文档库 最新最全的文档下载
当前位置:文档库 › 系统校正matlab仿真

系统校正matlab仿真

系统校正matlab仿真
系统校正matlab仿真

实验六 Matlab 环境下校正环节的设计

一. 实验类型 综合设计性实验 二. 实验目的

1. 研究校正环节的工作原理以及设计实现方法; 2. 研究校正环节对系统稳定性及过渡过程的影响; 3. 熟练掌握利用Matlab

实现系统辅助设计及仿真技术。

三. 实验内容

在Matlab 环境下实现校正环节的设计,包括利用Simulink 对校正前、后系统进行仿真,得出系统的动、静态性能。 四. 实验要求

1. 熟悉校正装置的几种校正结构及其校正特点; 2. 熟悉Matlab

环境,可以利用Simulink 对系统建模,并且利用m 函

数实现校正环节的设计;

3. 已知系统的开环传递函数为)

1.01)(25.01()(s s s K

s G ++=

,试设计校正环

节使得稳态速度误差系数为10,相位裕度为 45;

4. 已知系统的开环传递函数为)

1)(25.01()(s s s K

s G ++=

,试设计校正环节,

要求稳态速度误差系数为10,相位裕度为 30;

5. 以上两个题目中任选其一。

五. 实验步骤

已知系统的开环传递函数为)

1.01)(25.01()(s s s K

s G ++=

,试设计校正环节

使得稳态速度误差系数为10,相位裕度为 45;

1.求k0

K0=10

2.校正前系统仿真图

3.做原系统的bote图与阶跃响应曲线阶跃响应曲线

Bode图

增益裕量:Gm=-5.98db;穿越频率为:2rad/sec 相位裕量:Pm=-15deg ;剪切频率:2.78rad/sec

4.求滞后校正环节的传递函数

经计算取剪切频率wc=0.9 rad/sec

Transfer function:

11.11 s + 1

-----------

89.53 s + 1

5.校验系统频域性能

增益裕量:Gm=11.2db;穿越频率为:1.9rad/sec 相位裕量:Pm=30.2deg ;剪切频率:0.9rad/sec 5.校正后系统的结构与参数

6.校正后系统仿真

六.实验体会

通过本次实验熟悉了校正装置的几种校正结构及其校正特点;

熟悉Matlab环境,可以利用Simulink对系统建模,并且利用m函数

实现校正环节的设计。

附录:

1.做原系统的伯德图和阶跃响应曲线

2.求滞后校正环节的传递函数

2.校验系统频域性能

3. 校正后系统的结构与参数

自控课设MATLAB超前滞后校正概要

课程设计任务书 学生姓名: 张弛 专业班级: 电气1002班 指导教师: 刘志立 工作单位: 自动化学院 题 目: 用MATLAB 进行控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是 ) 2)(1()(++= s s s K s G 要求系统的静态速度误差系数110-≥S K v , 45≥γ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要 求) 1、 M ATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。 2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。 3、用MATLAB 画出未校正和已校正系统的根轨迹。 4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。 5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

摘要 (3) 1基于频率响应法校正设计概述 (4) 2串联滞后-超前校正原理及步骤 (5) 2.1滞后超前校正原理 (5) 2.2滞后-超前校正的适用范围 (6) 2.3串联滞后-超前校正的设计步骤 (6) 3串联滞后-超前校正的设计 (7) 3.1待校正系统相关参数计算及稳定性判别 (7) 3.1.1判断待校正系统稳定性 (7) 3.1.2绘制待校正系统的伯德图 (8) 3.1.3绘制待校正系统的根轨迹图 (9) 3.1.4绘制待校正系统的单位阶跃响应曲线 (10) 3.1.5利用SIMULINK进行控制系统建模仿真 (11) 3.2滞后超前-网络相关参数的计算 (12) 3.3对已校正系统的验证及稳定性分析 (15) 3.3.1绘制已校正系统的伯德图 (15) 3.3.2判断已校正系统的稳定性 (16) 3.3.3绘制已校正系统的根轨迹图 (17) 3.3.4绘制已校正系统的单位阶跃响应曲线 (18) 3.3.5利用SIMULINK进行控制系统建模仿真 (19) 3.3.6串联滞后-超前校正设计小结 (20) 4心得体会 (21) 参考文献 (21) 附录 (22)

