文档库 最新最全的文档下载
当前位置:文档库 › 从abaqus的inp文件编写节点坐标系的例子

从abaqus的inp文件编写节点坐标系的例子

从abaqus的inp文件编写节点坐标系的例子
从abaqus的inp文件编写节点坐标系的例子

*part,name=NDSYS

**system

**0,0,0,10,0,0

*node,system=c

1,5,0,0,

8,5,90,0 !third data angle

9,0,0,0

*ngen,line=c,nset=pt8

1,8,1,9,0,0,0,0

*element,type=b31

1,1,2

*elgen,elset=allbeam

1,7,1,1,

**transform,nset=pt8,type=c

**0,0,0,0,0,1

*end part

*Heading

** Job name: Job-4 Model name: NDSYS

** Generated by: Abaqus/CAE 6.11-1

*Preprint, echo=NO, model=NO, history=NO, contact=NO **

** PARTS

**

*Part, name=NDSYS

*Node

1, 5., 0., 0.

2, 4.87463951, 1.11260462, 0.

3, 4.50484419, 2.16941881, 0.

4, 3.90915751, 3.11744905, 0.

5, 3.11744905, 3.90915751, 0.

6, 2.16941881, 4.50484419, 0.

7, 1.11260462, 4.87463951, 0.

8, 0., 5., 0.

9, 0., 0., 0. *Element, type=B31

1, 1, 2

2, 2, 3

3, 3, 4

4, 4, 5

5, 5, 6

6, 6, 7

7, 7, 8

*Nset, nset=PT8, generate

1, 8, 1

*Elset, elset=ALLBEAM, generate

1, 7, 1

*End Part

**

**

** ASSEMBL Y

**

*Assembly, name=Assembly

**

*Instance, name=NDSYS-1, part=NDSYS

*End Instance

**

*Nset, nset="_T-Datum cyli", internal

NDSYS-1.PT8,

*Transform, nset="_T-Datum cyli", type=C

0., 0., 0., 0., 0., 1. *End Assembly

** ----------------------------------------------------------------

**

** STEP: Step-1

**

*Step, name=Step-1

*Static

1., 1., 1e-05, 1.

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: 位移/转角

*Boundary

NDSYS-1.PT8, 1, 1

NDSYS-1.PT8, 2, 2

**

** LOADS

**

** Name: Load-1 Type: Concentrated force

*Cload

NDSYS-1.PT8, 1, 1.

NDSYS-1.PT8, 2, 1.

**

** OUTPUT REQUESTS

**

*Restart, write, frequency=0

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT **

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT *End Step

本人学习abaqus五年的经验总结-让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。 ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import→Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法:(1)导入ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析 (2)线性摄动分析步(linear perturbation step)只能用来分析线性问题。在ABAQUS/Explicit 中 不能使用线性摄动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。 —Buckle: 线性特征值屈曲。 —Frequency: 频率提取分析。 —Modal dynamics: 瞬时模态动态分析。 —Random response: 随机响应分析。 —Response spectrum: 反应谱分析。 —Steady-state dynamics: 稳态动态分析。 [9](pp33)在静态分析中,如果模型中不含阻尼或与速率相关的材料性质,“时间”就没有实际的物 理意义。为方便起见,一般都把分析步时间设为默认的 1。每创建一个分析步,ABAQUS/CAE 就会自动生成一个该分析步的输出要求。 [10] (pp34)自适应网格主要用于ABAQUS/Explicit 以及ABAQUS/Standard 中的表面磨损过程 模拟。在一般的ABAQUS/Standard 分析中,尽管也可设定自适应网格,但不会起到明显的作用。 Step 功能模块中,主菜单Other→Adaptive Mesh Domain 和Other→Adaptive Mesh Controls 分别 设置划分区域和参数。 [11](pp37)使用主菜单Field 可以定义场变量(包括初始速度场和温度场变量)。有些场变量与分析步有关,也有些仅仅作用于分析的开始阶段。使用主菜单Load Case 可以定义载荷状况。载荷状况由一系列的载荷和边界条件组成,用于静力摄动分析和稳态动力分析。

