文档库 最新最全的文档下载
当前位置:文档库 › 基于Matlab的OFDM系统设计与仿真

基于Matlab的OFDM系统设计与仿真

基于Matlab的OFDM系统设计与仿真
基于Matlab的OFDM系统设计与仿真

目录

1绪论 (1)

1.1课题研究背景及意义 (1)

1.2无线通信 (1)

1.2.1无线通信概述 (1)

1.2.2无线信道特性 (2)

1.3 OFDM概述及应用 (3)

1.3.1 OFDM的发展 (3)

1.3.2 OFDM的关键技术 (3)

1.3.3 OFDM的优缺点 (4)

2 OFDM基本原理 (6)

2.1原理及数学描述 (6)

2.1.1 OFDM基本原理 (6)

2.1.2串并转换 (6)

2.1.3子载波调制 (7)

2.1.4 DFT变换 (10)

2.1.5保护间隔、循环前缀和子载波数选择 (11)

2.1.6 OFDM基本参数的选择 (14)

2.1.7 QPSK调制 (15)

2.1.8 QPSK信号的产生 (18)

3 OFDM的系统仿真 (20)

3.1 MATLAB特点与功能 (20)

3.2 OFDM系统收发机 (20)

3.3 OFDM系统仿真 (22)

3.3.1串行数据的产生 (22)

3.3.2串并转换 (23)

3.3.3 QPSK调制 (25)

3.3.4 QPSK调制星座图 (29)

3.3.5 IFFT/FFT运算 (30)

3.3.6保护间隔和循环前缀 (32)

3.3.7并串转换 (34)

3.3.8加入高斯噪声 (35)

3.3.9 QPSK解调 (37)

3.3.10接收信号 (38)

3.4系统误码率的分析 (38)

3.5 BER性能曲线 (40)

3.6本章小结 (41)

参考文献 (42)

附录 (43)

致谢........................................................................................................................... 错误!未定义书签。

摘要

随着人们对通信数据化、宽带化、个人化和移动化的需求,OFDM技术在综合无线接入领域得到广泛应用,它将是第四代移动通信的核心技术之一。OFDM(Orthogonal Frequency Division Multiplexing)是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB—T)、无线局域网等领域得到广泛的应用。

本文简述了无线信道的特点,概述了OFDM技术的发展状况、原理、数学表示、部分关键技术,采用Matlab仿真的方法,并且对由于高斯噪声而引起码间干扰等问题进行了仿真和讨论,并对QPSK调制技术进行了较为全面的仿真和分析,并且通过仿真得出了在一定信噪比范围内的BER性能曲线。

关键词:正交频分复用;调制;解调

Abstract

As people on the needs of data communication, broadband, individuals and mobile, OFDM technology accesses a wide range of applications in the field of integrated wireless , it will be one of the core technology of 4 G mobile communications. OFDM (Orthogonal Frequency Division Multiplexing) is a special multi-carrier transmission scheme , it combines some technologies such as figure modulation, digital signal processing, multi-carrier transmission .It is the maximum utilization of the spectrum communication system ,with the advantages of faster transfer rates ,anti-multipath interference. Currently known at present, OFDM technology is widely used in the digital audio broadcasting (DAB), terrestrial digital video broadcasting (DVB-T) and wireless LAN.

The paper analyzes the features of wireless channel, and briefly summarizes the development, principles, mathematics denotation, some key technology of the OFDM. At the same time, imitate and discuss deeply about some problems, such as ISI and QPSK modulation by using the method of matlab simulation. This paper simulates the scope of BER performance curve within a certain signal to noise ratio.

Key words: OFDM; Modulation; Demodulation

1绪论

1.1课题研究背景及意义

进入21世纪以来,无线通信技术正在以前所未有的速度向前发展。随着用户对各种实时多媒体业务需求的增加和互联网技术的迅猛发展,可以预计,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。为了支持更高的信息传输速率和更高的用户移动速度,在下一代的无线通信中必须采用频谱效率更高、抗符号间干扰能力更强的新型传输技术。

OFDM(Orthogonal Frequency Division Multiplexing)通信技术是多载波传输技术的典型代表。多载波传输把数据流分解为若干个独立的比特流,每个子数据流将具有低得多的比特速率,用这样低比特率形成的低速率多状态符号去调制相应的子载波,就构成了多个低速率符号并行发送的传输系统。OFDM是多载波传输方案的实现方式之一,具有抗多径能力强、频谱利用率高,利用快速傅里叶逆变换和快速傅里叶变换来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。

1.2无线通信

OFDM(Orthogonal Frequency Division Multiplexing)是目前已知的频谱利用率最高的一种通信系统,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,使得它在系统的频谱利用率、功率利用率、系统复杂性方面综合起来有很强的竞争力,

是支持未来移动通信特别是移动多媒体通信的主要技术之一[1]。

1.2.1无线通信概述

(1)1G阶段

主要采用频分复用,语音信号为模拟调制。由于受到网络容量限制,只能传输语音。其主要缺点是,频谱利用率低、业务种类有限、无高速数据业务、设备成本高、终端体积大、质量大、不能提供自动漫游等。

(2)2G阶段

主要采用了时分多址(TDMA)技术和码分多址(CDMA)技术。主要体制有GSM、DAMPS、IS-95。GSM发源于欧洲,GSM标准体制较为完善,技术相对成熟,其不足之处是相对于模拟系统容量增加不多,无法和模拟系统兼容,不能提供分组数据业务等。

(3)3G阶段

第三代移动通信主要体制有WCDMA、CDMA2000和TD—SCDMA。提供了更大的系统容量和高质量的传输,提高了无线频率利用效率。实现了卫星在内的全球覆盖并实现有线和无线以及不同无线网络之间业务的无缝连接。

(4)4G阶段

第四代移动通通信可以在不同的固定、无线平台和不同频带的网络中提供无线服务。可以在任何地方宽带接入互联网,能够提供信息通信之外的定位、定时数据采集、远程控制等综合功能。被4G看好的高速调制技术就是多载波正交频分复用(OFDM)调制技术。

1.2.2无线信道特性

无线信道包括了电波的多径衰落,时延扩展,以及多普勒效应,在移动通信中,必须要充分考虑这些特性,并提出相关的解决方案。

(1)时延扩展

各路径长度不同使得信号到达时间不同,基站发送一个脉冲信号,则接收信号中不仅含有该信号,还包含有它的各个时延信号。这种由于多径效应使接收信号脉冲宽度扩展的现象,称为时延扩展。