Matlab结构图控制系统仿真

图5. 利用 SIMULINK仿

4. 建立如图11-54所示的仿真模型,其中PID控 制器采用Simulink子系统封装形式,其内部 结构如图11-31(a)所示。试设置正弦波信号 幅值为5、偏差为0、频率为10πHz\始终相位 为0,PID控制器的参数为Kp=10.75、 Ki=1.2、Kd=5,采用变步长的ode23t算法、 仿真时间为2s,对模型进行仿真。 (6)观察仿真结果。系统放着结束后,双击仿真模型中的示波器模块,得到仿真结果。单击示波器窗口工具栏上的Autoscale按钮,可以自动调整坐标来 使波形刚好完整显示,这时的波形如图所示。 图3 2. 题操作步骤如下: (1) 打开一个模型编辑窗口。 (2) 将所需模块添加到模型中。在模块库浏览器中单击Sources,将 Clock(时钟)拖到模型编辑窗口。同样,在User-Defined Functions(用户定义模块库)中把Fcn(函数模块)拖到模型编辑窗口,在Continuous(连续系统模块库)中把 Integrator(积分模块)拖到模型编辑窗口,在Sinks中把Display模块编辑窗口。 (3) 设置模块参数并连接各个模块组成仿真模型。双击Fcn模块,打开Function Block operations中把Add模块拖到模型编辑窗口,在Sinks中把Scope模块拖到模型编辑窗口。 (3) 设置模块参数并连接各个模块组成仿真模型。先双击各个正弦源,打开其Block Parameters对话框,分别设置Frequency(频率)为2*pi、 6*pi、10*pi、 14*pi、18*pi,设置Amplitude(幅值)为1、1/3、1/5、1/7和1/9,其余参数不改变。对于求和模块,將符号列表List of signs设置为 +++++。 (4) 设置系统仿真参数。单击模型

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

信号与系统的MATLAB仿真

信号与系统的MATLAB 仿真 一、信号生成与运算的实现 1.1 实现)3(sin )()(π±== =t t t t S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '=' '== ==πππ π ππ m11.m t=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果: 1.2 实现)10() sin()(sin )(±== =t t t t c t f ππ m12.m t=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数 plot(t,f); % 绘制sinc(t)的波形 运行结果: 1.3 信号相加:t t t f ππ20cos 18cos )(+= m13.m syms t; % 定义符号变量t f=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.4 信号的调制:t t t f ππ50cos )4sin 22()(+= m14.m syms t; % 定义符号变量t f=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果: 1.5 信号相乘:)20cos()(sin )(t t c t f π?= m15.m t=-5:0.01:5; % 定义时间范围向量 f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:

基于Matlab的自动控制系统设计与校正

自动控制原理课程设计设计题目:基于Matlab的自动控制系统设计与校正

目录 第一章课程设计内容与要求分析.................................................... 错误!未定义书签。 1.1设计内容 (1) 1.2 设计要求 (1) 1.3 Matlab软件 (2) 1.3.1基本功能 (2) 1.3.2应用 (2) 第二章控制系统程序设计 (4) 2.1 校正装置计算方法 (4) 2.2 课程设计要求计算 (4) 第三章利用Matlab仿真软件进行辅助分析 (6) 3.1校正系统的传递函数 (6) 3.2用Matlab仿真 (6) 3.3利用Matlab/Simulink求系统单位阶跃响应 (8) 3.2.1原系统单位阶跃响应 (8) 3.2.2校正后系统单位阶跃响应 (8) 3.2.3校正前、后系统单位阶跃响应比较 (8) 3.4硬件设计 (8) 3.4.1在计算机上运行出硬件仿真波形图 (9) 课程设计心得体会 (10) 参考文献 (12)

