文档库 最新最全的文档下载
当前位置:文档库 › 大体积混凝土温控资料

大体积混凝土温控资料

大体积混凝土温控资料
大体积混凝土温控资料

大体积混凝土温度监测方法

大体积砼的测温:

砼测温的目的主要是掌握砼的中心温度与表面温度的温差,从而为砼的养护采取措施提供依据,确保大体积砼不产生裂缝。

(1)测温方法

采用预埋薄壁钢管法测温,测温仪器选用温度计,将温度计用线绳系牢沿薄壁钢管慢慢送到底部,即可读出所需温度值。

(2)测温点的布置

测温点应选择代表性强的部位,混凝土测点每100m2设置一个,测量点布置,采用¢20~50钢管,下端砸扁加焊,可沿浇筑高度测量底部、中部及表面的温度,测点距边角和表面大于500mm。特别是承台边缘与筏板交接处。测温点的布置详见附图2

(3)测温钢管的预埋

在每个测温点沿竖向预埋一根薄壁钢管,分别用来测承台的底部温度、中心温度及表面温度。薄壁钢管应呈稍倾斜状埋置,便于温度计放置,并注意将钢管下部封闭严密,上口用牛皮纸或软木塞塞实,防止砼浆灌入,测温钢管预埋时一定要与钢筋固定牢固,防止振捣砼时移位,每个测温孔预埋好以后均应按悬挂相应编号表示,测温钢管预埋详见附图02。

(4)测温制度

测温前应对操作人员进行专门的交底和培训,提高操作人员的技术水平和质量意识,并配备专用表格,便于记录和管理,砼终凝后开始测温,3d以内每2h测温一次,4—7d每4h 测温一次。8—9d每6h—8h测温一次,同时应测坑内大气温度,随时记录,并及时的将测温结果报告当日当班管理人员阅鉴,在测温过程中,发现砼内外温差接近25℃或与大气温度接近25℃,或砼温度下降太快(接近2.0℃∕d),应及时采用保温措施,控制砼的降温速率,并做好记录,当砼中心温度、表面温度与大气温度差在15℃以内时,方可拆除保温材料及设施。

记录人:

记录人:

大体积混凝土温控及防裂技术

建筑工程 Architecture 114 大体积混凝土温控及防裂技术 王静静杜崇磊 (烟建集团有限公司混凝土分公司) 中图分类号:TU75 文献标识码:B 文章编号1007-6344(2015)02-0114-01 摘要:混凝土结构中,经常会出现由于温度效应产生的裂缝。大体积混凝土施工中,温度变形产生的裂缝成为了最常见以及最严重的质量通病。 关键词:大体积混凝土温控防裂技术 混凝土基础温差的控制是人们过去经常关注的问题,对混凝土的后期保护却没有引起足够重视,以致很多混凝土建筑都有不同程度的裂缝出现。随着科技水平的不断发展,人们逐渐认识到温度变化是造成大体积混凝土开裂的关键因素。 一、大体积混凝土温度变形产生的原因分析 大体积混凝土中主要温度因素是水泥水化热,其温升经常会到达30--50摄氏度。水泥水化作用,使混凝土在硬化过程的最初几天,产生大量的水化热。然而,导热不良的混凝土就会对这种热量进行累积,以致混凝土温度升高、体积增大。大体积混凝土结构的壁越厚,其中心的水化热升温就越大。混凝土未充分硬化部分的弹性模量在升温时很小,壁内累积的压应力数值较小;混凝土已混凝土本结硬,在降温收缩时弹性模量特别大,这种收缩就会产生极大的拉应力。浇筑温度与水化热温度共同构成了最高温度。如果对最高温度值,没有采取适当的方法进行控制,没有对内外温度差通过恰当的保温措施进行减少,没有对温度应力通过改善约束条件进行减少,就会使大体积混凝土结构出现温度裂缝,甚至会出现贯穿性裂缝。 外界气温变化就会引起混凝土内部温度变。尤其在大陆性气候地区或寒冷地区,混凝土温度变形的最主要因素就是外界温度变化。很多事例显示,寒潮期间经常会出现大体积混凝土裂缝。因为气温比较低,混凝土短时间内徐变不能充分发挥,同时温度梯度大,就会形成很大的温度应力。建筑施工期间,混凝土内部经常会产生很大的拉应力。 水化热、浇灌温度以及外界气温变化等各种温度差,以及叠加应力,共同形成了混凝土的内部温度应力。强迫变形引起了温度应力,约束力越大,应力就会越大。而混凝土属于脆性材料,抗拉强度只有抗压强度的10%左右,混凝土内部温度应力大于混凝土抗拉强度时,混凝土自然就会因为温度变形而产生裂缝。受弯断面和孔洞四周应力集中的区域、混凝强度最差的地方、温度变化较大的表面以及应力最大的核心区域是混凝土温度变形最易发生的地方。 二、避免大体积混凝土出现裂缝的措施分析 (一)配制混凝土的材料分析 1、水泥 水化热就会引起混凝土内部大的温差,混凝土内部较大的温差就会产生温度裂缝。因此降低混凝土内部温差以及有效控制水化热,就能预防温度裂缝的产生。只有处理好混凝土的主要材料水泥,就能从整体上降低水化热。低水化热的水泥就能对水化热起到很好的控制作用。通过诸多实验得出,水泥中的主要放热成分铝酸三钙与硅酸三钙占的比例较大,因此,通过向水泥中加入中热硅酸盐、低热矿渣等有效物质,就能够对这两种成分有效的中和,就能降低水泥的水化热。 2、粉煤灰 硅、铝氧化物是构成粉煤灰的主要成分。硅铝氧化物与水泥接触就会发生二次反应,对材料的活性有很好的增强作用,同时,减少了水泥在混凝土中的含量,进而会有效避免混凝土裂缝的出现。粉煤灰颗粒能够在二次反应后均匀的分布在混凝土中,有效的改变与完善混凝土的内部结构,进而使混凝土内部的孔隙率减小,对孔结构起到优化作用,就会很大程度的增强混凝土硬化后的性能。因此,实际施工过程中,经常会在混凝土中加入粉煤灰,对混凝土出现裂缝起到很好防治的作用。 3、骨料 粗骨料:粒径的大小与级配有很大的关系,选择粒径较大的骨料就会降低水泥砂浆及水泥的使用量,进而会降低水化热,就能很好的预防裂缝的形成。细骨料:同样道理,配制混凝土时,应选用中粗沙。同时,应调整沙子的含泥量,这能够有效的防止混凝土出现收缩变化,进而防止混凝土产生裂缝。 4、外加剂 混凝泥土中加入适当的减水剂、缓凝剂以及引气剂等外加剂,也能有效的避免混凝土出现过多的裂缝。其原理是:减水剂对混凝土的融合性有很好的促进作用,进而提高了混凝土的强度,使水灰比降低,水泥含量降低,就能有效防止裂缝的出现。缓凝剂能够延长混凝土放热峰值的时间。引气剂对混凝土的和易性与可泵性具有很好的增强作用,能够充分发挥混凝土的耐久性,就增强了混凝土的抗裂性。应该注意,添加外加剂的混凝土与基准混凝土的收缩比一定保持在35%左右,必须有效控制外加剂的使用量,防止用量过大,改变混凝土的使用性能。 (二)混凝土施工方式的选择分析 1、混凝土的拌制与浇筑 施工过程中,混凝土的拌制非常重要,混凝土材料的使用性能会直接受到混凝土拌制效果的影响。因此,施工中要严格按照标准对混凝土进行拌制,并有效的控制混凝土出机口坍落度。同时,要调整好混凝土拌合物出机口的温度,对温度进行合理控制,可以利用送冷风以及冷却的方式调节。 运用有效的振捣方式,进行混凝土的浇筑,并合理分布振捣的时间,尤其是泛浆与间距的控制。同时,浇筑工作完成后,要适当的压实与抹平浇筑表面,能够很好的控制混凝土的裂缝的产生。另外,使用分层浇筑的方式,能够使下层混凝土在初凝时内凝结良好,对防止裂缝的产生也有很好的预防效果。 2、混凝土隔热保护与日常维护分析 大体积混凝土出现裂缝的主要原因是内外温差大,因此,采取一定的措施对混凝土的温度控制是浇筑结束后非常重要的工作。通过实施隔热保护就能促进混凝土表面快速散热。拆模时,更应注意外部的环境温度,必须实施有效的表面保护,防止因温差形成裂缝。 混凝土浇筑施工结束后,一定要采取日常维护措施。对混凝土的表面进行洒水,保持湿润状态,就能增加混凝土内部的强度。混凝土浇筑结束12--18小时后,就应对其进行实施保护,维护时间应持续20天以上。 三、建议与结语 (一)建议 1、改善混凝土的约束条件 混凝土结构的约束决定了混凝土应力的大小,分缝间距与约束作用有密切关系。合理的分缝不仅能减轻约束作用,而且也能缩小约束范围。通畅分缝间距以12--18米为宜。同时,应考虑后浇缝的宽度,以及应满足同截面钢筋的搭接比度,一般以1米为宜。应选用膨胀水泥配制后浇缝混凝土,整体结构浇筑40天后,就能进行后浇缝。 2、对结构的钢筋进行合理搭配 限制裂缝的出现还与合理的配筋有关。合理的配筋能够减少数目小而宽度大的裂缝,改善数目多而宽度小的裂缝,这样就减轻了裂缝的程度。构造钢筋部位不仅要设置在结构表层,而且在结构薄弱部位也要设置。 3、对混凝土一定要加强保温与养护 为了有效减少混凝土内外温度差及混凝土表面温度梯度,防止表面裂缝,无论是常温还是负温施工,都必须实施混凝土的保温措施。常温保护能够缓冲混凝土受到大气温度变化与雨水侵袭的温度影响。负温保护层一定要使用不透气的材料,才能见效,应根据工程特点、气温以及控制混凝土内外温度差等条件设计负温保护层。保温层还有保湿的作用,同样能够提高混凝土表面抗裂能力。养护期以不低于一个月为宜,较寒冷的地区应该适当延长。 (二)结语 大体积混凝土结构使用性能,会因裂缝受到很大的影响。只有对大体积混凝土的裂缝做好预防措施,发现裂缝并及时采取措施进行修补调整,才能不使其应用受到影响。 参考文献 [1]唐祥胜.大体积混凝土裂缝控制与防止措施[D].合肥工业大学,2005. [2]李树奇.大体积混凝土防裂技术措施的研究[D].天津大学,2004. [3]刘琳莉.桥梁大体积混凝土水化热施工控制研究[D].西南交通大学,2012.