(2)多径衰落

由于接收者所处地理环境复杂,因此到达接收者的电波不仅有直射波的主径信号,还有从不同建筑物反射及绕射过来的多条不同路径信号,而且他们到达时的信号强度、到达时间及到达时的载波相位都不一样,所接收的信号是上述各路信号的矢量和,从而会引起信号衰落及失真,称为多径衰落。

(3)多普勒效应

由于移动通信中移动台的移动性,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。这就是由多普勒效应效应引起的。

1.3 OFDM概述及应用

1.3.1 OFDM的发展

OFDM由多载波调制(MCM)发展而来。1971年,Weistein和Ebert在IEEE杂志上发表了用离散傅立叶变换(DFT)来实现多载波调制的方法;20世纪80年代,人们对多载波调制在高速调制解调器、数字移动通信等领域中的应用进行了较为深入的研究,但是由于当时技术条件的限制,多载波调制没有得到广泛的应用;进入20世纪90年代,由于数字信号处理技术和大规模集成电路技术的进步,OFDM技术在高速数据传输领域受到了人们的广泛关注。现在OFDM已经在欧洲的数字音视频广播、欧洲和北美的高速无线局域网系统、高比特率数字用户线以及电力线载波通信中得到广泛的使用。

1.3.2 OFDM的关键技术

1. 时域和频域同步

OFDM系统对定时和频率偏移敏感,特别是实际应用中与FDMA、TDMA和CDMA 等多址方式结合使用时,时域和频率同步显得尤为重要。与其他数字通信系统一样,同步分为捕获和跟踪两个阶段。在下行链路中,基站向各个移动终端广播发送同步信号,所以下行链路同步相对简单,较易实现。在上行链路中,来自不同移动终端的信号必须同步到达基站才能保证子载波间的正交性。基站根据各移动终端发来的子载波所携带信息进行时域和频域同步信息的提取,再由基站发回移动终端,以便让移动终端进行同步。具体实现时,同步将分为时域同步和频域同步,也可以时域和频域同时进行同步。

2. 信道估计

在OFDM系统中,信道估计器的设计主要有两个问题:一是导频信息的选择,由于信道常常是衰落信道,需要不断对信道进行跟踪,因此导频信息也必须不断的发送;二是复杂度较低和导频跟踪能力良好的信道估计器的设计。在实际设计中,导频信息的选择和最佳估计器的设计通常又是互相关联的,因为估计器的性能与导频信息的传输方式有关。

3. 信道编码和交织.

为了提高数字通信系统的性能,信道编码和交织是普遍采用的方法。对于衰落信道衰落中的随机错误,可以采用信道编码;对于衰落信道中的突发错误,可以采用交织技术。实际应用中,通常同时采用信道编码和交织,进一步改善整个系统的性能。在OFDM

系统中,如果信道衰落不是太严重,均衡是无法再利用信道的分集特性来改善系统性能的,因为OFDM系统自身已经具有利用信道分集特性的能力。但是,OFDM系统的结构却为子载波间进行编码提供了机会,形成COFDM方式。编码可以采用各种码,例如分组码、卷积码等,其中卷积码的效果要比分组码好。

4.降低峰值平均功率比

由于OFDM信号在时域上表现为N个正交子载波信号的叠加,当这N个信号恰好均以峰值相加时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高PAPR(峰值平均功率比)的OFDM信号,发送端对高功率放大器(HPA)的线性度要求很高,从而导致发送效率极低,接收端对前端放大器以及A/D变换器的线性度要求也很高。因此,高PAPR使得OFDM系统的性能大大下降甚至直接影响实际应用。为了解决这一问题,人们提出了基于信号畸变技术、信号扰码技术和基于信号空间扩展等降低OFDM系统PAPR的方法。

1.3.3 OFDM的优缺点

OFDM主要有下列一些优点:

(1)高速数据流通过串并变换,使得每个子载波上的数据符号持续长度相对增加,从而有效的减少了无线信道的时间弥散所带来的符号间干扰,这样就减小了接收机内均衡的复杂度。

(2)由于各个子载波之间存在正交性,允许子信道的频谱相互重叠,因此与常规的频分复用相比,OFDM可以最大限度地利用频谱资源。当子载波数个数很多时,系统的频谱利用率趋于2Baud/Hz。

(3)各子信道的正交调制和解调可通过采用反离散傅利叶变换(IDFT)和离散傅利叶变换(DFT)实现。对于子载波数目较大的系统,可以通过快速傅立叶变换(FFT)来实现。随着大规模集成电路技术和DSP的发展,IFFT和FFT都非常容易实现。

(4)无线数据业务一般存在非对称性,即下行链路中传输的数据传输量大于上行链路,这是物理层支持非对称高速率数据传输的要求。OFDM系统可以通过使用不同数量的子信道来实现上行链路和下行链路中不同的传输速率。

(5) OFDM可以容易的与其它多种接入方式结合使用,构成各种系统,包括多载波码分多址MC-CDMA、跳频OFDM及OFDM-TDMA等。使得多个用户可以同时利用OFDM 技术信息传输。

OFDM技术的不足:

(1)易受频率偏差的影响。由于无线信道的时变性,在传输过程中出现的无线信号的频谱偏移,或发射机与接收机本地振荡器之间存在的频率偏差,都会使OFDM系统子载波之间的正交性遭到破坏,导致子信道的信号相互干扰。

(2)存在较高的峰值平均功率比。如果多个子信号的相位一致时,所得到的叠加信号的瞬时功率会远大于信号的功率,出现较大的峰值平均功率比(PAPR),这个比值的增大

会降低射频放大器的功率效率,使系统性能恶化[2]。

2 OFDM基本原理

2.1原理及数学描述

正交频分复用(OFDM)技术和已经普遍应用的频分复用(FDM,Frequency Division Multiplexing)技术都是对多路信号进行频域上的复用。OFDM技术通过将信道带宽划分若干个正交的子载波,使相邻子载波的频谱进行一部分重叠,有效的利用频率资源,实现高频谱效率。