1 第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统 )1()(+= s s K s W , 利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11 )(++-=Ts Ts K s W c c α, 其中 1 3 2R R R K c += , 1 ) (13243 2>++ =αR R R R R ,C R T 4=, “-”号表示反向输入端。若Kc=1,且开关S 断开,该装置相当于一个放大系数为1的放大器(对原系统没有校正作用)。 1.2 设计要求 1 1.0)(≤∞e ,开环截止频率ω’≥45°; 2 3) 4)设校正装置网络元件参数R4、5R=100K ,C=1μF 、10μF 若干个); 6)利用Matlab 仿真软件辅助分析,绘制校正前、后及校正装置对数频率特性曲线,并验算设计结果; 7)在Matlab-Simulink 下建立系统仿真模型,求校正前、后系 统单位阶跃响应特性,并进行系统性能比较; 8)利用自动控制原理实验箱完成硬件设计过程,包括:搭建校正前后 c R R

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB仿真与设计课后答案

>>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p'); >>title('Line in 3-D Space'); >>text(0,0,0,'origin'); >>xlabel('X'),ylable('Y'),zlable('Z');grid; 4>>theta=0:0.01:2*pi; >>rho=sin(2*theta).*cos(2*theta); >>polar(theta,rho,'k'); 5>>[x,y,z]=sphere(20); >>z1=z; >>z1(:,1:4)=NaN; >>c1=ones(size(z1)); >>surf(3*x,3*y,3*z1,c1); >>hold on >>z2=z; >>c2=2*ones(size(z2)); >>c2(:,1:4)=3*ones(size(c2(:,1:4))); >>surf(1.5*x,1.5*y,1.5*z2,c2); >>colormap([0,1,0;0.5,0,0;1,0,0]); >>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100); m2=rem(fix(m/10),10); m3=rem(m,10); if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m) end end 2M文件:function[s,p]=fcircle(r) s=pi*r*r; p=2*pi*r; 主程序: [s,p]=fcircle(10) 3>>y=0;n=100; for i=1:n y=y+1/i/i; end >>y

matlab控制系统仿真.

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称龙蟠学院 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 C208 课程设计学时一周 指导教师应明峰 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统PID控制器取参数分别为:50 2 5 有积分作用单回路控制系统PID控制器取参数分别为:50 0 5

大比例作用单回路控制系统PID控制器取参数分别为:50 0 0 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;

matlab实验九控制系统的PI校正设计及仿真

实验九控制系统的PI校正设计及仿真 一、实验目的 1. 应用频率综合法对系统进行PI校正综合设计; 2. 学习用MATLAB对系统性能进行仿真设计、分析; 二、实验设计原理与步骤 1?设计原理 滞后校正(亦称PI校正)的传递函数为: 其对数频率特性如图9-1所示,参数表征滞后校正的强度。 2 ?设计步骤 基于频率法的综合滞后校正的步骤是: (1)根据静态指标要求,确定开环比例系数K,并按已确定的K画出系统固有部分的Bode 图; (2)根据动态指标要求试选c,从Bode图上求出试选的c 点的相角,判断是否满足相 位裕度的要求(注意计入滞后校正带来的50 ~ 120的滞后量),如果满足,转下一步。否则, 如果允许降低 c ,就适当重选较低的 C ; (3)从图上求出系统固有部分在c点的开环增益Lg ( c) o如果Lg ( c) >0令Lg ( c) =20lg ,求出,就是滞后校正的强度,如果Lg (c) < 0,则无须校正,且可将开环比例系数提高。 (4)选择21 1 1 (~ ) C,进而确定 1 1 o T 5 10 T (5)画出校正后系统的Bode图,校核相位裕量。 滞后校正的主要作用是降低中频段和高频段的开环增益,但同时使低频段的开环增益 不受影响,从而达到兼顾静态性能与稳定性。它的副作用是会在c点产生一定的相角滞后。 三、实验内容 练习9-1设系统原有开环传递函数为: 系统的相位裕度丫40° 系统的开环比例系数K= 5 S-1