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

84坐标系向其他的坐标系转化方法

Garmin手持机中WGS84坐标转换成BJ54坐标时要设置哪些参数?如何设置? 答:可以通过用户自定义的方式来实现。方法如下: 1.进入"主菜单页面"的"设置"子页面中,按动方向键选择“单位”按输入键进入坐标设置 的页面,将"位置格式"的选项改为" User UTM Grid "(自定义坐标格式)。 2.在出现的参数输入页面中输入相关的参数,包括中央经线,投影比例(该数值为1), 东西偏差(该数值为500000),南北偏差(该数值为0)。 3.按下屏幕上的"存储"按钮后,再将"地图基准"(有的机器称之为"坐标系统")的选项改 为"User"(自定义坐标系统)。 4.在出现的参数输入页面中输入相关参数,包括DX,DY,DZ,DA和DF。其中DA的数值 为-108,DF的数值为0.0000005。按下屏幕上的"存储"按钮后,机器显示的位置将用北京54坐标来表示了。如果是80坐标,则DA=-3,DF=0。 5.DX,DY,DZ三个参数因地区而异,具体如何求解可以让他们首先与本地测绘部门去咨 询,如果不给的话,可以通过如下方法来求解: 首先知道一个点的已知BJ54坐标(这个他们肯定都有,如果要做工作的话),然后用手持机测此点的坐标(WGS84坐标),通过坐标转换程序,即可求出DX,DY,DZ。需要注意的是,此程序中的y为6位数,也就是要将Bj54坐标中的前两位(带数)去掉。如果不知道BJ54坐标的高程,可以输入与WGS84坐标相同的即可。 通过上述设置后,即可将坐标系进行转换,此时手持机中显示的坐标上行为y,下行为x坐标。 中央子午线计算方法:例如,计算东经85°32'在3度带/6度带的代号N 经度L1与6度带带号N的关系为: L1=6N-3° 则N=Int((L1+3°)/6 + 0.5)=Int((85°32'+3°)/6 +0.5)=Int(15.26)=15 其中,Int()为取整函数 所以,东经85°32'在6度带上的带号为15,则带号为15的6度带的中央子午线为L1=6N-3=87° 经度L2与3度带带号n的关系为: L2=3n 则n=Int(L2/3+0.5)=Int(85°32'/3 +0.5)=Int(29.01)=29 所以,东经85°32'在3度带上的带号为29,则带号为29的3度带的中央子午线为L2=3n=87°

ABAQUS实例分析(可编辑修改word版)

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS 实例分析 学生姓名XXXX 学号XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师XX 2013 年 5 月8 日

目录 第一章Abaqus 简介 (1) 一、Abaqus 总体介绍 (1) 二、Abaqus 基本使用方法 (2) 1.2.1Abaqus 分析步骤 (2) 1.2.2Abaqus/CAE 界面 (3) 1.2.3Abaqus/CAE 的功能模块 (3) 第二章基于Abaqus 的通孔端盖分析实例 (4) 一、工作任务的明确 (4) 二、具体步骤 (4) 2.2.1启动Abaqus/CAE (4) 2.2.2导入零件 (5) 2.2.3创建材料和截面属性 (6) 2.2.4定义装配件 (7) 2.2.5定义接触和绑定约束(tie) (10) 2.2.6定义分析步 (14) 2.2.7划分网格 (15) 2.2.8施加载荷 (19) 2.2.9定义边界条件 (20) 2.2.10提交分析作业 (21) 2.2.11后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus 简介 一、 Abaqus 总体介绍 Abaqus 是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus 不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus 使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus 具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus 主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、 Abaqus 基本使用方法 1.2.1Abaqus 分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个 Abaqus 输入文件。提交给 Abaqus/Standard 或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard 或 Abaqus/Explicit):在分析计算阶段, 使用 Abaqus/Standard 或Abaqus/Explicit 求解输入文件中所定义的