图1 常规频分复用与OFDM在信道上的分配

2.1.1 OFDM基本原理

OFDM技术的基本思想是把一个高速的数据流分解成很多低速的子数据流,以并行的方式在多个子载波上传输,子载波间彼此保持相互正交的关系以消除子载波间数据的干扰,并且每个子载波可以看成一个独立的子信道,由于每个子信道的数据传输速率较低,当信号通过无线频率选择性衰落信道时,虽然整个信号频带内信道是有衰落的,但是每个子信道上可以近似看成是平坦的,只要通过简单的频域均衡就可以消除频率选择性衰落信道的影响;同时利用IFFT、FFT的周期循环特性,在每个传输符号前加一段循环前缀,可以消除多径信道的影响,防止码间干扰。

2.1.2串并转换

数据传输的典型形式是串行数据流,符号被连续传输,每一个数据符号的频谱可占据整个可利用的带宽。但在并行数据传输系统中,许多符号被同时传输,减少了那些在串行系统中出现的问题。

在OFDM系统中,每个传输符号速率的大小大约在几十bps到几十Kbps之间,所以必须进行串并变换,将输入串行比特流转换为可以传输的OFDM符号。由于调制模式可以自适应调节,所以每个子载波的调制模式是可变化的,因而每个子载波可传输的比特数也是可以变化的,所以串并转换需要分配给每个子载波数据段的长度是不一样的。在接收端执行相反的过程,从各个子载波处来的数据被转换回原始的串行数据。

当一个OFDM符号在多径无线信道中传输时,频率选择性衰落会导致某几组子载波受到相当大的衰减,从而引起比特错误。这些在信道频率响应上的零点会造成在邻近的子载波上发射的信息受到破环,导致在每个符号中出现一连串的比特错误。与一大串错误连续出现的情况相比较,大多数前向纠错编码在错误分布均匀的情况下会工作的更有效。所以,为了提高系统的性能,大多数系统采用数据加扰作为并串转换工作的一部分。这可以通过把每个连续的数据比特随机的分配到各个子载波上来实现。在接收端,进行一个对应的逆过程解出信号。这样,不仅可以还原出数据比特原来的顺序,同时还可以分散由于信道衰落引起的连续的比特错误使其在时间上近似均匀分布。这种做法可以提高前向纠错编码的性能,并且系统的总体性能也会得到改进。

2.1.3子载波调制

一个OFDM符号间之内包含多个经过相移键控(PSK)或者正交幅度调制(QAM)的子载波。其中,N表示子载波的个数,T表示OFDM符号的持续时间(周期)()1

,

,2,1,0

d-

=N

i i 是分配给每个在新到的数据符号,

i

f是第i个子载波的载波频率,矩形函数()2

,1T

t

t

rect≤

=,则从

s

t t=开始的OFDM符号可以表示为:

()

()()()

1

Re exp2,

2

N

i s i s s s

i

T

s t d rect t t j f t t t t t T

s t

π

-

=

???

=---≤≤+

??

???

??

=???

?

?

(1)

一旦将要传输的比特分配到各个子载波上,某一种调制模式则将它们映射为子载波的幅度和相位,通常采用等效基带信号来描述OFDM的输出信号

()()()

()1

exp 2,20,N i s s s s i s s i T s t d rect t t j t t t t t T s t T t t t T t π-=???

=---≤≤+? ?=????<∧<+?

∑ (2) 式中,s (t )的实部和虚部分别对应于OFDM 符号的同相和正交分量,在实际系统中可以分别与相应的子载波的cos 分量和sin 分量相乘,构成最终的子载波信号和合成的OFDM 符号。在图2中给出了OFDM 系统基本模型的框图,其中T i f f c i +=。在接收端,将接收到

的同相和正交矢量映射回数据信息,完成子载波解调。

图2 OFDM 系统基本模型框图

如图3所示为一个OFDM 符号内包含4个子载波的实例。其中,所有的子载波都具有相同的幅值和相位,但在实际应用中,根据数据符号的调制方式,每个子载波的幅值和相位都可能是不同的。从图3可以看出,每个子载波在一个OFDM 符号周期内都包含整数倍个周期,而且各个相邻的子载波之间相差1个周期。这一特性可以用来解释子载波之间的正交性,即:

()()??

?≠==?

n

m n

m dt t jw t jw T

T

n m ,0,1exp exp 10

(3) 例如对式(3)中的第j 个子载波进行解调,然后在时间长度T 内进行积分,即:

串 并转换

+

信道

并串转换

积分

积分

积分

d 0

t

f j e 02πt

f j e

12π

t f j N e 12-π

d 1

d 3

S(t)

t

f j e 12π-t f j N e 12--π

()()t T

t t N i s s j d t t T i j t t T i j T

d s s

?

∑+-=∧

??

?

??-??? ??--=

1022exp 1ππ (4)

()j

t N i T t t s j d d t t T j i j d T s s

=??? ??--=∑?-=+102exp 1π

图3 OFDM 符号内包含4个子载波的情况

可以看到,对第j 个子载波进行解调可以恢复出期望符号。而对其他子载波来说,由于在积分间隔内,频率差别()T j i -可以产生出整数倍个周期,所以积分结果为0。

这种正交性还可以从频域的角度来解释。根据式(1),每个OFDM 符号在其周期T 内包括多个非零的子载波。因此其频谱可以看作是周期为T 的矩形脉冲的频谱与一组位于各个子载波频率上的δ函数的卷积。矩形脉冲的频谱幅值为sinc (fT )函数,这种函数的零点出现在频率为1/T 整数倍的位置上。

图4 OFDM 系统中子信道符号的频谱

图中给出了相互覆盖的各个子信道内经过矩形脉冲成形得到的符号的sinc 函数频谱。在每个子载波频率最大值处,所有其他子信道的频谱值恰好为0。由于在对OFDM 符号进行解调的过程中,需要计算这些点上所对应的每个子载波频率的最大值,因此可以从多个相互重叠的子信道符号中提取每一个信道符号,而不会受到其它子信道的干扰。从图4可以看出,OFDM 符号频谱实际上可以满足奈奎斯特准则,即多个子信道频谱之间不存在相互干扰。因此这种一个子载波频谱出现最大值而其它子信道频谱为零的特点可以避免载波间干扰(ICI )[2]\

2.1.4 DFT 变换

对于N 比较大的系统来说,式(2)中的OFDM 复等效基带信号可以采用离散傅立叶逆变换来实现。可以令式(2)中的0t =s ,并且忽略矩形函数,对信号s(t)以T/N 的速率进行抽样,即令,0,1,1t KT N K N ==- 可以得到:

()∑-=???