截止频率为c=0 . 5 S1 要求: (1)用频率法设计满足上述要求的串联滞后校正控制器; ( 2)画出校正前后的Bode 图 ( 3)用Simulink 对校正前后的闭环系统进行仿真,求出其阶跃响应; (4)分析设计效果。 k0=5;n1=1; d1=conv(conv([1,0],[1,1]),[0.5 1]); w=logspace(-1,3,1000); sope=tf(k0*n1,d1); figure(1) margin(sope);grid on wc=0.5; num=sope.num{1}; den=sope.den{1}; na=polyval(num,j*wc); da=polyval(den,j*wc); g=na/da; g1=abs(g); h=20*log10(g1); beta=10A(h/20); t=10/wc; bt=beta*t; gc=tf([t,1],[bt,1]) sys1=sope*gc [mag1,phase1,w]=bode(sys1,w); [gm1,pm1,wcg1,wcp1]=margin(mag1,phase1,w); figure(2) margin(sys1); grid on; 滞后: 20 s + 1 173.5 s + 1 练习9-2 设被控对象开环传递函数为: 系统的相位裕度丫400

基于Matlab仿真PID校正

基于matlab 仿真的pid 校正总结 PID 控制器是目前在过程控制中应用最为普遍的控制器,它通常可以采用以下几种形式:比例控制器,0;D I K K ==比例微分控制器,0;I K =比例积分控制器,0; D K =标准控制器。 下面通过一个例子来介绍PID 控制器的设计过程。 假设某弹簧(阻尼系统)如图1所示,1,10/,20/M kg f N s m k N m ==?=。让 我们来设计不同的P 、PD 、PI 、PID 校正装置,构成反馈系统。来比较其优略。 系统需要满足: (1) 较快的上升时间和过渡过程时间; (2) 较小的超调; (3) 无静差。 图1 弹簧阻尼系统 系统的模型可描述如下:

控制系统建模与仿真论文( 2011) () 2 ()1()X s G s F s M s fs k = = ++ (1)、绘制未加入校正装置的系统开环阶跃响应曲线。 根据系统的开环传递函数,程序如下: clear; t=0:0.01:2; num=1; den=[1 10 20]; c=step(num,den,t); plot(t,c); xlabel('Time-Sec'); ylabel('y'); title('Step Response'); grid; 系统的阶跃响应曲线如图2 图2 未加入校正时系统的开环阶跃响应曲线

(2)、加入P 校正装置 我们知道,增加p K 可以降低静态误差,减少上升时间和过渡时间,因此首先选择P 校 正,也就是加入一个比例放大器。此时,系统的闭环传递函数为: 2 ()10(20) p c p K G s s s K = +++ 此时系统的静态误差为 120p p K K - +。所以为了减少静差,可以选择系统的比例增益 为300p K =。这样就可以把静差缩小到0.0625。虽然系统的比例系数越大,静差越小,但是比例系数也不能没有限制地增大,它会受到实际物理条件和放大器实际条件的限制。一般取几十到几百即可。增大比例增益还可以提高系统的快速性。 加入P 校正后,程序如下: clear; t=0:0.01:2; Kp=300; num=[Kp]; den=[1 10 (20+Kp)]; c=step(num,den,t); plot(t,c); xlabel('Time-Sec'); ylabel('y'); title('Step Response'); gird; 加入P 校正后系统的闭环阶跃响应曲线如图3