电子图纸坐标系的转换方法和步骤

电子图纸坐標系的轉換方法和步驟 测量坐标系在整个测量工作中是非常重要的。相对一些结构复杂,难度系数比较大的工程,在坐标及角度计算方面的工作量就相当之大,同时对于数据计算的准确度要求就更严格,为了减轻测量数据的计算量和提高数据计算的效率及准确度,确保工程的质量,特对电子图纸坐标系的转换方法和步骤简介如下。 1、确定电子图纸坐标系的夹角。如果所承建的工程不是座落在正南正北方向上的话,就要确定设计的现场轴线测量坐标系与电子图纸上的轴线坐标系所存在的夹角度数(如东莞玉兰大剧院工程所存在的夹角度数为75.4823°)。方法:就是用90°减去设计图纸上坐标方格轴线纵横方位角中小于90°的方位角即可。 2、旋转电子图纸的面。方法:在CAD的命令行里输入UCS—新建N—X轴—180°—回车。意思是说整个图纸以X轴为旋转轴顺时针旋转了一个180°的面。 3、旋转电子图纸的坐标系。方法:利用直线命令在操作面上画出“十”字标志,然后用旋转命令旋转第一步中所知道的夹角度数。 4、定义电子图纸的坐标系。方法:在CAD的命令行里输入UCS—新建N—三点—原点(用光标选中“十”字标志的交叉点)—X轴(用光标选中“十”字标志竖轴的正上方端点)—Y轴(用光标选中“十”字标志横轴的右手方端点)—回车。意思就是确定电子图纸轴线坐标系的X轴和Y轴的方向。 5、定义电子图纸的坐标原点。方法:由于电子图纸上的轴线坐标点在没有转换坐标系之前,该点的实际坐标值与图纸上所标注的坐标值是不一致的,所以首先要在电子图纸上找到有坐标值的点作为基点,然后用相对坐标法画直线,在直线命令中输入下一点时就要按“@-x,-y”的方法输入该基点的坐标值,最后在画完直线后就要定义原点了,

Abaqus学习笔记

Abaqus学习笔记 Abaqus 使用日记Abaqus 标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。建模方法:一个模型(model)通常由一个或几个部件(part)组成,部件又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴、数据平面、装配体的装配约束、装配体的实例等等。1.首先建立部件 (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options 选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。 (3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除。 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、离散刚体和解析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