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

大体积混凝土温控计算书

大体积混凝土温控计算书 1、混凝土的绝热升温 式中:T (t )—混凝土龄期为t 时的绝热温升「C ) m c ——每m 3混凝土胶凝材料用量,取415kg/m 3 Q ——胶凝材料水热化总量,Q=kQ Q o —水泥水热化总量377KJ/kg (查建筑施工计算手册) C —混凝土的比热:取0.96KJ/ (kg.C ) p —混凝土的重力密度,取2400kg/m 3 m ——与水泥品种浇筑强度系有关的系数取 0.3d -1(查建筑施工计算手 册) t ——混凝土龄期(d ) 经计算:Q=kQ=(为+Kr1)Q °=(0.955+0.928-1)X377=332.9KJ/kg 2、混凝土收缩变形的当量温度 (1)混凝土收缩的相对变形值计算 0 (A A-0.01t\ 皿 §(t )= § (1-e ) m 1m 2m 3..…mu 式中:勺(t )——龄期为t 时混凝土收缩引起的相对变形值 『 -- 在标准试验状态下混凝土最终收缩的相对变形值取 3.24X104 m 〔m 2m 3..…mu ——考虑各种非标准条件的修正系数 m 1=1.0 m 2=1.0 m 3=1.0 m 4=1.2 m 5=0.93 m 6=1.0 m 7=0.57 m 8=0.835 m 9=1.0 m 10=0.89 mn=1.01 m 1m 2m3 ... m 11=0.447 T (t )二 m c Q c ? -mt 、 (1-e )

(2)混凝土收缩相对变形值的当量温度计算 T y(t)=啊a 式中:T y(t)——龄期为t时,混凝土的收缩当量温度 5 a——混凝土的线膨胀系数,取 1.0X10- 3、混凝土的弹性模量 E t)=^E o(1-e为 式中:E t)——混凝土龄期为t时,混凝土弹性模量(N/mm2) E o——混凝土的弹性模量近似取标准条件下28d的弹性模量:C40 E o=3.25X1(fN/mm2 ?——系数,近似取0.09 混凝土中掺和材料对弹性模量修正系数,=1.005 4、各龄期温差 (1 )、内部温差 T nax=T+ &)T(t) 式中:T m ax——混凝土内部的最高温度 T——混凝土的浇筑温度,因搅拌砼无降温措施,取浇筑时的大气平均温度,取15C T t)—在龄期t时混凝土的绝热温升 &)—在龄期t时的降温系数

大体积混凝土测温记录表61385

大体积混凝土测温记录表

一、测温结果应在以下范围中才使砼不易产生裂缝: ?混凝土浇筑体在入模温度基础上的温升值不宜大于50°C; ?混凝土浇筑块体的里表温差不宜大于25°C; ?混凝土浇筑体的降温速率不宜大于2.0°C/d; ?混凝土浇筑体表面与大气温差不宜大于20°C。 二、根据混凝土浇注时温度变化的特点,系统设备作以下配置,一台DM6902数字温度仪一台,K型电偶(NICR-NIAL)传感器。 三、入模测温,每台班不少于2次。配备专职测温人员,按两班考虑,对测温人员要进行培训和技术交底。测温人员要认真负责,按时按孔测温,前3天每2小时测温1次,每昼夜不得少于4次,不得遗漏或弄虚作假。测温记录要填写清楚、整洁,换班时要进行交底。 四、测温工作应连续进行,持续测温及混凝土强度达到时间,经技术部门同意后方可停止测温,一般宜连续监测15天左右。 五、测温时发现温度异常,应及时通知技术部门和项目技术负责人,以便及时采取相应措施。 六、承台分两次浇筑完成,每层测温组共分6组,每组三个测点,三个测点分别为底:距底部100~150MM;中:在浇筑厚度的中部;表:在距浇筑表面100~150MM部位。具体位置见下面测点平面布置图片。 为了控制砼内外温差不超过25度,因此要做好混凝土测温,方法是:在每个施工区域砼内部埋设测温管,测温管下口封闭(焊铁板),每个测温点埋设3条测温管,混凝土表面、中部、底部各一条。当砼浇筑后强度达到1.2Mpa能够上人,约8小时开始采用普通玻璃温度计测温。8h—24h每2h/次;1d—3d每4h/次;3d—7d每8h/次;7d以上每1d/次。

