。 5 参考文献

壳聚糖的改性在水处理中的应用进展 --------大学材料科学与工程学院14级高分子材料专业马舒颜摘要:本文阐述了壳聚糖絮凝剂改性后在水处理方面的应用进展,着重说明其在重金属离子处理、印染废水处理中的应用。壳聚糖絮凝剂在水处理中应用极广,环境友好,从可持续发展角度来看有着巨大的发展潜力和研究意义。 关键词:壳聚糖的改性絮凝水处理 0 引言 水是人类生存最基本的需求,传统的水处理剂会在水中有残留,对人体健康及环境造成危害。因此,兼具环境友好、可再生、来源广泛的绿色水处理剂备受关注。而壳聚糖就是性能最为优异的的天然高分子材料之一。 壳聚糖是由自然界广泛存在的甲壳素经过脱乙酰作用得到的,又称脱乙酰甲壳素,一般而言,甲壳素的N-乙酰基脱去55%以上就可称为壳聚糖,其分子式为 (C 6H 11 NO 4 )N。壳聚糖结构中含有大量活泼的氨基和羟基,在酸性溶液中能形成阳离 子型聚电解质,有良好的絮凝作用;且可通过表面侵蚀、酶降解、溶解等多种降解方式进行可控性降解,无毒副作用;同时还具有很好的生物相容性、吸附性、吸湿性、成膜性、抵抗免疫反应性和抗菌性等,广泛应用于造纸、纺织、制革、工业废水处理;在医药、食品保健品等领域也发挥着巨大的作用。因此,壳聚糖是一种用途广泛且富开发价值的天然高分子絮凝剂。 然而,壳聚糖在实际应用中还存在一些不足,譬如:化学性质不活泼、溶解性较差、分子量相对较低等,在一定程度上限制了它的使用围。但因其结构中含有羟基、乙酰基和氨基等官能团,故可以利用烷基化、酯化、接枝、交联等改性方法来改善壳聚糖的性质,提高其性能,从而拓展应用围,得到更大的利用空间。 1 壳聚糖的改性在饮用水处理中的应用 饮用水的处理,目的是将水处理为对人体有生物安全性和化学安全性的水,同时水的浊度、色度、硬度、气味等给人的感受要好[1]。壳聚糖因其天然、无毒、安全性,在饮用水处理中显示了其独特的优越性。壳聚糖特有的分子结构,可有效去除水中的悬浮物、有机物、颜色和气味,可降低水中COD含量并减少水中毒副物质的产生;此外,壳聚糖可以有效吸附去除饮用水中重金属及其藻类物质;还可以去除无机絮凝剂处理后残留的铝离子,且能一定程度上抑制水中微生物的繁殖和生长,从而具有一定的杀菌作用[2]。 我国是世界上地方性氟中毒较严重的国家之一。氟离子是人体不可或缺的微