matlab实验九控制系统的PI校正设计及仿真

实验九 控制系统的PI 校正设计及仿真 一、 实验目的 1. 应用频率综合法对系统进行PI 校正综合设计; 2.学习用MA TLAB 对系统性能进行仿真设计、分析; 二、实验设计原理与步骤 1.设计原理 滞后校正(亦称PI 校正)的传递函数为: 其对数频率特性如图9-1所示,参数β表征滞后校正的强度。 2.设计步骤 基于频率法的综合滞后校正的步骤是: (1)根据静态指标要求,确定开环比例系数K ,并按已确定的K 画出系统固有部分的Bode 图; (2)根据动态指标要求试选c ω,从Bode 图上求出试选的c ω点的相角,判断是否满足相位裕度的要求(注意计入滞后校正带来的0012~5的滞后量),如果满足,转下一步。否则,如果允许降低c ω,就适当重选较低的c ω; (3)从图上求出系统固有部分在c ω点的开环增益Lg (c ω)。如果Lg (c ω)>0令Lg (c ω)=20lg β,求出β,就是滞后校正的强度,如果Lg (c ω)〈0,则无须校正,且可将开环比例系数提高。 (4)选择C T ωω)10 1~51(12==,进而确定T βω11=。 (5)画出校正后系统的Bode 图,校核相位裕量。 滞后校正的主要作用是降低中频段和高频段的开环增益,但同时使低频段的开环增益不受影响,从而达到兼顾静态性能与稳定性。它的副作用是会在c ω点产生一定的相角滞后。 三、实验内容 练习9-1 设系统原有开环传递函数为: 系统的相位裕度γ0 40≥ 系统的开环比例系数K= 5 S -1 截止频率为c ω=0.5 S -1

(1)用频率法设计满足上述要求的串联滞后校正控制器; (2)画出校正前后的Bode图 (3)用Simulink对校正前后的闭环系统进行仿真,求出其阶跃响应;(4)分析设计效果。 k0=5;n1=1; d1=conv(conv([1,0],[1,1]),[ 1]); w=logspace(-1,3,1000); sope=tf(k0*n1,d1); figure(1) margin(sope);grid on wc=; num={1}; den={1}; na=polyval(num,j*wc); da=polyval(den,j*wc); g=na/da; g1=abs(g); h=20*log10(g1); beta=10^(h/20); t=10/wc; bt=beta*t; gc=tf([t,1],[bt,1]) sys1=sope*gc [mag1,phase1,w]=bode(sys1,w); [gm1,pm1,wcg1,wcp1]=margin(mag1,phase1,w); figure(2) margin(sys1); grid on; 滞后:

09级系统仿真与MATLAB语言实验

系统仿真与MATLAB语言 实验指导书

对参加实验学生的总要求 1、认真复习有关理论知识,明确每次实验目的,了解实验相关软件操作,熟悉实验内容和方法。 2、实验过程中注意仔细观察,认真记录有关数据和图像,并经由指导教师查验后方可结束实验。 3、应严格遵守实验室规章制度,服从实验室教师的安排和管理。 4、对实验仪器的操作使用严格按照实验室要求进行。

实验总要求 1、封面:注明实验名称、实验人员班级、学号(全号)和姓名等。 2、内容方面:注明实验所用设备、仪器及实验步骤方法;记录清楚实验所得的原始数据和图像,并按实验要求绘制相关图表、曲线或计算相关数据;认真分析所得实验结果,得出明确实验结论。并注明该结论所依据的原理和理论;对实验进行反馈回顾,总结出实验方法要领和注意事项,对实验失败的原因进行分析剖解,总结出实验的经验和教训。 3、文字方面,撰写规范,杜绝错别字。 4、杜绝抄袭,杜绝提供不真实的实验内容。

实验一 MATLAB 语言工作环境和基本操作 1 实验目的 1).熟悉MATLAB 的开发环境; 2).掌握MATLAB 的一些常用命令; 3).掌握矩阵、变量、表达式的输入方法及各种基本运算。 2 实验器材 计算机WinXP 、Matlab7.0软件 3 实验内容 (1). 输入 A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2;3 3 3], 在命令窗口中执行下列表达式,掌握其含义: A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2) A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A (2).输入 C=1:2:20,则 C (i )表示什么?其中 i=1,2,3,…,10; (3)掌握MA TLAB 常用命令 >> who %列出工作空间中变量 >> whos %列出工作空间中变量,同时包括变量详细信息 >>save test %将工作空间中变量存储到test.mat 文件中 >>load test %从test.mat 文件中读取变量到工作空间中 >>clear %清除工作空间中变量 >>help 函数名 %对所选函数的功能、调用格式及相关函数给出说明 >>lookfor %查找具有某种功能的函数但却不知道该函数的准确名称 如: lookfor Lyapunov 可列出与Lyapunov 有关的所有函数。 (4) 在MATLAB 的命令窗口计算: 1) )2sin(π 2) 5.4)4.05589(÷?+ (5). 试用 help 命令理解下面程序各指令的含义: clear t =0:0.001:2*pi; subplot(2,2,1); polar(t, 1+cos(t)) subplot(2,2,2); plot(cos(t).^3,sin(t).^3) subplot(2,2,3); polar(t,abs(sin(t).*cos(t))) subplot(2,2,4); polar(t,(cos(2*t)).^0.5) (6)(选做)设计M 文件计算: x=0:0.1:10 当sum>1000时停止运算,并显示求和结果及计算次数。 i i i x x sum 2100 2 -= ∑ =