??==1

2exp N i j k N ik j d N KT s s π ()1k 0-≤≤N (5)

可以看到,k s 等效为对j d 进行IDFT 运算。同样在接收端,为了恢复出原来的数据符号j d ,可以对k s 进行逆变换,即DFT 得到:

??? ??

-=∑-=N ik j s N k k i π2exp d 1

(6)

由此可见,OFDM 系统的调制和解调可以分别由IDFT 和DFT 来代替。通过N 点的IDFT 运算,把频域数据符号j d 变换为时域数据符号k s ,经过射频载波调制之后,发送到无线信道中,其中每个IDFT 输出的数据符号k s 都是由所有子载波信号经过叠加而生成的,即对连续的多个经过调制的子载波的叠加信号进行抽样得到的。

在OFDM 系统的实际应用中,可以采用更加方便快捷的IFFT/FFT 。N 点IDFT 运算需要实施2N 次的复数乘法(为了方便,只比较复数乘法的运算量),而IFFT 可以显著的降低运算的复杂度。对于常用的基2 IFFT 算法来说,其复数乘法的次数仅为()()N N 2log 2,以16点的变换为例,IDFT 和IFFT 中所需要的乘法数量分别是256次和32次,而且随着子载波的个数N 的增加,这种算法复杂度之间的差距也越来越明显,IDFT 的计算复杂度会

随N的增加而呈现二次方增长,IFFT的计算复杂度的增加速度只是稍稍快于线性变化。

2.1.5保护间隔、循环前缀和子载波数选择

应用OFDM的一个重要原因在于它可以有效的对抗多径时延扩展。把输入数据流串并变换到N个并行的子信道中,使得每一个调制子载波的数据周期可以扩大为原始数据符号周期的N倍,因此,时延扩展与符号周期的数值比也同样降低N倍。为了最大限度的消除符号间干扰,还可以在每个OFDM符号间插入保护间隔(GI),而且该保护间隔长度g T一般要大于无线信道中的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔内,可以不插入任何信号,即是一段空闲的传输时段。然而在这种情况下,由于多径传播的影响,则会产生载波间干扰(ICI),即子载波之间的正交性遭到破坏,这种效应如图5所示。

图5 多径信道中,空闲保护间隔引起子载波间的干扰

由于每个OFDM符号中都包括所有的非零子载波信号,而且也同时会出现该OFDM 符号的时延信号,因此图5中给出了第一子载波和第二子载波的时延信号。从图中可以看到,由于在FFT运算时间长度内,第一子载波与带有时延的第二子载波之间的周期个数之差不再是整数,所以当接收机试图对第一子载波进行解调时,第二子载波会对此造成干扰。同时,当接收机对第二子载波进行解调时,也会来自第一子载波的干扰。

为了消除由于多径所造成的ICI,OFDM符号需要在其保护间隔内填入循环前缀信号,如图6所示。

图6 保护间隔和循环前缀

符号的总长度为s g FFT T T T =+,其中s T 为OFDM 符号的总长度,g T 为抽样的保护间隔长度,FFT T 为FFT 变换产生的无保护间隔的OFDM 符号长度,则在接收端抽样开始的时刻x T 应该满足下式:

max x g T T τ<< (7)

由于前一个符号的干扰只存在于[]max 0τ,, 当子载波个数比较大时,OFDM 的符号周期s T 相对于信道的脉冲响应长度max τ很大,则ISI 的影响很小,甚至会没有码间干扰(ISI);而如果相邻OFDM 符号之间的保护间隔g T 满足max τ≥g T 的要求,则可以完全克服ISI 的影响,同时,由于OFDM 延时副本内所包含的子载波的周期个数也为整数,时延信号就不会在解调过程中产生ICI 。

图7中给出OFDM 系统加入保护间隔之后的发射机框图,由此会带来功率和信息速率的的损失,其中功率损失可以定义为:

???

?

??+=1log 1010FFT g guard T T ν (8) 从上式可以看到,当保护间隔占到20%时,功率损失也不会超过1dB 。但是带来的信息速率损失却达20%。但由于插入保护间隔可以消除ISI 和多径所造成的ICI 的影响,因此这个代价是值得的。

图7 插入保护间隔之后的OFDM 系统发射机框图

此时OFDM 的符号周期:

s g FFT T T T =+ (9)

保护间隔的离散长度,即采样点个数为:

??

?

???≥s g T N L max τ (10)

这样根据图7 ,包含保护间隔、功率归一化的OFDM 的抽样序列{}v x 为:

1,,,121

--==

∑-=N L v e

s N

x g N

nv

j N n n v π (11)

接收信号y(t)经过A/D 变换后得到接受序列{}v y ,1,,--=N L v g ,是对y(t)按T/N 的抽样速率得到数字抽样。ISI 只会对接收序列的前g L 个样点形成干扰,因此将前g L 个样点去掉,就可完全消除ISI 的影响。对去掉保护间隔的序列{}v y ,1,,0-=N v 进行DFT 变换,可得到DFT 输出的多载波解调序列{}1,,0,-=N n R n ,得到N 个复数点:

1,,0,121

-==

--=∑N n e

y N

R N

nv

j N v v n π (12)

串并 变换 IDFT 或IFFT 并串转换 插入保 护间隔

DAC

多径 信道

加性白 高斯噪声

ADC

去除保 护间隔

串并转换 DFT 或FFT 并串 变换 输入

输出

通过适当选择子载波个数N ,可以使信道响应平坦,插入保护间隔还有助于保持子载波之间的正交性,因此OFDM 有可能完全消除ISI 和多径带来的ICI 的影响,接收信号的频 域表达式为:

1,,0,-=+=N n N S H R n n n n (13)

其中n H 为第n 个子载波的复衰落系数,n N 代表第n 个自信道上的(加性高斯白噪声)AWGN ,实部与虚部均服从零均值高斯分布,且相互独立。噪声方差为:

{}

1,,0,2

2-=E =N n N n σ (14)