测温组 测温组 测温组测温组 测温组测温组

混凝土温控措施

1.8混凝土温控防裂措施 1.8.1混凝土温控要求 浇筑大体积混凝土应在一天中气温较低时进行。混凝土的浇筑温度(振捣后 50~100mm 深处的温度)不宜高于28℃。在炎热季节浇筑大体积混凝土时,宜将 混凝土原材料进行遮盖,避免日光爆晒。根据原料温度推算拌合后混凝土的温度 可按下式进行: max 0()t T T T ξ=+ (1) 式中: ξ —不同浇筑块厚度、不同龄期时的降温系数,可由表查得 0T —混凝土的浇筑入模温度 max T —混凝土内部最高温度 ()t T —在t 龄期时混凝土的绝热温升 ()(1)mt c t m Q T e C ρ -=- (2) 式中: c m —每立方米混凝土水泥用量 Q —每千克水泥水化热量 C —混凝土的比热,一般取0.96J/Kg ·K ρ —混凝土的质量密度,取2400Kg/m 3 e ―常数,为2.718 m ―与水泥品种,浇筑时与温度有关的经验系数,取0.3 t ―混凝土浇筑后至计算时的天数 1.8.2混凝土温控措施 为防止大体积混凝土温差过大产生温度裂缝,从而保证混凝土的质量,在混 凝土施工中,我们主要采取了以下措施: 1、采用低水化热水泥 施工中选用了水化热较低的矿渣硅酸盐水泥,同时,为减少混凝土配合比中

的水泥用量,在确保混凝土强度及坍落度的条件下,适当掺入了粉煤灰及外加剂,以降低混凝土的水化热温升,控制最终水化热。 2、控制混凝土入模温度 混凝土的入模温度指混凝土运输至浇筑时的温度,降低混凝土的入模温度措施是用冷水对粗骨料进行冲洗,选择在夜间浇筑混凝土,混凝土入模温度控制在了24℃以内。 3、控制混凝土分层浇筑厚度 尽量减少浇筑层厚度,以便加快混凝土散热速度。施工采用汽车泵泵送入模时候,混凝土浇筑时严格控制分层厚度为每30cm一层,自一侧向另一侧顺序浇筑,保证在下层混凝土初凝前浇筑完成上层混凝土。分层厚度利用钢筋或其它标尺做参照物,派专人进行负责,一个下料点到位后,移至下一个下料点,依次进行,混凝土布料完成且平整后开始振捣。 4、加强混凝土的振捣质量 浇筑过程中配备6条插入式振动棒,分区负责保证振捣质量,尤其是在钢筋密集处,必须保证其密实性和均匀性,防止出现过振、漏振现象。 混凝土浇筑到设计标高后,要除去表面浮浆,安排专人找平。为防止混凝土表面出现收缩裂缝,用木抹进行二次收浆找平。 5、及时保温养护 (1)在遇气温骤降的天气或寒冷季节浇筑大体积混凝土后,应注意覆盖保温,加强养护。 (2)保温养护采用在混凝土表面蓄水养护的方法,养护安排专人进行,个别蓄水养护不到的部位给予覆盖并经常洒水,保持混凝土表面湿润不失水。6、做好混凝土温度监测 对于重要结构在混凝土内部埋设电阻式温度计测量混凝土温度,全面掌握混凝土内部温度,出现较大温差时及时采取降温措施。每100m2仓面面积应不少于1个测点,每一浇筑层应不少于3个测点。测点应均匀分布在浇筑层面上时、浇筑块内部的温度观测,除按设计规定进行外,应根据混凝土温度控制的需要,补充埋设仪器进行观测。 1.8.3混凝土裂缝、漏浆处理

大体积混凝土温控记录(表格类别)

大体积混凝土养护测温记录 工程名称延津·上宅公园世纪四期工程施工单位新蒲建设集团有限公司测温部位混凝土基础(筏板)测温方式温度计养护方法保湿法 测温时间大气 温度 (C。) 入模 温度 (C。) 孔 号 各测温孔 温度(C。) 温度 T中-T上 (C。) 温度 T中-T下 (C。) 温度 T下-T上 (C。) 内外最大 温差记录 (C。) 裂缝 宽度 (mm ) 月日时 10 8 18 18 21.8 1 上31.2 20.7 12.1 8.6 内外温差 均不大于 25。C 无中51.9 下39.8 10 8 20 17 23.3 1 上35.5 14 7.6 6.4 中49.5 下41.9 10 8 22 16.5 20.8 1 上35.6 16.1 9.2 6.9 中51.7 下42.5 10 9 00 16 1 上36.8 16.3 7.9 8.4 中53.1 下45.2 10 9 02 16 1 上38.1 18.1 10.4 7.7 中56.2 下45.8 10 9 04 16.5 1 上40.8 17.7 9.2 8.5 中58.5 下49.3 10 9 06 16 1 上37.2 19.7 8.2 11.5 中56.9 下48.7 10 9 08 17 1 上35.6 14.3 8.7 5.6 中49.9 下41.2 10 9 10 19 1 上40.3 17.5 8.3 9.2 中57.8 下49.5 施工单位检查意见测温员 混凝土测温点布置正确,测温控制严格,经测温计算各项数据符合设计及规范要求。 专业工长(施工员):项目专业质检员: 年月日