壳聚糖微球的制备及对染料的吸附性能

壳聚糖微球的制备及对染料的吸附性能 壳聚糖微球对阴离子染料具有较大的吸附容量,而壳聚糖微球对阳离子染料吸附容量较小。壳聚糖微球对染料的吸附过程受溶液初始浓度、pH值等因素的影响;当pH=2、温度为298 K时,壳聚糖微球对AO7的吸附率达93%,该吸附过程为具有化学吸附的自发过程。 标签:壳聚糖微球染料废水pH值吸附吸附量 一、印染废水的处理意义 印染废水中的污染物绝大部分来自织物本身和加工过程使用的化学染料以及辅助剂。随着工业的快速发展,人类正面临着越来越缺乏的可用的淡水资源,因此要求越来越高的污水处理回收技术。印染行业是工业废水,印染废水中较多的有机物类型和较高的COD、BOD值,高色度,高毒性。纺织废水成分复杂和不稳定,因此在废水处理中印染废水处理已成为一个焦点。 二、印染废水的处理办法 印染废水的处理过程主要包括:预处理和后续处理。预处理工艺的作用主要是去除部分污染物,改善污水水质,以提高后续处理的效果。大量的工业实践证明,印染水的综合治理过程中废水的预处理工艺具有极其重要的地位,它关系到整个系统的运行稳定和排放水质达标,同时也涉及到运行成本的高低。印染废水后续处理是废水处理的关键环节,目前所用的方法主要有化学处理法、生化处理法和物理处理法 三、壳聚糖吸附处理染料废水的研究进展 壳聚糖吸附染料是通过氢键,范德华力,静电引力来实现的。Mckay等首次研究了壳聚糖对印染废水的吸附性能,研究表明,染料种类、温度、pH、溶液初始浓度等对壳聚糖吸附效果有较大影响。随后国内外学者开始对壳聚糖吸附染料废水进行研究,近年来取得了丰硕的成果。实验数据表明,壳聚糖对很多种染料都有良好的吸附效果,尤其是对酸性染料具有较大的吸附容量,而对碱性染料吸附容量较小;壳聚糖对多数染料的吸附过程符合Langmuir吸附等温线。Wong 等用蟹壳分离出的甲壳素制成的壳聚糖来处理五种酸性染料(酸性绿25、酸性黄10、酸性黄12、酸性红18和酸性红73)废水,发现Langmuir吸附等温线与这四种染料的吸附过程有很好的关联。林静雯[1]等对壳聚糖改性,使壳聚糖与丙烯酰胺形成接枝共聚物,然后用这种改性的壳聚糖来处理一种色泽为深蓝色的印染废水,发现其去除率达到76%,脱色率达到95.92%。Annadurai等研究了壳聚糖吸附处理活性黑13染料,实验过程中控制反应时间、染料的初始浓度、壳聚糖颗粒大小、pH和温度,并对其进行优化,得出最佳吸附条件。在最佳吸附条件下,吸附容量达到130.0 mg/g。通过吸附热动力学研究,表明吸附过程为吸热反应。朱启忠[2]等研究壳聚糖对酸性品红染料的吸附性能,研究发现在一定

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

壳聚糖微球的制备及其在生物医药领域的应用

壳聚糖微球的制备及其在生物医药领域的应用 杨 婷,侯文龙,杨越冬* (河北科技师范学院理化学院,秦皇岛 066004) 摘要:壳聚糖是唯一天然碱性氨基多糖,它具有良好的生物相容性、低毒性和生物可降解性,是制备微球的 良好材料。本文综述了近年来国内外壳聚糖微球的制备方法,如喷雾干燥法、乳化交联法、逐层自组装法、界面 聚合法、溶剂蒸发法以及离子凝胶法,分析了不同制备方法的优点及不足。壳聚糖微球不仅可作为固定化酶或 细胞的载体,而且是一种具有广泛应用前景的新型药物载体,本文还对壳聚糖微球在固定化酶或细胞和包埋药 物领域的应用进行了概述。 关键词:壳聚糖;微球;生物医药;应用 微球能保护包埋物免受外界环境影响,以及屏蔽味道、颜色或气味,降低挥发性和毒性,控制可持续释放等多种作用。近年来,微球已被广泛应用于生物、医药和食品等多个领域[1~2]。壳聚糖(CS)是经甲壳素脱乙酰化的线性高分子,是唯一天然碱性氨基多糖,具有良好的生物相容性、低毒性、生物可降解性,有抗菌、防腐、止血和促进伤口愈合等特殊功能和抗酸、抗溃疡的能力,可阻止或减弱药物在胃中的刺激作用,是制备微球的良好材料,在生物医学[3]、药学[4~8]以及固定酶或细胞[9~10]领域倍受专家青睐。壳聚糖作为药物载体,具有控制药物释放、延长药物疗效、降低药物毒副作用、提高疏水性药物对细胞膜的通透性、增强药物稳定性及改变给药途径等特点,是一种新型药物制剂辅料;壳聚糖作为固定化酶的载体,其机械性能良好、化学性质稳定、耐热性强,特别是分子中含有氨基,容易和蛋白质或酶结合,可络合金属离子,使酶免受金属离子的抑制;另外,壳聚糖来自于生物体,细胞毒性极低、亲和性好、安全性高,是固定细胞的良好材料。因此,近几年壳聚糖微球的制备和应用成为研究的热点。本文主要介绍了喷雾干燥、乳液交联、逐层自组装、界面聚合等多种制备壳聚糖微球的方法及其在生物医药等领域的应用。 1 壳聚糖微球的制备 1 1 喷雾干燥法 喷雾干燥法是工业中制备壳聚糖微球较广泛的方法之一,此方法是以热气流干燥雾化液滴为基础的。图1为喷雾干燥法工艺流程[11],首先将壳聚糖溶于酸性水溶液中,再将其它药物溶解或分散于该壳聚糖溶液,加入合适的交联剂,然后进入喷雾干燥器雾化,形成小液滴,溶剂瞬间蒸发可形成自由流动的粒子。微球的粒径取决于喷嘴的直径、喷雾流率、雾化压力、入口温度和交联程度等因素。Cev her等[12]以壳聚糖微球装载不同质量的盐酸万古霉素,将壳聚糖溶于1%(v/v)酸溶液得到0 5%(w/v)浓度的聚合物溶液,再将不同质量的盐酸万古霉素分散至该聚合物溶液中。然后将配制好的溶液进行喷雾干燥,其过程工艺参数为:入口温度130 2 ,出口温度90 2 ,喷雾流率600NL/h,喷嘴直径0 5m m。装载盐酸万古霉素的壳聚糖微球可以持续的保持药效。H e等[13]制备壳聚糖微球时也采用了喷雾干燥法,将配制好的壳聚糖水溶液与一定比例的戊二醛水溶液混合均匀,然后进行喷雾干燥,所用的喷嘴规格为0 5mm,入口温度与喷雾流率分别为160 和6m L/min,所制备出的壳聚糖微球的粒径在3~12 m之间。Williams等[14]在酸中配制一定比例的壳聚糖溶液,加入交联剂,调整参数:喷嘴直径0 3mm,入口、出口温度分别为142 3 、84 3 ,空气流量始终保持在450NL/h。Shi等[15]向壳聚糖酸溶液中加入 基金项目:河北省自然科学基金项目(B2009000862); 作者简介:杨婷(1984-),女,硕士研究生,主要从事天然产物化学研究工作; *通讯联系人:T el:0335 *******,E mail:kycyy d@https://www.wendangku.net/doc/4518879823.html,.