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为: ) ()()()(1 )(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,(); ,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

自控-二阶系统Matlab仿真

自动控制原理 二阶系统性能分析Matlab 仿真大作业附题目+ 完整报告内容

设二阶控制系统如图 1所示,其中开环传递函数 ) 1(10 )2()(2+=+=s s s s s G n n ξωω 图1 图2 图3 要求: 1、分别用如图2和图3所示的测速反馈控制和比例微分控制两种方式改善系统的性能,如果要求改善后系统的阻尼比ξ =0.707,则t K 和 d T 分别取多少? 解: 由)1(10 )2()(2 += +=s s s s s G n n ξωω得10 21,10,102===ξωωn 22n n () s s ωξω+R (s )C (s ) -

对于测速反馈控制,其开环传递函数为:) 2()s (2 2n t n n K s s G ωξωω++=; 闭环传递函数为:2 2 2)2 1(2)(n n n t n s K s s ωωωξωφ+++= ; 所以当n t K ωξ2 1+=0.707时,347.02)707.0(t =÷?-=n K ωξ; 对于比例微分控制,其开环传递函数为:)2()1()(2 n n d s s s T s G ξωω++=; 闭环传递函数为:) )2 1(2)1()(2 22 n n n d n d s T s s T s ωωωξωφ++++=; 所以当n d T ωξ2 1 +=0.707时,347.02)707.0(=÷?-=n d T ωξ; 2、请用MATLAB 分别画出第1小题中的3个系统对单位阶跃输入的响应图; 解: ①图一的闭环传递函数为: 2 22 2)(n n n s s s ωξωωφ++=,10 21 ,10n ==ξω Matlab 代码如下: clc clear wn=sqrt(10); zeta=1/(2*sqrt(10)); t=0:0.1:12; Gs=tf(wn^2,[1,2*zeta*wn,wn^2]); step(Gs,t)

一阶、二阶系统时域和频域仿真

西安交通大学 基于MATLAB/Simulink 的一阶、二阶系统的时域和频 域仿真 ——以单位阶跃信号为输入信号 日期:2013年4月 一阶系统时域和频域仿真 1、建立一阶系统典型数学模型 ()1 1 G s Ts =+ 2、建立simulink 仿真方框图

1T.s+1 Transfer Fcn Step Scope ① 时间常数T=1时,一阶系统时域响应为 12345678 910 00.5 1 一阶系统时域相应(T=1) Matlab 程序: %一阶系统仿真编程 num=[1]; den=[1 1]; bode(num,den); grid on ; gtext('低频段频率-20dB/dec'); 运行程序,有时间常数T=1时,一阶系统的频域响应为

10 -210 -1 10 10 1 10 2 -90-45 一阶系统频域响应 P h a s e (d e g ) Bode Di a gram Frequency (rad/s) -40-30-20-100 低频段斜率-20dB/dec System: sys Frequency (rad/s): 1.01Magni t ude (dB): -3.07 M a g n i t u d e (d B ) ② 时间常数T=3时,一阶系统单位阶跃时域响应 12345678910 00.5 1 一阶系统单位阶跃响应(T=3) Matlab 程序: %一阶系统仿真编程 num=[1]; den=[3 1]; bode(num,den);