监理(建设)单位意见 符合要求 专业监理工程师: 年月日大体积混凝土养护测温记录 工程名称延津·上宅公园世纪四期工程施工单位新蒲建设集团有限公司测温部位混凝土基础(筏板)测温方式温度计养护方法保湿法 测温时间大气 温度 (C。) 入模 温度 (C。) 孔 号 各测温孔 温度(C。) 温度 T中-T上 (C。) 温度 T中-T下 (C。) 温度 T气-T上 (C。) 内外最大 温差记录 (C。) 裂缝 宽度 (mm ) 月日时 10 9 12 20 1 上38.8 19.6 12.5 7.1 内外温差 均不大于 25。C 无中58.4 下45.9 10 9 14 21 1 上37.3 19.8 13.4 7.4 中57.1 下43.7 10 9 16 20 1 上42.1 18 9.3 8.7 中60.1 下50.8 10 9 18 18 1 上38.7 20.4 13.2 7.2 中59.1 下45.9 10 9 20 17 1 上34.8 21.7 13.7 8 中56.5 下42.8 10 9 22 16 1 上35.5 20.6 7 13.6 中56.1 下49.1 10 10 00 16 1 上37.1 21.9 11.9 10 中59.0 下47.1 10 10 02 16 1 上37.1 22.6 13.2 9.4 中59.7 下46.5 10 10 04 17 1 上36.4 22.1 11.7 10.4 中58.5 下46.8 测温员

大体积砼的温控措施及施工工艺

大体积砼的温控措施及施工工艺 (1)大体积砼的温控措施 大体积混凝土在施工阶段产生的温度应力往往超过外荷载引起的结构应力,使混凝土产生温度裂缝,影响锚碇使用年限。因此,锚碇大体积混凝土的温度控制成为确保锚碇施工质量的关键问题。在施工过程中,我们将采取以下措施:A砂石料和拌和水预冷却措施 按照温控方案的要求,在每次混凝土开盘前,工地试验人员都须测定和记录砂、石、水泥、粉煤灰和拌合用水的温度,据以计算其混凝土出盘温度和入模温度。当环境温度较高,混凝土拌和料的入模温度达不到设计温度要求时,采用原材料预冷措施,降低混凝土拌和料的温度。 B冷却拌和用水 采用冰水作拌和用水降低拌和料温度。 C集料预冷 粗集料的温度对混凝土拌和料的温度影响最大。采取冰水喷洒集料预冷,搭盖通风席棚遮阳。

(2)大体积砼的施工工艺 A浇注 混凝土采用90 m3/h陆上拌合站集中拌合,2台输送泵浇筑各块混凝土。 按设计图纸和温控方案划分各层厚度。分层布置参见混凝土浇注分层布置图。每层由于浇注面积大、混凝土方量多,考虑到混凝土生产能力的限制,施工从一侧开始,以坡比1:5按斜面法布料,由低处向高处浇注,水平推进作业。在下层混凝土初凝前,上层混凝土浇筑到位,以保证混凝土浇筑质量。上下层混凝土浇注间歇时间控制在4-7d。由于混凝土采用泵送施工,具有较大的流动性,施工时在前端设置挡板。混凝土浇注时间选择在室外温度较底时进行,以夜间施工为主,并按气温控制混凝土入仓温度。为保证混凝土的均匀性和密实性,在浇注过程中加强振捣。振动器采用型号为φ100mm-150mm和φ60mm-35mm,两者结合使用,按施工规范要求反复振捣。在浇注过程中随时检查模板、支架钢筋、预埋件、预留孔和混凝土垫块的稳固情况,当发现有变形、

大体积混凝土温控

一般为一次浇筑量大于1000 m3或混凝土结构实体最小尺寸等于或大于2 m,且混凝土浇筑需研究温度控制措施的混凝土。 所属学科: 电力(一级学科);水工建筑(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土”。 无明确定义 美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。 大体积混凝土一般在水工建筑物里常见,类似混凝土重力坝等。 大体积混凝土特点是:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。[1] 在建筑施工中常碰到大体积砼,为帮助项目部施工技术人员学习了解大体积砼防裂和温度控制方面的问题,加强施工技术方面的交流,本人根据自己的认识所及,参考了一些相关书籍,文章以问答的形式,先提出问题,再用通俗的语言和科学道理解答,问题解答也侧重于技术要领和做法,主要从实际出发,以实用为主,所提出的问题都是实际施工中常碰到的,目的是使项目部施工技术人员既知道大体积应该如何控制质量,又懂得为什么要进行防裂和温度控制的道理。 遇到对大体积砼防裂和温度控制方面问题不懂的地方,大家可带着问题翻阅,从中找到答案,增长学识,相信对提高实际工作能力有所帮助。1、大体积砼的定义 大体积砼指的是最小断面尺寸大于1m以上的砼结构,其尺寸已经大到必须采用相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的砼结构。(该定义摘录自建筑施工手册缩印版第二版建筑施工手册第三版编写组1999年1月第二版中国建筑工业出版社) 大体积混凝土与普通混凝土的区别表面上看是厚度不同,但其实质的区别是由于混凝土中水泥水化要产生热量,大体积混凝土内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使混凝土开裂。因此判断是否属于大体积混凝土既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等因素,比较准确的方法是通过计算水泥水化热所引起的混凝土的温升值与环境温度的差值大小来判别,一般来说,当其差值小于25℃时,其所产生的温度应力将会小于混凝土本身的抗拉强度,不会造成混凝土的开裂,当差值大于25℃时,其所产生的温度应力有可能大于混凝土本身的抗拉强度,造成混凝土的开裂,此时就可判定该混凝土属大体积混凝土。(摘录自《地下工程防水技术规范》GB50108-2001) 高层建筑的箱形基础或片筏基础都有厚度较大的钢筋砼底板,高层建筑的桩基础则常有厚大的承台,这些基础底板和桩基承台均属大体积钢筋砼结构。还有较常见的一些厚大结构转换层楼板和大梁也属大体积钢筋砼结构。 2、大体积砼与普通砼的区别 不能以截面尺寸来简单判断是否大体积砼,实际施工中,有些砼厚度达到1m,但也不属于大体积砼的范畴,有些砼虽然厚度未达到1m,但水化热却较大,不按大体积砼的技术标准施工,也会造成结构裂缝。 大体积砼与普通砼的区别表面上看是厚度不同,但其实质的区别是由于砼中水泥水化要产生热量,大体积砼内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使砼开裂。因此判断是否属于大体积砼既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等