根据式(13),多载波传输系统可以等效为如图8所示的频域系统,这个系统有N 个并行的子系统,每个子系统受乘性复干扰和加性白高斯噪声的影响[1]

图8 基于OFDM 的多载波系统的等效频域系统

2.1.6 OFDM 基本参数的选择

各种OFDM 参数的选择就是需要在多项要求冲突中进行折中考虑。通常来讲,首先要确定3个参数:带宽、比特率以及保护间隔,按照惯例,保护间隔的时间长度应该为应用移动环境信道的时延均方根值的2~4倍。

一旦确定了保护间隔,则OFDM 符号周期长度就可以确定。为了最大限度的减少由

串 并 变 换

并 串 变 换

1N S -

1N H -

1N R -

1

N N -

于插入保护间隔所带来的信噪比的损失,希望OFDM 符号周期长度要远远大于保护间隔长度。但是符号周期长度又不可能任意大,否则OFDM 系统中包括更多的子载波数,从而导致子载波间隔相应减少,系统的实现复杂度增加,而且还加大了系统的峰值平均功率比,同时使系统对频率偏差更加敏感。因此在实际应用中,一般选择符号周期是保护间隔长度的5倍,这样由于插入保护比特所造成的信噪比损耗只有1dB 左右。

在确定了符号周期和保护间隔之后,子载波的数量可以直接利用带宽除以子载波间隔(即去掉保护间隔后的符号周期的倒数)得到或者可以利用所要求的比特速率除以每个子信道的比特速率来确定子载波的数量。每个信道中所传输的比特速率可以由调制类型、编码速率、和符号速率来确定。

(1)有用符号持续时间

有用符号持续时间T 对子载波之间间隔和译码的等待周期都有影响,为了保持数据的吞吐量,子载波数目和FFT 的长度要有相对较大的数量,这样就导致了有用符号持续时间的增大。选择有用符号的持续时间,必须以保证信道的稳定为前提。

(2)子载波数

子载波数目越多,有用信号越平坦,带外衰减也快,越接近矩形,越符合通信要求,但子载波数目不能过多,越接近矩形的结果对接收端的滤波器要求越高(只有理想滤波器才能过滤,否则就造成交调干扰)。因此在子载波数目的选择上要综合考虑传递信息的有效性和可行性。

子载波数可以由信道带宽、数据吞吐量和有用符号持续时间T 所决定。

T

N 1

=

子载波数可以被设置为有用符号持续时间的倒数,其数值与FFT 处理过的数据点相对应。

(3)调制模式

OFDM 系统的调制模式可以基于功率或是频谱利用率来选择。调制的类型可以用复数形式来表示n n n jb a d +=,其中n a 和n b 在16QAM 中为()31±±,,在QPSK 中为1±。总之,应用到每一个子载波的调制模式的选择只能是数据速率需求与传输稳定性之间的折中。另外,OFDM 的另一个优点是不同的调制模式可以由分层服务应用到不同的子载波。

2.1.7 QPSK 调制

QPSK 是在2PSK (二相调相)的基础上发展而来的一种多进制相位调制。二相调相是用载波的两种相位(0,π)去传输二进制的数字信息(“1” ,“0” ),如图9 (a) 所示。在现代数字微波和卫星通信中,为了提高信息传输速率,往往利用载波的一种相位去携带一组二进制信息码,如图9(b)、(c )所示。

图9 多相调相的相位矢量图

QPSK 是利用载波的四种不同相位来表征传送的数字信息。在QPSK 调制中,首先对输入的二进制数据按二位数字编成一组,以此构成双比特码元。其组合共有22种,即有22种不同状态。故可以用22=M 种相位或相位差来表示。这里422==M ,故称为四相调相。同样,若采用八相调制方式,在一个码元时间内可传送3位码,其信息传送速率是二相调制方式的3倍。由此可见,采用多相调制的级数愈多,系统的传输速率愈高,但相邻载波之间的相位差愈小,接收时要区分它们的困难程度就愈大,将使误码率增加。所以目前在多相调相方式中,通常采用四相调相和八相调相[4]

四相调制是用载波的四种相位(起始相位)与两位二进制信息码(AB )的组合(00,01,10,11)对应。若在载波的一个周期(2π)内均匀地分成四种相位,可有两种方式,即(0,π/2,π,3π/2)和(π/4,3π/4,5π/4,7π/4)两种。故四相调相电路与这两种方式对应,就有π/2调相系统和π/4调相系统之分。两个系统双比特码元与已调波起

1

A

B

AB

11 10

01

00

100

110

001

101

011

010

000 111

ABC

(a)2相 (b )4相 (c)8相

基于matlab实现OFDM的编码.

clc; clear all; close all; fprintf('OFDM系统仿真\n'); carrier_count=input('输入系统仿真的子载波数: \n');%子载波数128,64,32,16 symbols_per_carrier=30;%每子载波含符号数 bits_per_symbol=4;%每符号含比特数,16QAM调制 IFFT_bin_length=1024;%FFT点数 PrefixRatio=1/4;%保护间隔与OFDM数据的比例1/6~1/4 GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length ,即256 beta=1/32;%窗函数滚降系数 GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度40 SNR=10; %信噪比dB %================信号产生=================================== baseband_out_length=carrier_count*symbols_per_carrier*bits_per_symbol;%所输入的比特数目 carriers=(1:carrier_count)+(floor(IFFT_bin_length/4)-floor(carrier_count/2));%共轭对称子载波映射复数数据对应的IFFT点坐标 conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射共轭复数对应的IFFT点坐标 rand( 'twister',0); %每次产生不相同得伪随机序列 baseband_out=round(rand(1,baseband_out_length));%产生待调制的二进制比特流figure(1); stem(baseband_out(1:50)); title('二进制比特流') axis([0, 50, 0, 1]); %==============16QAM调制==================================== complex_carrier_matrix=qam16(baseband_out);%列向量 complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per

OFDM技术仿真(MATLAB代码)

第一章绪论 1.1简述 OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。 符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。 1.2 OFDM基本原理概述 1.2.1 OFDM的产生和发展 OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。 OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

OFDM系统设计及其Matlab实现

课程设计 。 课程设计名称:嵌入式系统课程设计 专业班级: 07级电信1-1 学生姓名:__王红__________ 学号:_____107_____ 指导教师:李国平,陈涛,金广峰,韩琳 课程设计时间:— |