地方坐标系与CGCS2000坐标系转换方法的研究

地方坐标系与CGCS2000坐标系转换方法的研究 摘要:本文提出了地方坐标系和国家大地坐标系(CGCS2000)的几种转换方法,结合使用Mapinfo坐标转换软件,并进一步分析转换方法的转换结果,并提出相 应的结论。 关键词:地方坐标系;CGCS2000坐标系;转换方法;验证 引言 在新时期下,想要推动并发展数字地球、数字区域,必须要加强各类信息的 统一整合,加强信息共享度,这就需要结合GIS技术展开多源信息集成,空间坐 标系变换和统一则是实现多元数据统一管理、无缝集成的核心。GIS最为重要的 信息源就是地图(数字地图),在不同区域、不同时间段,其中的各类地图坐标 系也存在着些许差异。我国地图坐标系发展中,在上世纪90年代,我国基本比 例尺地形图主要采用了北京54坐标系、1980西安坐标系两种。而地方为了能够 满足当地城市建设发展需求,通常会构建独立的坐标系(地方坐标系),部分地 区甚至构建了两个及以上的独立坐标系。而如何进行地方坐标系与CGCS2000坐 标系相互转换是需要注意的问题。下文通过CGCS2000坐标系、地方坐标系建立 原理,分析二者的转换关系,并提出多种有效的转换方法。 1.地方坐标系与CGCS2000坐标系之间的关系 我国地形图比例尺中,小比例尺采用了6°分带、大中比例尺采用了3°分带, 均采用了高斯-克吕格投影。构建国家坐标系是以高斯-克吕格投影分带为基础, 并且每个分带都构建了直角坐标系,也就是高斯直角坐标系。结合投影变换规律,投影变形越大证明离中央经线的距离越远。绝大部分地区都难以精准的位于投影 中央带,这就需要结合CGCS2000坐标系进行转换。以黑龙江省大庆市为例,大 庆市辖5区4县,市区所处位置是E124°19'至E125°12',位于6°分带中的21带,中央经线为E123°;在3°投影带上,主要为42带,中央经线为E126°,其中杜尔 伯特蒙古族自治县还属于41带和42带两个投影带,中央经线为E123°、E126°。 由此可见,大庆市无法精确的在地图上表达空间信息,所以如果不进行坐标转换,则无法满足大比例尺测图要求,工程建设也无法满足工程要求。因此很多城市都 建立了独立的坐标系,在大比例尺地形当中单独使用。 地方坐标系构建,需要结合某地区国家控制点作为原点,通过原点的经线作 为中央经线。通常情况下,是在区域中部、西南角选择原点。地方坐标系与CGCS2000坐标系的关系见图1. 图1 地方坐标系与CGCS2000坐标系关系 2.地方坐标系和CGCS2000坐标系转换方法 对于当今绝大部分城市来说,城市大比例尺地图都是表示地方坐标系,不表 示CGCS2000坐标系(也不表示经纬度)。此类地图数据缺乏通用性,适用范围 局限,也是实现数据融合、发展数字地球的一大阻碍。因此,本文通过对地方坐 标系、CGCS2000坐标系建立原理、二者相互关系的研究,提出了几种坐标系转 换方法,主要有: 2.1直接变换法 如图1所示,地方坐标系与CGCS2000坐标系之间存在着平移、旋转关系,

abaqus实例详细过程(铰链) 免费

铰链 一、创建部件 1、进入部件模块。。点击创建部件。 命名为Hinge-part,其他的选项选择如右下图所示。点击 “继续”,进入绘图区。 2、点击,在绘图区绘一个矩形。再点击,将尺寸改为 0.04*0.04。单击鼠标中键。 3、在弹出的对话框中输入0.04作为拉伸深度。点击”确定”。 4、点击创建拉伸实体,点击六面体的一个面,以及右侧的边。进入到绘图区域。 5、如下图那样利用创建三条线段。利用将两条横线都改为0.02mm长。 6、选择,做出半圆。 7、点击,以半圆的圆心为圆心,做圆。 8、点击为圆标注尺寸。输入新尺寸0.01。 9、在弹出的对话框里输入拉伸深度为0.02,拉伸方向:翻转。点击“确定”。 10、在模型树的部件里,选择圆孔部件。右击,编辑。将内孔直径改为0.012.。确定。

创建润滑孔 1、进入草图模块。创建名为hole的草图。如右图所示。单击“继续”。 2、单击做一个直径为0.012的圆。单击鼠标中键。进入部件模块。 3、选择主菜单栏的工具→基准。对话框选择格式如下图所示。 选择半圆形边。参数设为0.25。。单击中键,点就建好了。软件提示选择一个轴。那么,我们就创建一个基准轴。如上图右侧所示。选择刚刚建好的那一点以及圆孔的中心,过这两点创建一个轴。再在基准处点击如下图所示,选择刚刚建好的点和轴,那么面也就建好了。