大体积砼温度计算

5.1.4热工计算如下: 1)混凝土绝热温升 T h(t)=[m c×Q/(c×p)](1-e-mt) 其中t为龄期 m c――混凝土中水泥 (含膨胀剂) 用量(kg/ m3); Q――水泥28天水化热; 不同品种、强度等级水泥的水化热表 c――混凝土比热,一般为—,计算时一般取(kJ/ p――混凝土密度,一般取2400(Kg/m3) e――常数,为 t――混凝土的龄期(天); m――系数,随浇筑温度改变,查表可得。 系数 m 本工程C35S8混凝土拟采用配合比(经验配合比,根据实际配

合比在制定实施方案时重新计算): 经计算得出不同龄期下的混凝土绝热升温T h,见下表: 2)t龄期混凝土中心计算温度 混凝土中心计算温度按下式计算: T1(t)= T j+ T h(t)×ξ(t) T1(t)―― t龄期混凝土中心计算温度 T h(t)―― t龄期混凝土绝热升温温 T j――混凝土浇筑温度,取值根据浇筑时的大气温度确定,根据预计浇筑时的气候条件,取T j=30℃ ξ(t)―― t 龄期降温系数 ξ(t)取值表

本工程ST1、ST2及裙楼底板厚度分别为4m、3.5m、1.5m,分别经计算T1(t)取值见下表: T1(t)取值表 3)保温材料计算厚度 保温材料计算厚度按下式计算: δ=×λx(T2-T q)×K b/λ(T max-T2) h――筏板厚度 λx ――所选保温材料的导热系数[W/()] T2――混凝土表面温度 T q――施工期大气平均温度,取30℃ λ――混凝土导热系数,取[W/()] T max――计算得混凝土最高温度 计算时取:T2-T q = 15--20oC,

大体积混凝土冷却循环水温控措施方案

大体积混凝土冷却循环水温控措施 由于大体积混凝土具有结构厚、体形大、施工技术要求高等特点,在大体积混凝土施工过程中,因水泥水化热作用产生很大的热量,混凝土表面热量散失较快,内部热量不易散发,从而内部与表面产生较大的温差。当温差超过一定临界值时,致使混凝土产生温度应力裂缝,从而影响工程的耐久性。本工程底板 3.2米、2.6米厚采用“大体积混凝土冷却循环水温控施工工法”,防止了大体积混凝土产生温度应力裂缝的质量通病。 采用冷却循环水温控法降低大体积混凝土温升,通过测温点内热偶传感器所测混凝土内温度的变化规律,自动调节循环水管水流速度,平衡大体积混凝土内外温度,防止混凝土温差所产生的应力裂缝,确保工程质量。 5.11.1施工工艺流程 施工工艺流程见下图 5.11.2 砼温升和冷却循环水管、测温点埋设计算 (1)砼温升计算 根据经验公式:Tmax= To +Q/10 式中 Tmax----为砼内部的最高升温值; To----为砼浇筑温度。按夏天15天平均气温取30℃; Q-----为C30每立方米砼中PO42.5矿渣水泥用量取368㎏/m 3, 则施工中砼中心最高温升值为:Tmax=30+368/10=66.8℃

1)根据《高层建筑施工手册》及热交换原理,每一立方砼在规定时间内,内部中心温度降低到表面温度时放出的热量,等于砼在硬化期间散失到大气中的热量。 2)依据该基础设计尺寸、配筋、埋件、留洞、夏天昼夜气温变化及砼温升梯度等情况,以¢48冷却循环水管所承担的砼理论降温体积为基准,通过精确计算(计算过程略)确定,冷却循环水管道按照左、中、右三个循环系统进行安装。冷却循环水管安装上下中心距为660mm,左右中心距为1710mm(如下图所示),三个系统循环水管呈之字形布置。

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

大体积混凝土的温度控制和监测技术

大观天下二期高层西区1#楼工程大体积混凝土温控方案 湖北远大建设集团有限公司

1、工程概况 本工程基础筏板厚度为1400mm,砼强度等级为C35,抗渗等级为P6的抗渗砼。根据《砼施工手册》规定,砼结构单面散热厚度超过800mm,双面散热厚度大于1000mm的,预计其内部最高温度超过25℃的结构称为大体积砼结构工程,其施工应按大体积砼考虑。作为大体积砼,解决施工过程中混凝土产生的温度裂缝是大体积混凝土施工质量控制的关键之一,其施工的重点难点之一就是如何有效地控制混凝土温度变形裂缝的发展,从而提高混凝土的抗渗、抗裂、耐久性等性能。因而控制施工期间大体积混凝土内外温度差值,防止因混凝土内外温差过大而产生温度应变裂缝,显得尤为重要。 2、大体积混凝土温度控理论分析 大体积混凝土温度控制是确保大体积混凝土不产生微裂缝的主要因素,它必须由混凝土配合比设计、温度控制计算、混凝土测温以及混凝土的覆盖保温、养护等技术手段和措施才能实现。在绝热条件下,混凝土的最高温度是浇筑温度与水泥水化热温度的总和。但在实际施工中,混凝土与外界环境之间存在热量交换,故混凝土内部最高温度由浇筑温度、水泥水化热温度和混凝土在浇筑过程中散热温度三部分组成,如下图所示。