1 需求分析 运用模拟角度调制系统的分析进行频分复用通信系统设计。从OFDM系统的实现模型可以看出,输入已经过调制的复信号经过串/并变换后,进行IDFT或IFFT和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM调制后的信号s(t)。该信号经过信道后,接收到的信号r(t)经过模/数变换,去掉保护间隔,以恢复子载波之间的正交性,再经过串/并变换和DFT或FFT后,恢复出OFDM的调制信号,再经过并/串变换后还原出输入符号 2 概要设计 1.简述OFDM通信系统的基本原理 2.简述OFDM的调制和解调方法 3.概述OFDM系统的优点和缺点 4.基于MATLAB的OFDM系统的实现代码和波形 : 3 运行环境 硬件:Windows XP 软件:MATLAB 4 详细设计 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: [ 式 式1中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式,最后信号经并/串变换及D/A转换,由发送天线发送出去。 式 接收端将接收的信号进行处理,完成定时同步和载波同步。经A/D转换,串并转换后的信号可表示为:

用MATLAB实现OFDM仿真分析

3.1 计算机仿真 仿真实验是掌握系统性能的一种手段。它通过对仿真模型的实验结果来确定实际系统的性能。从而为新系统的建立或系统的改进提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈。优化系统的整体性能,衡量方案的可行性。从中选择最后合理的系统配置和参数配置。然后再应用于实际系统中。因此,仿真是科学研究和工程建设中不可缺少的方法。 3.1.1 仿真平台 ●硬件 CPU:Pentium III 600MHz 内存:128M SDRAM ●软件 操作系统:Microsoft Windows2000 版本5.0 仿真软件:The Math Works Inc. Matlab 版本6.5 包括MATLAB 6.5的M文件仿真系统。 Matlab是一种强大的工程计算软件。目前最新的6.x版本 (windows环境)是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。 3.1.2 基于MATLAB的OFDM系统仿真链路 根据OFDM 基本原理,本文给出利用MATLAB编写OFDM系统的仿真链路流程。串行数据经串并变换后进行QDPSK数字调制,调制后的复信号通过N点IFFT变换,完成多载波调制,使信号能够在N个子载波上并行传输,中间插入10训练序列符号用于信道估计,加入循环前缀后经并串转换、D /A后进入信道,接收端经过N点FFT变换后进行信道估计,将QDPSK解调后的数据并串变换后得到原始信息比特。 本文采用MATLAB语言编写M文件来实现上述系统。M文件包括脚本M文件和函数M文件,M文件的强大功能为MATLAB的可扩展性提供了基础和保障,使MATLAB能不断完善和壮大,成为一个开放的、功能强大的实用工具。M文件通过input命令可以轻松实现用户和程序的交互,通过循环向量化、数组维数预定义等提高M文件执行速度,优化内存管理,此外,还可以通过类似C++语言的面向对象编程方法等等。

无线通信原理 基于matlab的ofdm系统设计与仿真..

基于matlab的ofdm系统设计与仿真

摘要 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?? ???=? +m n m n m n T T tdt m t n T t t ωω 其中ωπ2=T (1-1)

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分析

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分 析 MATLABOFDM 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得 到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理 及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出 参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道 采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 : 正交频分复用;仿真;循环前缀;信道估计 I Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this

article OFDM basic principle is briefly introduced. This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation II

基于Matlab的OFDM系统仿真

论文题目: 基于MATLAB的OFDM系统仿真 学院: 专业年级: 学号: 姓名: 指导教师、职称: 2010 年 12 月 10 日

基于Matlab的OFDM系统仿真 摘要:正交频分复用(OFDM)是一种多载波宽带数字调制技术。相比一般的数字通信系统,它具有频带利用率高和抗多径干扰能力强等优点,因而适合于高速率的无线通信系统。正交频分复用OFDM是第四代移动通信的核心技术。论文首先简要介绍了OFDM 基本原理。在给出OFDM系统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,对OFDM系统误码率影响的比较曲线,得出了较理想的结论,通过详细分析了了技术的实现原理,用软件对传输的性能进行了仿真模拟并对结果进行了分析。 介绍了OFDM技术的研究意义和背景及发展趋势,还有其主要技术和对其的仿真?具体如下:首先介绍了OFDM的历史背景?发展现状及趋势?研究意义和研究目的及研究方法和OFDM的基本原理?基本模型?OFDM的基本传输技术及其应用,然后介绍了本课题所用的仿真工具软件MATLAB,并对其将仿真的OFDM各个模块包括信道编码?交织?调制方式?快速傅立叶变换及无线信道进行介绍,最后是对于OFDM的流程框图进行分析和在不影响研究其传输性的前提下进行简化,并且对其仿真出来的数据图形进行分析理解? 关键词:OFDM;MATLAB;仿真 一、OFDM的意义及背景 现代通信的发展是爆炸式的。从电报、电话到今天的移动电话、互联网,人们从中享受了前所未有的便利和高效率。从有线到无线是一个飞跃,从完成单一的话音业务到完成视频、音频、图像和数据相结合的综合业务功能更是一个大的飞跃。在今天,人们获得了各种各样的通信服务,例如,固定电话、室外的移动电话的语音通话服务,有线网络的上百兆bit的信息交互。但是通信服务的内容和质量还远不能令人满意,现有几十Kbps传输能力的无线通信系统在承载多媒体应用和大量的数据通信方面力不从心:现有的通信标准未能全球统一,使得存在着跨区的通信障碍;另一方面,从资源角度看,现在使用的通信系统的频谱利用率较低,急需高效的新一代通信系统的进入应用。 目前,3G的通信系统己经进入商用,但是其传输速率最大只有2Mbps,仍然有多个标准,在与互联网融合方面也考虑不多。这些决定了3G通信系统只是一个对现有移动通信系统速度和能力的提高,而不是一个全球统一的无线宽带多媒体通信系统。因此,在全世界范围内,人们对宽带通信正在进行着更广泛深入的研究。 正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing) 是一种特殊的多载波方案,它可以被看作一种调制技术,也可以被当作是一种复用技术。选择OFDM的一个主要原因在于该系统能够很好地对抗频率选择性衰落或窄带干扰。正交频分复用(OFDM)最早起源于20世纪50年代中期,在60年代就已经形成恶劣使用并行数据传输和频分复用的概念。1970年1月首次公开发表了有关OFDM的专利。 在传统的并行数据传输系统中,整个信号频段被划分为N个相互不重叠的频率子信道。每个子信道传输独立的调制符号,然后再将N个子信道进行频率复用。这种避免信道频谱重叠看起来有利于消除信道间的干扰,但是这样又不能有效利用宝贵频谱资源。为了解决这种低效利用频谱资源的问题,在20世纪60年代提出一种思想,即使用子信道频谱相互覆盖的频域距离也是如此,从而可以避免使用高速均衡,并且可以对抗窄带脉冲噪声和多径衰落,而且还可以充分利用可用的频谱资源。 常规的非重叠多载波技术和重叠多载波技术之间的差别在于,利用重叠多载波调制技术可以几乎节省50%的带宽。为了实现这种相互重叠的多载波技术,必须要考虑如何减少各个子信道之间的干扰,也就是要求各个调制子载波之间保持正交性。 1971年,Weinstein和Ebert把离散傅立叶变换(DFT)应用到并行传输系统中,作为调制和解调过程的一部分。这样就不再利用带通滤波器,同时经过处理就可以实现FDM。而且,这样在完成FDM的过程中,不再要求使用子载波振荡器组以及相关解调器,可以完全依靠执行快速傅立叶变换(FFT)的硬件来实施。