4、点击,视图左下角的显示区显示,选择上一步中创建的基准面,再选一个边。如图所示。进入绘图区。 6、导入之前绘制的小润滑孔hole。利用将孔移植所需位置。单击中键。选择正确的翻 转方向。对话框按右下图设置。确定。 7、将部件的名称改成hinge-hole,并复制一个命名为hinge-solid。 将hinge-solid的模型树张开,删除其下的特征,即该部件不带孔。 8、创建第三个部件:刚体销。 点击创建部件按钮,命名为pin,解析刚体,旋转壳。具体见下图所示。单击“继 续”,在出现的旋转轴右侧画一条垂直向下的直线。用将该直线的长度改为0.06,与旋转轴的距离为0.012,点击确定,界面出现旋转之后的销。

地方坐标系与国家坐标系转换方法探讨

地方坐标系与国家坐标系转换方法探讨 摘要:提出地方坐标系与国家坐标系的两种转换方法,开发基于MapInfo的坐标转换软件,用实例验证和分析两种转换的结果。 在GIS 环境下进行多源信息的集成,将各种数据整合成统一规范的信息,从而实现数据的共享是数字地球、数字区域的必由之路,空间坐标系的变换与统一则是实现多源数据的统一管理、无缝集成的关键。地图是GIS 主要的信息源之一,而不同的时期、不同的区域、不同的用途使得各种地图的坐标系存在很大的差异。就我国的地图坐标体系而言,20世纪90 年代前后,国家基本比例尺地形图分别采用北京坐标系和西安坐标系。地方上为了适应各类城市建设的需要,往往建立自己的独立或相对独立的坐标系,称为地方坐标系。有些地区甚至存在两个以上的独立坐标系。 本文根据国家坐标系及地方坐标系建立的原理,从理论上对其转换关系进行分析,提出两种可操作的转换方法及其实现方案。 一、地方坐标系与国家坐标系的关系 我国大、中比例尺地形图均采用6°分带或3°分带的高斯―克吕格投影,国家坐标系的建立是以高斯―克吕格投影分带为基础的,各带分别建立直角坐标系,简你高斯直角坐标系。根据高斯―克吕格投影的变形规律,离开中央经线越远,所产生的投影变形就越大。而大多数地区或城市都不可能正好位于投影带中央。例如,上海市所处的位置大约是E120°50′~E122°00′,在6°分带中位于第21 带,其中央经线为E123°,区域的最大长度变形可达0.000 52 ;对于3°投影带,上海又同时属于第40,41这两个投影带,中央经线分别是E120°和E123°。如此对于上海这样的城市来说,就不能精确地在地图上表达其空间信息,因而不能满足大比例尺测图或工程建设的需要。因此,一些大中城市都建立了自己的独立坐标系,并在大比例尺地形图中单独使用。 地方坐标系的建立,通常是根据需要以本区某国家控制点为原点(地方坐标系的起算点),过原点的经线为中央经线。原点通常选择在区城的中部或者西南角。地方坐标系与国家坐标系关系如图1a(略)所示 二、地方坐标与国家坐标变换方法 目前我国许多城市的大比例尺地图通常只表示其地方坐标系,一般并不表示国家坐标,也不表示经纬度。这类地图数据的通用性一般比较差,成为多源数据融合的一个障碍。笔者根据国家与地方坐标系建立的原理及其相互关系,提出地方坐标转换为国家坐标乃至地球坐标的两种方法:直接变换法和间接变换法。 1.直接变换法 如图1a 所示,地方坐标系与国家坐标系之间存在一种旋转与平移的关系。因此,进行两坐标系转换的最直接办法是求算地方坐标系相对于国家坐标系的旋转角度和平移量。 (1)、计算地方系对国家系的旋转角 在高斯―克吕格投影中,除中央经线投影为直线外,其余经线均对称并收敛于中央经线。根据国家坐标系和地方坐标系的建立原则,国家与地方两坐标系的夹角即为子午线收敛角。已知某地方原点的经纬度,利用子午线收敛角公式可计算地方坐标系相对于国家坐标系的旋转角度α。

转坐标系详细步骤

转坐标系详细步骤

————————————————————————————————作者:————————————————————————————————日期: ?