在施工中,我们主要控制的是混凝土内部温度和表面温度的差值、混凝土表面与环境温度的差值,使二种温度差值满足规范的要求,即通过合理措施有效地控制或降低混凝土的损益温度、绝热温升、浇筑温度,确保混凝土内外温度差≤25℃。经过对混凝土温度组成因素进行理论上分析,影响混凝土温度控制的主要因素如下: 1、混凝土绝对温升是指水泥水化热,选择适当品种水泥,以控制水泥水化热能,可有效控制混凝土绝对温升。 2、合理有效的保温措施可以降低混凝土的内外温度差值,达到设计温差要求,是大体积混凝土温度控制的关键因素之一。 3、环境温度过低,增加混凝土拌和温度,从而能有效地控制混凝土入模温度,是大体积混凝土温控关键因素之一。 3、大体积混凝土温度控制措施 通过对大体积混凝土温度控制理论分析,有效混凝土内外温差的主要措施如下:

大体积混凝土温控方案

大体积混凝土施工温度控制方案 一、编制依据 1、京沪高速铁路高性能混凝土实施细则 2、路桥施工计算手册 3、高性能混凝土配合比选定报告 4、京沪高速铁路桥梁承台、墩台身设计图 二、原材料进行控制 根据京沪高速铁路高性能混凝土施工实施细则,我公司原材料采取以下措施防止大体积混凝土温度裂纹。 1、采用高标号低、中热水泥,尽量减少每立方米水泥用量,减少水化热。 2、选择水泥时,选用铝酸三钙、游离氧化钙、氧化镁和三氧化硫尽可能低的低收缩水泥,水泥中碱含量小于0.6%。 3、选择粒径为5~31.5mm的二级配碎石配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。 4、选用平均粒径较大的中砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。 5、为了改善混凝土的和易性便于输送,掺加适量的粉煤灰。粉煤灰对降低水化热、改善混凝土和易性有利。

6、在混凝土中掺加减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。 三、优化混凝土配合比 1、选择强度、耐久性适宜,混凝土收缩性能相对较好、费用经济的配合比进行施工。 2、细骨料的体积为骨料总体积的34%~38%。 3、在满足和易性的基础上,尽量选用较少的胶凝材料用量,胶凝材料的组成及适用比例通过混凝土试验及结构物热工计算必选后确定。 4、在选取适当水胶比的情况下,混凝土的强度储备在满足设计强度的前提下,56天标养强度不超过设计强度等级的140%。 5、混凝土的设计坍落度不应过大。 四、降低入模前混凝土浇灌的温度,入模温度不大于25度,具体措施如下 1、采用冰水配制混凝土,或在搅拌站配置有深水井,采用冰凉的井水配制。 2、粗细骨料均搭设遮阳棚,避免日光曝晒。 3、夏季施工尽量安排在晚9:00~早8:00之间,一最大限度的降低大体积混凝土入模温度。 4、不使用温度过高的水泥。 五、混凝土浇注完成后,延缓温差梯度与降温梯度的措施 1、首次进行承台、墩台施工时,选择4个代表性截面进行混凝土

大体积混凝土温控计算书

大体积混凝土温控计算书 1 T(1-e-mt) 式中:T(t)混凝土龄期为t时的绝热温升(℃) m c每m3混凝土胶凝材料用量,取415kg/m3 Q胶凝材料水热化总量,Q=kQ0 Q0水泥水热化总量377KJ/kg(查建筑施工计算手册) C 混凝土的比热:取0.96KJ/(kg.℃) ρ混凝土的重力密度,取2400kg/m3 m 与水泥品种浇筑强度系有关的系数取0.3d-1(查建筑施工计算手册) t混凝土龄期(d) 经计算:Q=kQ0=(K1+K2-1)Q0=(0.955+0.928-1)X377=332.9KJ/kg 2、混凝土收缩变形的当量温度 (1)混凝土收缩的相对变形值计算 εy(t)=εy0(1-e-0.01t)m1m2m3.....m11 式中:εy(t)龄期为t时混凝土收缩引起的相对变形值 εy0在标准试验状态下混凝土最终收缩的相对变形值取3.24X10-4 m1m2m3.....m11考虑各种非标准条件的修正系数

m1=1.0 m2=1.0 m3=1.0 m4=1.2 m5=0.93 m6=1.0 m7=0.57 m8=0.835 m9=1.0 m10=0.89 m11=1.01 m1m2m3.....m11=0.447