grid on ; gtext('低频段频率-20dB/dec'); 运行程序,有时间常数T=3时,一阶系统的频域响应为 10 -210 -1 10 10 1 -90-45 P h a s e (d e g ) Bode Di a gram Frequency (rad/s) -30-20-100 低频段频率-20dB/dec System: sys Frequency (rad/s): 0.334Magni t ude (dB): -3.03 M a g n i t u d e (d B ) 3、分析以上一阶系统在不同时间常数下的单位阶跃响应,可以看出时间常数越小,系统响应越快;而且一阶系统的转角频率为1/T ,在转角频率以上时,幅频特性曲线以-20dB/dec 下降,而相频特性以0°和90°为渐近线。

基于MatlabSimulink控制系统校正器的设计与仿真

第3卷第3期2003年9月 南京工业职业技术学院学报 J0u瑚】ofN皿j堍hlsdn】te0f111dus田Tcchnology V0l3.No3 SeD..2003 基于Matlab/Simulink控制系统校正器的设计与仿真 周昱英 (南京工业职业技术学院自动化系,江苏南京210016) 摘要:介绍了№dab软件的主要功能和特.軎'.并利用其提供的siⅡ出nk,讨论了如何进行控制系统校正嚣的设计和仿真。 关键词:M“d日b软件;陆ntdink;模糊控制器;P∞控制器 中图分类号:T挖73文献标识码:A文章编号:1671—46“(2003)03—0017—04 D鹤ignaIldSimIllationofthe C咖pen鼢torinControlSyste】咀 byUsiIlgMauab/SimuliIll【 ZHOUYu—ving 【肫唧曙肺∞i№。,h妇叫z酗∞妇y。讹耐昭210016,蕊iⅥ) Al妞rad:Thispaperi11删ucesthemajor矗mcti蚰s锄dfhturesofMadabsoftwar|e锄ddiscusses110wtodesj即andsir眦latethe∞mpensa时inconnolsystemby毓删b11l【0fMadab. K叮words:mtlab蚓ham;simlllink;血可con嘣1er;PDcon响Uer 引言 作为研究控制系统重要手段,计算机仿真技术随着计算机语言的不断更新,也在不断发展。Madab作为一套集数值计算、符号运算及图形处理等强大功能于一体的科学计算语言,最早于1984年由Mat}1works公司推出,目前已发展成为国际公认的最出色的仿真软件之一。作为强大的科学计算平台,它几乎能够满足所有的计算需求,其强大的扩展功能为各领域的应用提供了基础。面向控制领域,它推出的模糊控制、神经网络、控制系统等工具箱为控制系统的设计和仿真提供了有力的支持、极大地推动了其领域内仿真研究的发展。 №dab的最新版本为MaL】ab6.1,它具有一系列新的优势和特点,其中包括更加友好的工作平台和编程环境,增强的模块集和工具箱,实用的程序接口和发布平台等。特别是它的模块化设计和动态仿真工具simuliI】k4.1,使用的时候,不需要编写任何MaⅡab语句,只要利用鼠标直接在模型窗口上“画”出所需要的控制系统模型,然后直接利用Simulink提供的功能对系统进行仿真和线性分析,从而使一个很复杂的系统仿真变得相当容易且直观,简化了设计过程,减轻了设计负担,提高了仿真的集成化和可视化。鉴于6.1版的这些特点,本文将利用它的SiIllIllink来研究如何进行控制系统校正器设计、仿真和分析。 1基于Simllink的控制系统建模与仿真 假设控制系统的传递函数为:专淄=r墨未b,其中c(s)=溅,求它的阶跃输出 响应。在simdh山环境中,利用鼠标将相应的模块 收稿日期:20∞一晒一26 作者简介:周昱荚(1976一),女,湖北武汉人’南京工业职业技术学院自动化系讲师.工学硕士。

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

《控制系统MATLAB仿真》实验讲义88

《自动控制原理实验》 目录 第一部分实验箱的使用 第二部分经典控制实验 第一章基本实验 实验一典型环节及其阶跃响应 实验二二阶系统阶跃响应 实验三控制系统的稳定性分析 实验四控制系统的频率特性 实验五连续控制系统的串联校正 实验六数字PID控制实验 第二章综合实验 第三部现代控制理论实验 第一章基本实验 第二章综合实验