结壳聚糖可降解性的研究

功能性包装材料结课论文壳聚糖可降解性的研究进展 姓名:任丹 班级:包装08 学号:080534115 指导老师:方健 日期:2011年5月17日

壳聚糖可降解性的研究进展 (班级包装08学号080534115)姓名任丹 摘要 首先,本文介绍了壳聚糖的理化性质、生物活性以及工业上和实验室制备壳聚糖的生产工艺。其次,壳聚糖作为可生物降解的新型材料,已被广泛应用于化工、环保、医药等众多领域, 将壳聚糖降解到所需的分子量是其应用的前提。本文介绍并评述了化学降解、物理降解和生物降解三种对壳聚糖的降解方法的研究进展。最后,根据壳聚糖具有抗菌性,可生物降解及良好的成膜性等优异性能,探讨了壳聚糖在食品保鲜膜、可食用膜和生物可降解包装膜三个方面的研究进展。 关键字:壳聚糖;降解;应用 REVIEWS ON THE RESEARCH PROGRESS OF DEGRATED CHITOSAN Abstract Firstly,this paper introduces chitosan’s physical and chemical properties, biological activity and the production process of industry and laboratory preparation of chitosan. Secondly, chitosan as a new biodegradable material which has been widely used in chemical, environmental protection, medical and so on at the premise that chitosan will degradat to the required molecular weight. This paper introduces and reviews on the research progress of three methods of chitosan’s degradation ,which including the chemical degradation, physical degradation and biodegradable. Finally, according to the chitosan has antibacterial sex, biodegradability and good film sex etc, and probes into the three aspects of the research progress, including the excellent properties of chitosan in food wrap, edible film and biodegradable packaging film. Key words: chitosan; degradation;application 1引言 壳聚糖(chitosan,CS)是由大部分氨基葡萄糖和少量N-乙酰氨基葡萄糖通过β-1,4糖苷键连接起来的直链多糖,通常是从虾、蟹、昆虫的外壳或真菌细胞壁中提取甲壳素(chitin)