“北京54坐标系”转“西安80坐标系”一、数据说明 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面讲述利用已知的3个以上(本例采用4个点计算)的公共点计算七参数方法转换: 二、利用4个已知公共点计算转换七参数 1、数据准备 (1)将已知54、80坐标系直角坐标拷贝到文本文档,其排列格式如下(图1、图2):不加带号。 图1 54直角坐标 图2 80直角坐标 (2)将已知54、80坐标系直角坐标利用MAPGIS“投影变换”转换为经纬度坐标,且坐标单位为“秒”,这样计算出的参数用来转换为80坐标系时更精确。具体操作步骤如下: 1)启动MAPGIS下“投影变换模块”,点击“投影变换”下“用户文件投影转换”弹出“用户数据点文件投影转换”对话框,如图3; 2)点击“打开文件”,选择已准备的“54直角坐标.txt”文本文档,打开后选择“按指定分隔符”后弹出的对话框点击确定激活“设置分隔符”选项,点击“设置分隔符”,其设置方式为:①“Tal键”、“空格”两个选

图3 图4

项前画勾,②修改“属性名称所在行”,点击其下拉箭头选择“无”字下面一组数据,③将“属性名称”修改为x、y,④“数据类型”修改为“5双精度”,⑤“小数位”修改为“5”或其他均可,但最好至少为“2”,其设置与最终转换出坐标的小数位数相关。设置完成后点击“确定”。如图4。 3)设置“用户投影参数”及“结果投影参数”其设置方式如图5、图6。注意:投影中心点经度一定要输入,如经度为105°,其格式为1050000,“用户投影参数”为“投影平面直角坐标”;“结果投影参数”为“地理坐标系”,且“比例尺分母”为“1”,“坐标单位”为“妙”,“投影中心点经度”要输入。二者“椭球参数”均为“54坐标系”。 图5用户投影参数 图6 结果投影参数 4)以上参数设置完成后点击“投影变换”——“写到文件”,弹出对话框如图7 ,先新建“54经纬度坐标.txt”,选中后点击保存,选择替换。 5)按照上述1)—4)步骤将已知的80直角坐标转换为以“秒”为单位的经纬度坐标。注意:在“用户投影参数”及“结果投影参数”设置时,二者“椭球参数”均为“80坐标系”,其他参数同上。 转换后的54和80坐标系以“秒”为单位的经纬度坐标如下:图7、图8。坐标中小数点前为“6位数”的是“经度”,小数点前为“5位数”的是“纬度”。 图7 54经纬度坐标图8 80经纬度坐标

abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。

1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图 为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹

坐标转换方法

在工作过程中许多朋友会遇到坐标转换的问题,下面笔者就经常使用的一个坐标转换软件的使用方法做一个稍微详细的说明。 1、坐标系的确定 图1 软件使用界面 图1为软件使用界面,目前我们在工作过程中碰到的XY坐标系大多为全国80(也称西安1980)坐标系,也会有少量的设计会使用北京54坐标系。 图2和图3为同一点转换成全国80和北京54后差别,从两个转换结果来看,两个坐标系相差较小,可能比系统误差还小。(坐标转换过程中会产生系统误差,在不同位置误差也会有差异,所以转换出来的坐标只能是大概位置的参考。有兴趣的可以去研究下大地坐标系和投影坐标系,研究明白了就知道了为啥会有一定程度的误差,而且偏离中心线越远,误差越大)

图2(北京54) 图3(全国80) 2、中央子午线的确定 中央子午线一般为三度带和六度带的中央子午线坐标(至于什么是三度带和六度带,有兴趣的可以自行去研究投影坐标系的由来)。三度带的中央子午线经度为3的整数倍,六度带的中央子午线经度为6的整数倍,以图3中坐标为例,经度为112°30′至115°30′以内的坐标均为以114°为中