实验一 典型环节及其阶跃响应 预习要求: 1、复习运算放大器的工作原理;了解采用A μ741运算放大器构成各种运算电路的方法; 2、了解比例控制、微分控制、积分控制的物理意义。 一、实验目的 1、学习自动控制系统典型环节的电模拟方法,了解电路参数对环节特性的影响。 2、学习典型环节阶跃响应的测量方法; 3、学会根据阶跃响应曲线计算确定典型环节的传递函数。 二、实验内容 1、比例环节 电路模拟: 图1-1 传递函数: 2211 ()()()U s R G s U s R ==- 2、惯性环节 电路模拟: 图1-2 传递函数: 22112()/()()11 U s R R K G s U s Ts R Cs = =-=- ++ 3、积分环节 电路模拟: A/D1 D/A1 A/D1

图1-3 传递函数: 21()11 ()()U s G s U s Ts RCs = =-=- 4、微分环节 电路模拟: 图1-4 传递函数: 211() ()() U s G s s RC s U s τ= =-=- 5、比例微分 电路模拟: 图1-5 传递函数: 222111 ()()(1)(1)()U s R G s K s R C s U s R τ= =-+=-+ 6、比例积分 电路模拟: 图1-6 A/D1 2 R D/A1 A/D1 A/D1 A/D1 C

基于Matlab的归一化二阶系统课程设计

Matlab 实训设计(一) 二阶系统变阻尼比的动态仿真系统的设计 一.设计一个二阶系统的变阻尼比的动态仿真系统 二.步骤 (1)程序功能描述 1. 典型二阶系统的传递函数为 ω ωωξ22 2 2)(n n n S s ++= Φ 2. 归一化二阶系统的单位阶跃响应 1、ζ=0(无阻尼)时,系统处于等幅振荡,超调量最大,为100%,并且系统发生不衰减的振荡,永远达不到稳态。 2、0<ζ<1(欠阻尼)时,系统为衰减振荡。为了获得满意的二阶系统的瞬态响应特性,通常阻尼比在0.4~0.8的范围内选择。这时系统在响应的快速性、稳定性等方面都较好。 3、在ζ=1(临界阻尼)及ζ>1(过阻尼)时,二阶系统的瞬态过程具有单调上升的特性,以ζ=1时瞬态过程最短。 (2)程序界面设计 图形界面中的grid on 、grid off 分别是网格和绘图框的打开和关闭按钮

(3)程序测试运行 在编辑框中+还可以输入如0:0.1:0.8的阻尼系数数组,这表示把0到0.8之间的长度以0.1为跨距等份,再以每点的数据得到响应曲线,上式就包含了 ze-ta=0、0.1、0.2···、0.8总共8个阻尼比下的响应曲线

三.控件属性设置 (1)String %显示在控件上的字符串 (2)Callback 回调函数 (3)enable 表示控件是否有效 (4)Tag 控件标记,用于标识控件 四.设计:实现如下功能的系统界面 (1)在编辑框中,可以输入表示阻尼比的标量成行数组、数值,并在按了Enter 键后,在轴上画出图形,坐标范围x[1,15],y[0,2]。 (2)在点击grid on或者grid off键时,在轴上显示或删除“网格线”。(3)在菜单[options]下,有两个下拉菜单[Box on]和[Box off],缺省值为off。(4)所设计界面和其上图形,都按比例缩放。 五.各个控件属性设置 (1)在图形窗中设置 Name 我的设计 Rize on %图窗可以缩放 Tag figure1 %生成handles. figure1 (2)在轴框中 Units normalizen Box off坐标轴不封闭 Tag axes1 XLim[0,15]%x范围 YLim[1,2]%y范围 (3)静态文件框1 fontsize 0.696 fritunits normalizen String“归一化二阶阶跃响应” Tag text1 Horizontalignment Center

相关文档
相关文档 最新文档