均相体系过氧化氢降解壳聚糖

均相体系中过氧化氢降解壳聚糖 材料:壳聚糖(实验室购置),30%过氧化氢 一 测定过氧化氢的分解率:定性分析出过氧化氢完全分解所需要的时间。 1,KMnO 4标准溶液的测定(约0.02mol /L ) 材料:KMnO 4,表面皿,电热炉,玻璃砂芯漏斗,棕色瓶等 称取0.8g KMnO 4溶于250ml 蒸馏水中,盖上表面皿,加热至沸腾并保持微沸状态1小时,冷却后,用玻璃砂芯漏斗过滤,滤液贮于清洁带塞的棕色瓶中备用。 2,双氧水中过氧化氢的滴定 材料:移液管,30%过氧化氢,锥形瓶(4个),已配制的KMnO 4标准溶液,H 2SO 4溶液,MnSO 4溶液等 假设分解情况如图; 0.2 0.4 0.60.81 1.2 0123 456 时间/h h 2o 2含 A,准备标号为1,2,3,4的锥形瓶,里面装入等量的双氧水溶液(约20ml ),用移液管移取10.00ml 溶于250ml 蒸馏水中,加3mol /L H 2SO 42.5ml 以及1mol/LMnSO 4溶液2滴,用KMnO 4标准溶液滴定呈微红色,半分钟内不褪色即为终点。平行测定三次。从而得出最佳分解时间。 过氧化氢分解率用高锰酸钾滴定法测定 1、 高锰酸钾滴定标线 标线要制定两个,高锰酸钾高浓度(0.02mol/L )和高锰酸钾低浓度(0.002mol/L ) 以下是高浓度高锰酸钾溶液(0.02mol/L )制定的标线 取1ml30%的过氧化氢置于250ml 容量瓶中,加蒸馏水至刻度,充分摇匀。将单位换算成g/L 过氧化氢,假设为a 。 过氧化氢稀释液 浓度(g/L ) 过氧化氢标液 蒸馏水 1 a 10ml 0 2 2a/ 3 10ml 5ml 3 1a/2 10ml 5ml 4 1a/3 10ml 10ml 5 1a/4 10ml 10ml

壳聚糖微球的制备及研究-开题报告

壳聚糖微球的制备及研究 摘要:壳聚糖是性能优良的天然黏膜黏着剂,常用于多肽类药物的黏膜给药。壳聚糖微球除具有壳聚糖本身特点外,在性能上又有新的改善,利用壳聚糖制成的微球可以延长药物在吸收位置的保留时间,达到控释目的。实验以戊二醛,多聚磷酸钠为交联剂制备微球,通过单因素法考察微球制备工艺。 关键词:微球,壳聚糖,戊二醛,多聚磷酸钠 1 研究背景 1.1 微球 微球是近年来发展的新剂型,它是以清蛋白、明胶、聚乳酸等材料制成的球状载体给药系统,微球中的药物分散或包埋在材料中而形成球状实体,微球直径大小一般为0.3~100μm。不同粒径范围的微球针对性地作用于不同的靶组织。这类剂型的开发,对于发展缓控释和靶向给药系统具有重要的意义。 1.1.1 微球的特点 药物制备成微球后可达到下述目的:掩盖药物不良气味及口味,如鱼肝油、生物碱类等;提高药物的稳定性,如易氧化的β-胡萝卜素、对水气敏感的阿司匹林等;使液态药物固体化便于应用与储存,如油类、香料、脂溶性维生素等;对缓释或控释药物,可采用惰性基质、薄膜、可生物降解材料、亲水性凝胶等制成微球或微囊,可使药物控释或缓释;使药物浓集于靶区,如治疗指数低的药物或细胞毒素药物(抗癌药)制成微球或微囊的靶向制剂,可将药物浓集于肝或肺等靶区,提高疗效,降低毒副作用;除药物外,可将活细胞或生物活性物质包囊,如胰岛、血红蛋白等包囊,在体内生物活性高,而具有很好的生物相容性和稳定性[1]。 1.1.2 各种微球的制备研究 1.1. 2.1 清蛋白微球 清蛋白微球制剂是人或动物血清清蛋白与药物一起制成的一种球状制剂。清蛋白是体内的生物降解物质,注入肌体后,在肌体的作用下逐渐降解后清除,性能稳定、无毒、无抗原性,因此清蛋白微球制剂是理想的控缓释靶向制剂之一。其制备方法有:热变性法;化学交联法(即用化学交联剂同清蛋白发生交联反应使之变性);聚合物分散法和界面缩聚法等。 1.1. 2.2 聚乳酸、聚乳酸乙醇酸微球