基于MATLAB的OFDM的仿真

一、实习目的 1、熟悉通信相关方面的知识、学习并掌握OFDM技术的原理 2、熟悉MATLAB语言 3、设计并实现OFDM通信系统的建模与仿真 二、实习要求 仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析 三、实习内容 1.实习题目 《正交频分复用OFDM系统建模与仿真》 2.原理介绍 OFDM的基本原理就是把高速的数据流通过串并变换,分配到传输速率相对较低的若干个子信道中进行传输。由于每个子信道中的符号周期会相对增加,因此可以减轻由无线信道的多径时延扩展所产生的时间弥散性对系统造成的影响。并且还可以在OFDM符号之间插入保护间隔,令保护间隔大于无线信道的最大时延扩展,这样就可以最大限度地消除由于多径而带来的符号间干扰(ISI)。而且,一般都采用循环前缀作为保护间隔,从而可以避免由多径带来的子载波间干扰((ICI) 。 3.原理框图 交织编码数字 调制 插入 导频 串并 变换 解码解交 织 数字 解调 信道 校正 并串 变换 IFFT FFT 并/串 串/并 插入循 环前缀 和加窗 去除循 环前缀 RF TX DAC RF RX ADC 定时 和频 率同 步图1-1 OFDM 原理框图

4. 功能说明 4.1确定参数 需要确定的参数为:子信道,子载波数,FFT 长度,每次使用的OFDM 符号数,调制度水平,符号速率,比特率,保护间隔长度,信噪比,插入导频数,基本的仿真可以不插入导频,可以为0。 4.2产生数据 使用个随机数产生器产生二进制数据,每次产生的数据个数为carrier_count * symbols_per_carrier * bits_per_symbol 。 4.3编码交织 交织编码可以有效地抗突发干扰。 4.4子载波调制 OFDM 采用BPSK 、QPSK 、16QAM 、64QAM4种调制方式。按照星座图,将每个子信道上的数据,映射到星座图点的复数表示,转换为同相Ich 和正交分量Qch 。 其实这是一种查表的方法,以16QAM 星座为例,bits_per_symbol=4,则每个OFDM 符号的每个子信道上有4个二进制数{d1,d2,d3,d4},共有16种取值,对应星座图上16个点,每个点的实部记为Qch 。为了所有的映射点有相同高的平均功率,输出要进行归一化,所以对应BPSK,PQSK,16QAM,64QAM ,分别乘以归一化系数系数1,21, 101, 421.输出的复数序列即为映射后的调制结果。 4.5串并转换。 将一路高速数据转换成多路低速数据 4.6 IFFT 。 对上一步得到的相同分量和正交分量按照(Ich+Qch*i )进行IFFT 运算。并将得到的复数的实部作为新的Ich ,虚部作为新的Qch 。 在实际运用中, 信号的产生和解调都是采用数字信号处理的方法来实现的, 此时要对信号进行抽样, 形成离散时间信号。 由于OFDM 信号的带宽为B=N ·Δf , 信号必须以Δt=1/B=1/(N ·Δf)的时间间隔进行采样。 采样后的信号用sn,i 表示, i = 0, 1, …, N-1,则有 ∑-== 1 /2j ,,e 1N k N ik k n i n S N s π 从该式可以看出,它是一个严格的离散反傅立叶变换(IDFT )的表达式。IDFT 可以采用快速反傅立叶变换(IFFT)来实现 4.7加入保护间隔。 由IFFT 运算后的每个符号的同相分量和正交分量分别转换为串行数据,并将符号尾部G 长度的数据加到头部,构成循环前缀。如果加入空的间隔,在多径传播的影响下,会造成载波间干扰ICI 。保护见个的长度G 应该大于多径时的扩张的最大值。

本科毕业设计:基于MATLAB的OFDM系统仿真及分析

摘要 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 关键词: 正交频分复用;仿真;循环前缀;信道估计

Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this article OFDM basic principle is briefly introduced.This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation

移动通信系统OFDM系统仿真与实现基于MATLAB

OFDM系统仿真与实现 1、OFDM的应用意义 在近几年以内,无线通信技术正在以前所未有的速度向前发展。由于用户对各种实时多媒体业务需求的增加与互联网技术的迅猛发展,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。随着人们对通信数据化、个人化与移动化的需求,OFDM技术在无线接入领域得到了广泛的应用。OFDM就是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输技术结合在一起,就是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB-T)、无线局域网等领域得到广泛应用。它将就是4G移动通信的核心技术之一。 OFDM广泛用于各种数字传输与通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSL,数字音频广播(DAB)系统,数字视频广播(DVB)与HDTV地面传播系统。1999年,IEEE802.11a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口与10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。 OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而在上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本与功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还就是采用了SC-FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD-CDM-OFDM 的方案B3G/4G就是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标就是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内与静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。 2、OFDM的原理研究与分析 2、1OFDM的关键技术 (1) 时域与频域同步 OFDM系统对定时与频率偏移敏感,特别就是实际应用中与FDMA、TDMA与CDMA 等多址方式结合使用时,时域与频率同步显得尤为重要。 (2) 信道估计