央子午线经度的三度带分区内;经度为111°至117°以内的坐标均为以114°为中央子午线经度的六度带分区内。 无法确定所在区域的中央子午线经度,可将区域的经度转换成小数后除3或者6,四舍五入后再乘3或者6即为中央子午线经度,如图中114°30′,转换后为114.5°,除3,四舍五入后再乘3即为114°。 3、经纬度转XY坐标 图4 图4为经纬度转XY坐标方法示意,在确定区域的中央子午线经度后,在BL处填上相应的纬度和经度,点击转换即可转出所需坐标。 4、完整的XY坐标转经纬度 目前国内部分设计单位在设计时,出于某些目的,会省略XY坐标中的某些位数,因此在此处分完整的XY坐标转经纬度和不完整的XY坐标转经纬度。

Abaqus扩展有限元(XFEM)例子(裂缝发展)

Abaqus扩展有限元(XFEM)例子(裂缝发展) part模块中的操作: 1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1) 2.通过Rectangle工具画出一长3,高6的矩形。考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2) 3. 完成后拉伸此矩形,深度为1.(如图3) 4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)

5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08) 6 . 完成后拉伸此线,深度为1.(如图6) 7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。 8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图

8~11所示 Material模块中的操作: 1 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12) 2 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)

3.损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m,a=1.(如图14) 4.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相

手持GPS坐标系转换方法

手持GPS坐标系转换方法 杜大彬,张宽房,张开盾,李明贵 (陕西省地质调查院,西安710058) 摘要:导航型手持GPS目前在中小比例地质调查等领域得到广泛应用,由于坐 标系之I'.-1存在差异,在实际应用过程中,必须将手持机的WGS84坐标系转换为我 国应用的BJ54或西安8O坐标系。坐标转换的准确与否,直接影响到工程测量定位 的精度,传统的坐标转换计算所需要的起算资料不易收集,计算过程过于繁琐,非 专业人员难以掌握。本文根据收集的三角点BJ54坐标(或西安8O坐标),和现场 测定的过渡坐标,求出各参数在本工作地区的变化率,建立参数方程,反向求出适 合于当地的各项改正参数,方法简便易行,为手持GPS定位的坐标转换方法提出 一种新的思路。 关键词:坐标转换;WGS84坐标系;BJ54坐标系;过渡坐标;变化率 中图分类号:P228.4 文献标识码:B 随着技术的不断完善,导航型GPS的定位精度及功能较之以前有很大提高。它以其全 天候工作、携带方便、数据记录及回放快捷等功能,倍受使用者青睐。经过参数校正后的GPS,其平面精度完全可以取代地形图定点,因而在中小比例尺地质矿产调查数字填图、地球物理、地球化学勘探野外作业的点位测量中有着广泛的应用前景。 坐标系转换问题提出 由于GPS卫星星历是以WGS84坐标系(经纬度坐标)为依据而建立的,我国目前应 用的地形图一般采用1954年北京坐标(以下简称BJ54坐标)系或西安8O大地坐标系,不 同的坐标系之间存在平移和旋转关系,在不同地区,同一点位的WGS84坐标值与我国应用的坐标系的坐标值,有约6O~150 In的差值。在实际应用中,不同的坐标系必须进行坐标转换。由于手持机测量通常是短时间近似测量,采用单次测量或多次测量值取平均值,一般不作差分处理,从某种意义上讲,手持机的相对定位精度受其接收信号强度影响,坐标转换参数的准确与否,直接影响其绝对定位精度。 坐标转换的关键是求出不同坐标系之间的坐标转换参数,在实际工作过程中,坐标系统 收稿日期:2OO7一O5一O8 作者简介:杜大彬,男,37岁,工程测绘工程师,主要从事物化探及地质测量工作。 维普资讯https://www.wendangku.net/doc/4d19091944.html, 第1期杜大彬等:手持GPS坐标系转换方法 的转换通常采用方法是在应用区域内GPS“B”级网内,收集三个以上网点的WGS84坐标 系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x(高程异常),按其参考球体的 投影方式,计算各参数的差值。由于各地GPS建网及重力研究工作程度不同,通常在某些地区,常用参数尤其是高程异常,一般不易收集,并且其计算过程较为繁琐。 为了寻求一种快捷、方便、精度满足工作要求的GPS坐标转换方法,作者经反复试验, 总结出坐标转换的一些规律。以台湾GARMIN仪器公司的ETREX VISTA (展望)机型使 用为例,这里给出一种只用一个三角点,推算其BJ54(西安80)坐标改正参数的方法。 2 参数变化在坐标系转换的规律 作者曾在陕南某地从事物探电法工作时,特意在一已知三角点作GPS参数变化试验, 、该三角点的BJ54坐标值为:X—XXX0433.217;Y—XXX67605.110,三角点位于汉江南岸,视野开阔,有利于GPS观测。在观测时设置当地中央经线、DA、DF等参数,DX、 DY、DZ均为0,在星况稳定且仪器显示估计误差为5 m 时,在已知点上读取若干组数据,取得其平均值为x—XXX0445;Y—XXX644。此值作为WGS84与BJ54坐标系之间转换的 过渡坐标。