有机酸及降解条件对壳聚糖降解速度的影响

河北科技师范学院学报 第20卷第1期,2006年3月 Journal of Hebei Normal University of Science&Technology Vol.20No.1March2006 有机酸及降解条件对壳聚糖降解速度的影响 张卫国,周永国,杨越冬,陈春刚,王丽坤 (河北科技师范学院化学系,河北秦皇岛,066600) 摘要:试验研究了不同有机酸及反应时间、温度、酸的浓度对壳聚糖降解速度的影响。壳聚糖在不同的有机酸中降解速度有很大差别,在草酸、柠檬酸、琥珀酸、苹果酸、酒石酸中的降解速度以草酸中为最快,苹果酸中为最慢。随反应时间延长,壳聚糖分子量减小的趋势变缓;降解速度随温度的升高而加快,在50~70℃条件下降解速度最快;随有机酸浓度的增加,壳聚糖降解速度也增加。 关键词:壳聚糖;有机酸;降解速度 中图分类号:O636.9 文献标识码:A 文章编号:167227983(2006)0120032203 壳聚糖是甲壳质经脱乙酰基反应制得的直链多糖,它是由22乙酰胺222脱氧葡萄糖单元通过β2(1→4)糖苷键联接起来的天然高分子化合物,壳聚糖的降解是指其β2(1→4)糖苷键的断裂[1]。壳聚糖发生酶降解、氧化降解和酸降解后可制得壳低聚糖[2]。由于不同分子量的壳聚糖功能不同,应用领域不同[1],研究制备不同分子量范围壳聚糖的方法对壳聚糖的开发应用具有重要意义。而酸降解法一般是在盐酸中加入氧化剂的条件下降解制备小分子的壳聚糖,反应条件剧烈[3]。笔者主要研究了几种有机酸及降解条件对壳聚糖降解速度的影响,在比较温和的条件下制备出不同分子量范围的壳聚糖。 1 材料与方法 按照文献[4]的方法制备脱乙酰度为80.4%的壳聚糖(由皮皮虾壳中提取);以甲基橙为指示剂,用酸碱滴定法测定壳聚糖的脱乙酰度(D.D)[3]。分子量测定方法为[5]:以0.2mol?L-1C H3COO H+ 0.1mol?L-1CH3COONa的缓冲溶液(p H值为4.40)为溶剂,于(30±0.05)℃用乌氏粘度计按稀释法测各样品的特性粘度[η],根据Mark2Houwink方程计算分子量。 [η]=k×Mα (α=-1.02D.D+1.82; k=1.635×10-30D.D14.0) NaO H,HCl,HAc,NaAc,草酸,柠檬酸,琥珀酸,苹果酸,酒石酸等均为分析纯。 2 结果与分析 2.1 温度对壳聚糖降解速度影响 分别取0.0250g壳聚糖溶于0.2mol?L-1CH3COO H+0.1mol?L-1C H3COONa缓冲溶液中,在不同温度下降解10h20min,分别测其分子量。试验结果表明,壳聚糖在50~70℃之间随着温度增加其降解速度增加很快,而在低温和高温条件下降解速度变化不明显(图1)。当温度达到70℃以上时,随着反应温度的升高,壳聚糖的分子量几乎不再变化。这与在H2O2为氧化剂条件下,温度对壳聚糖降解情况基本一致[3]。其原因认为是壳聚糖分子上的2N H+3和醋酸根阴离子之间存在着一定的吸引力,以盐键的形式存在。由于酸根离子的体积大,对苷键的断裂有位阻作用。当温度较低时,盐键不被破坏,分子链不易断裂,降解速度随温度变化较小,平均分子量变化不明显;而随着温度升高,盐键逐渐被破坏,位阻消失,苷键断裂容易,平均分子量变化较大。当温度升高到一定程度时,盐键几乎完全消失,随温度升高,分子链上的糖苷键断裂不明显,因此,壳聚糖降解速度几乎不变,其平均分子量变化也不显著。 2.2 降解时间对壳聚糖降解速度影响 分别取0.0250g壳聚糖溶于0.2mol?L-1CH3COO H+0.1mol?L-1CH3COONa的缓冲溶液收稿日期:2005204210;修改稿收到日期:2005207201

相关文档