基于MATLAB的MIMO-OFDMA系统的设计与仿真

基于MATLAB的MIMO-OFDMA系统的设计与仿真 摘要 在信息时代的快速发展形势下,产生了越来越多的业务需求,用户对通信系统的性能提出了更高的要求。基于正交频分复用( Orthogonal Frequency Division Multiplexing,OFDM )技术和多输入多输出(Multiple Input Multiple Output,MIMO )技术的无线通信系统在增加系统容量、提高频谱利用率以及对抗频率选择性衰落等方面具备优越的性能,是未来通信领域中的关键技术。 本文首先阐述了MIMO技术和OFDM技术的国内外研究概况,然后通过分析MIMO技术和OFDM技术的基本原理和系统结构,设计出简单的MIMO-OFDM系统。基于MATLAB软件对所建立的MIMO系统的信道容量进行了仿真,并对SISO-OFDM系统和MIMO-OFDM系统的性能进行了比较,仿真结果表明,本文所提出的MIMO-OFDM系统方案能够在不增加误比特率的情况下增加信道容量,最后结合空时分组码(Space Time Block Coding,STBC)对MIMO-OFDM系统进行了完善并采用MATLAB对其性能进行了仿真,结果显示,相较于未完善的系统完善后的系统的误比特率指标明显降低,传输可靠性得到了极大的提高。 关键词:无线通信;MIMO;OFDM;误比特率

Performance Evaluation of MIMO-OFDMA System using Matlab Abstract As the rapid development of information technology has resulted in more influences on people’s daily lives and businesses. Higher requirements should be provided by communication system to meet people’s needs. The communication system which based on the technology of Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) enables to not only increase the system capacity, but improve the spectrum utilization, and moreover to effectively against frequency selective fading, has become the key technologies in the field of communication in the future. This paper first gives an in-detailed survey on MIMO and OFDM technologies in academic society. After that, we designed a simple MIMO-OFDM system by means of the analysis of the basic concepts and the architecture of MIMO and OFDM technology. Followed by performance evaluation via Matlab to compare SISO-OFDM and MIMO-OFDM systems in term of channel capacity and Bit Error Rate (BER) to validate the proposed MIMO-OFDM system outperforms SISO-OFDM. Finally, we further integrated space-time block codes into the proposed MIMO-OFDM system, through simulation results, we can observe that BER can be significant reduced compared to its counterpart which without implements space-time block codes. Keywords:Wireless communication,MIMO, OFDM, Bit Error Rate (BER)

基于matlab的ofdm系统设计与仿真

基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其

无线通信原理基于matlab的ofdm系统设计与仿真

无线通信原理:基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。 第一章ODMF系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构

多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其满足下面的关系:),1(,/0N k T k f f N k ?=+=,其中N T 为单元码持续时间。单个子载波信号为: ? ??<≤=others T t t f t f N k k 00)2cos()(π (1-2) 由正交性可知:????≠==n m n m T dt t f t f N m n 0)(*)( (1-3) 由式(1-3)可知,子载波信号是两两正交的。这样只要信号严格同步,调制出的信号严格正交,理论上接收端就可以利用正交性进行解调。OFDM 信号表达式与FDM 的一样,区别在于信号的频谱。OFDM 信号的频谱与FDM 频谱情况对比如图1-2所示。由图1-2可以看出,由于采用的原理不一样,FDM 中接收端需要频率分割,因而需要较宽的保护间隔。OFDM 系统的接收端利用正交性解调,相邻子信道频谱在一定程度上是可以重叠的。 图1-2 FDM 与OFDM 的频谱

基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真 摘要:随着通信产业的逐步发展,4G时代已经来临。作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。它具有频谱利用率高、抗干扰能力强等优点。本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。 关键词:正交频分复用;MATLAB;仿真;BER Design and Simulation of OFDM System Based on MATLAB Abstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve . Keywords: OFDM; MATLAB; Simulation; BER

基于matlab的OFDM系统仿真毕业设计论文

毕业设计论文 基于Matlab的OFDM系统仿真及分析 Simulation and Performance Analysis of OFDM System Based on Matlab

毕业论文任务书

毕业设计开题报告

摘要 在无线通信系统中,存在着各种严重的衰落,例如频率选择性衰落、快衰落和慢衰落,以及由于各种物体对传输信号的反射引起的多径传播,而由此引起的符号间干扰是无线通信系统设计中必须考虑的问题,特别是在高速传输的环境中。而正交频分复用(OFDM)正是为了解决这些问题提出的,它是第四代移动通信的核心技术之一。 OFDM是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速度快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播、地面数字视频广播、无线局域网等领域得到广泛应用。 本文论述了OFDM的基本原理以及信号调制技术,给出了OFDM系统模型,并从频域的角度分析OFDM信号的性质及DFT实现,最后用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序,对OFDM调制系统中主要传输技术、基本参数的选择、同步及关键技术和仿真实现进行了相关的讨论。 关键词:OFDM多载波系统仿真MATLAB

Abstract There are some severe problems in wireless communication systems, such as frequency selective fading, fast fading and slow fading, and various objects of reflection led to the transmitted signal multipath propagation. The resulting inter-symbol interference (ISI) is a wireless communication system design issues that must be considered, especially in the high-speed transmission environment. Orthogonal frequency division multiplexing (OFDM) is proposed to solve these problems, it is the core technology of the fourth generation mobile communication. OFDM is a special multi-carrier transmission scheme, it combines some technologies such as figure modulation, digital signal processing, multi-carrier transmission. It is the maximum utilization of the spectrum communication system, with the advantages of faster transfer rates, anti-multipath interference. Currently known at present, OFDM technology is widely used in the digital audio broadcasting, terrestrial digital video broadcasting and wireless LAN. This paper introduce the orthogonal frequency division multiplexing basic principle and discusses signal modulation technology, then, given OFDM system model, and analysis the nature and DFT realization of OFDM signals from the point of view of frequency domain. Finally, based on the given system model, OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Discussing in the system of OFDM modulation transmission technology, basic parameter selection, system of synchronous, key technology and OFDM system simulation. Key words:OFDM Multi-carrier System Simulation MATLAB

相关文档
相关文档 最新文档