(2)混凝土收缩相对变形值的当量温度计算 T y(t)=εy(t)/α 式中:T y(t)龄期为t时,混凝土的收缩当量温度 α混凝土的线膨胀系数,取1.0X10 -5 3、混凝土的弹性模量 E(t)=βE0(1-e-φ) 式中:E(t)混凝土龄期为t时,混凝土弹性模量(N/mm2)E0混凝土的弹性模量近似取标准条件下28d的弹性模量:C40 E0=3.25X104N/mm2 φ系数,近似取0.09 β混凝土中掺和材料对弹性模量修正系数,β=1.005 4、各龄期温差 (1)、内部温差 T max=T j+ξ(t)T(t) 式中:T max混凝土内部的最高温度

大体积混凝土温控技术

宁波铁路枢纽大体积混凝土温控技术 摘要 随着我国地铁交通事业的蓬勃发展,大体积混凝土的使用也随之增加。而大体积混凝土的裂缝问题也日益突出,已成了普遍性的问题。本文通过开展对宁波南站站大体积混凝土温度控制研究,选用中低热水泥,掺入矿粉和粉煤灰,降低水化热,设计冷却系统,严格控制保温养护措施,对施工过程实施温度监测,实现了大体积混凝土温度控制的信息化施工,达到了预期的混凝土防裂要求。 关键词:大体积混凝土;温度控制;裂缝;水化热. 1.引言 大体积混凝土施工地铁车站施工中最为常见的施工工艺,而通过温控措施,保证大体积混凝土结构的质量,控制温度应力导致的结构裂缝便是重中之重。大体积混凝土特点是:体积大、钢筋密、混凝土用量多,结构厚实、工程条件复杂,施工技术和质量要求高,水泥水化热易积聚而使结构产生温度变形、混凝土绝热温升高和收缩大。 本文通过对宁波铁路枢纽南站改工程底板大体积混凝土施工的温控研究,采取降温措施,监控混凝土内部温度,达到了预期的混凝土防裂要求。 2工程概况 宁波市轨道交通二号线铁路南站站车站全长245.45m(外包),里程为SDK6+404.184~SDK6+581.784。车站标准段基坑形状不规则,标准段净宽43.7m~46.1m,南端头井净宽约为60.2m,北端净宽约为58.4m。铁路南站站主体占地面积约为11863平方米。 结构底板厚度为2.5m,局部厚度3.85m,其中最大一块底板混凝土方量共为5000m3,该段底板南北距离为41m,东西距离为47m。 3大体积混凝土的温控方案设计 3.1优化配合比,降低水化热 铁路南站站底板厚2.5m,底板梁厚3.85m,混凝土为C40P10。底板施工时正值夏季,昼夜温差大,白天温度高达35℃左右,导致混凝土结构内外温差大,容易产生温度裂缝。为了减少温度裂缝产生对混凝土的质量的影响,项目部搅拌站根据图纸及规范要求进行多次配合比论证,降低水化热。同时降低混凝土的出机温度,混凝土入模温度以达到控制温度裂缝的目的。因此,项目部从原材料处入手,优化配合比,优选了如下材料:(1)水泥:水泥用量控制在285kg/m3左右;水泥进场时必须有质量证明书并及时进行

大体积混凝土温度监测

【测温技术】大体积混凝土温度监测!2015-08-31测量 1.大积混凝土的概念 按照“普通混凝土配合比设计规程”对大体积混凝土的定义,指混凝土结构物中, 水 (1)内外温差:混凝土内部热量积聚不易散发,外部则散热较快,无论在升 温或降温过程中,混凝土表面的温度总低于内部温度。即使在混凝土硬化后期,水化热散尽,结构温度已接近周围气温,这是若受到寒潮侵袭,气温骤降,结构表面急冷,仍会产生内外温差。这种温差造成内部和外部热胀冷缩的程度不同,就在混凝土表面产生拉应力。当温差大到一定程度,表面的拉应力超过当时的混凝土的极限抗拉强度时,混凝土表面就会产生裂缝。

(2)收缩作用:大体积混凝土浇注初期,混凝土处于升温阶段及塑性状态, 弹性模量很小变形变化所引起的应力很小,故温度应力一般可忽略不计。但过了数日混凝土硬化(多余水分蒸发时引起的体积收缩)以后发生的收缩,将受到地基和结构边界条件的约束时才引起的拉应力,当该拉应力超过混凝土抗拉强度时,就会在混凝土内部产生裂缝。 表面裂缝与内部裂缝叠加起来,就可能贯穿结构的整个截面,造成严重危害。所以在施工及养护阶段应严格控制温升,对于强度要求较高的混凝土,水泥用量相对较多,水化热大,温升速率也较大,一般可达35℃左右,加上初始温度可使 , 探头配合);≤1.0℃(与测温线配合)。 3.2测区布置及测温方法 大体积混凝土浇注块体温度监测点布置,以真实地反映出混凝土块体里外温差、降温速度及环境温度为原则,一般可按下列方式布置:

1)温度监测点的布置范围以所选混凝土的浇注块体平面图对称轴的半条轴线为测温区(对长方体可取较短的对称轴线),在测温区内温度测点呈平面布置; 2)在测温区内,温度监测的位置与数量可根据混凝土浇注块体内温度场的分布情况及温控的要求确定; 3)保温养护效果及环境温度监测点数量应根据具体需要确定;

相关文档
相关文档 最新文档