abaqus6.12 典型实例解析

(北京) CHINA UNIVERSITY OF PETROLEUM 《工程分析软件应用基础》保险杠撞击刚性墙的实例分析 院系名称:机械与储运工程学院 专业名称:机械工程 学生姓名: 学号: 指导教师: 完成日期2014年5月1日

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法 一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而 来采用克拉索夫斯基椭球体其参数为长半轴为 6378245米扁率为 1 。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用但 该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合在中 国东部地区大地水准面差距自西向东增加最大达+68米其椭球的长半轴与现代 测定的精确值相比109米的缺陷定向不明确椭球短轴未指向国际协议原点 CIO也不是中国地极原点起始大地子午面也不是国际时间局BIH 所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局 部平差逐级控制求得的由于施测年代不同、承担单位不同不同锁段算出的成 果相矛盾给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建 立中国新的国家大地坐标系有关部门根据会议纪要,开展并进行了多方面的工 作,建成了1980西安国家大地坐标系(GDZ80)该坐标系全面描述了椭球的4个 基本参数,同时反映了椭球的几何特性和物理特性这4个参数的数值采用的是 1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭 球 ) 。其主要参数为长半轴为6378140 米扁率为 1/。IAG-1975 椭球参数精度较高能更好地代表和描述地球的几何形状和物理特征。在其椭体 定位方面以我国范围内高程异常平方和最小为原则做到了与我国大地水准面 较好的吻合。 此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平 差和逐级控制产生的不合理影响提高了大地网的精度在上述基础上建立的 1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建 设的需要。 由于北京54坐标系和西安80坐标系是两种不同的大地基准面这两个椭球 参数不同参心所在位置不同指向不同在高斯平面上其纵横坐标轴不重合 因而同一点的坐标是不同的无论是三度带六度带还是经纬度坐标都是不同的其平面位置最大相差80米。 二、转换原理 北京54坐标与西安坐标之间的转换其实是一种椭球参数的转换作为这种 转换在同一个椭球里的转换都是严密的而在不同的椭球之间的转换是不严密 的因此不存在一套转换参数可以全国通用也没有现成的公式来完成转换因此 必须利用具有两套坐标值的公共点实现转换。 以下作者结合工作实际分别给出利用南方测绘公司的地形地籍软件 CASS2008和工具软件把1954年北京坐标转换为1980西安坐标的方法。 三、转换方法 ㈠、利用南方CASS2008进行坐标转换 1、输入公共点坐标数据 首先准备好2至3个公共点即同时拥有54和80两套坐标这些点要覆盖 要转换数据所在在地区。然后打开CASS2008选择“地物编辑”菜单下的“坐 标转换”进入坐标转换界面,在“公共点”下面“转换前”后面的三个输入框中

相关文档
相关文档 最新文档