文档库 最新最全的文档下载
当前位置:文档库 › 牺牲阳极应用中的几个问题

牺牲阳极应用中的几个问题

牺牲阳极应用中的几个问题
牺牲阳极应用中的几个问题

牺牲阳极应用中的几个问题

王芷芳

天津大学材料学院300072

朱安纲

天津市煤气工程设计院300381

摘要: 本文从牺牲阳极应用范围、阳极材料的选择、阳极埋土环境、阳极在升温条件下的工作、介质成分的影响、以及阳极布置、带状阳极等方面说明牺牲阳极在应用中需注意的几个问题.

关键词: 镁阳极、锌阳极、铝阳极、应用、注意事项

一牺牲阳极应用范围

·SY/T0019-97 (埋地钢质管道牺牲阳极保护设计规范)一般规定:

3.0.4被保护的管道应具有质量良好的覆盖层,新建管道的覆盖层电阻不得小于

10000Ω.m2,否则不宜采用牺牲阳极。对于旧管道,应根据具体需要决定。

3.0.5当土壤电阻率大于100Ω.m时不宜采用牺牲阳极。

以上两条告知:牺牲阳极适用在具有良好覆盖层,以及土壤电阻率低的场合。否则技术上不可行或经济上不合理。通常强制电流阴极保护不受此限制。

二、牺牲阳极种类的应用选择: 按上述标准

从表中得知:镁阳极用在高土壤电阻率、淡水; 锌阳极用在低土壤电阻率、海水、咸水; 铝阳极不宜用在土壤中、可在海水中使用。

三、牺牲阳极埋土环境的重要性

据四川石油设计院钟富荣调查报导[2]北滩油库输油管道的镁阳极使用6年后,北京一条液化气管道镁阳极埋于菜地使用14年后,都能输出相当大的保护电流。与之相反,埋于土壤不那么潮湿的野草地里,镁阳极只能输出小得多的电流。锌阳极情况与镁阳极相似。这说明把带填包料的牺牲阳极埋于持久潮湿土壤里,才能长期正常运行。笔者在塔里木的塔中作业区,处于干燥少雨的沙漠,镁阳极驱动电位很低,开路电位正移,仅能发出几个毫安甚至微安级电流。阳极表面形成坚硬外壳,不均匀溶解,呈坑蚀状,管道未受到保护。

北滩油库输油管道的镁阳极使用6年仍能输出大电流,是因为镁阳极四周填料在水分持久充足的土壤里,镁阳极外层未生成高电阻腐蚀产物。石楼一燕山管

道镁阳极埋地5年完全输不出电流,是因为镁阳极埋于不很潮湿的土壤中,挖出检查,观察到镁阳极外层有高电阻腐蚀产物。以上实例说明要求把镁阳极埋于水塘边或水稻田、水沟旁深处潮湿的土壤里。同样埋于四川气田旱地约2年的锌阳极输出电流比初埋入时小很多,开路电位正移。而埋于水稻田的锌阳极输出电流,开路电位都无明显变化。作者对使用3年以上20支锌阳极,观察结果凡埋于旱地的锌阳极外壁有白色渣状或块状高电阻腐蚀产物。立式埋设阳极,中上部腐蚀轻与原尺寸无明显变化,下部腐蚀重,尺寸明显减小。因为氧会促使生成高电阻腐蚀产物,埋的越深,越潮湿的土壤含氧少。阳极腐蚀产物导电,不生成硬壳,保持长期输出大电流。因此,牺牲阳极设计与施工要注意,保证把阳极埋入要求的位置和深度。在不那么潮湿的土壤里使用牺牲阳极,可通过增大填料厚度,每年少雨季节隔一段时间一次性或多次绐土壤浇水,能有效地减轻土壤中氧的危害,确保牺牲阳极长期正常运行。

四、牺牲阳极在升温条件下工作[3]

镁、铝、锌阳极,在高于室温下工作,电化学性能都会降低。常温锌阳极随温度升高,晶间腐蚀倾向加大,电流效率降低。使用限制锌中铝含量的耐高温的锌阳极,没有晶间腐蚀,电流效率下降很少。纯锌阳极在升温条件下,会发生极性逆转。铝阳极、镁阳极随温度升高,发生电流加大,自腐蚀加大,电流效率低于50%,阳极溶解不均匀。

五、介质成分对牺牲阳极性能的影响[4]

Zn 基阳极: 标准电势-0.762伏(VS.SHE),理论发生电量0.82安.时/克,PH <7以Zn 2+存在,PH >11以Zn022-溶解,以上两区是腐蚀区,PH=8~11生成Zn(0H)2处于钝化区,溶液中含HCO 3-、NO 3-、CO 32-,Zn 电位急剧正移,加入高浓度SO 42-

后,Zn 阳极又恢复到较负电位,见图1,见图2。

-1.00

-0.90 {700ppmSO 42-,600ppmHCO 3-,73ppmNO 3-,20ppmCO 32-} -0.80 -0.70 {600ppmHCO 3-,73ppmNO 3-,20ppmCO 32-} -0.60 -0.50 -0.40 0 10 20 30 40 50 60 70 80 时间 小时 图1碳酸氢根富集的环境中,高浓度硫酸根加入对Zn 阳极电位的影响 -1.00 -0.90 -0.80 73ppmNO 3-,20ppmCO 32-} -0.70 -0.60 -0.50 -0.40 0 10 20 30 40 50 60 70 80

时间 天

Z n 电位 V (V S S C E )

Z n 电位 V (V S S C E )

-原来环境加入石膏CaSO4立刻发生电位急剧负移。

-图2原环境中加入石膏CaSO4后对Zn阳极电位影响

我国的几大油田土壤和地下水的成分不同,因此使用阳极要格外慎重。如大庆油田是NaHCO3型,使用锌阳极会发生钝化,而使阳极失效,可以考虑用镁或铝阳极。在土壤中使用化学填包料中大量石膏就起活化阳极使阳极电位负移作用。

Mg基阳极: 标准电势-2.37伏(VS.SHE),理论发生电量2.21安.时/克,PH<12,以Mg2+存在是腐蚀区,PH>12生成Mg(OH)2处于钝化区。随SO42-浓度增加电位负移,加入NaCL阳极效率下降。当土壤电阻率小于10Ω.m,PH≤4时不宜采用Mg阳极。对在磷酸盐、碳酸盐类土壤中使用,应对可能产生阳极钝化加以注意。

AL基阳极: 标准电势-1.66伏(VS.SHE),理论发生电量2.93安.时/克,PH<4以

AL3+存在,PH>8以ALO

2-形式溶解,以上两区为腐蚀区,PH=4~8生成AL

2

O

3

处于钝

化区。在酸性和碱性介质中表面膜溶解。溶液中含SiO

32-、SO

4

2-会使AL钝化,此

外,CrO

42-、NO

3

-、CLO

4

-等阴离子也会使AL钝化,CL-破坏钝化,氯化物盐的加入

如MgCL

2

或NaCL加入,会使AL阳极活化。因此,AL阳极填包料与Zn、Mg阳极填包料成分完全不同,应用时要考虑活化阳极所用的化学成分。由此可得知AL 阳极适宜在海水中工作。

六、阳极填包料

化学填包料有多种成分组成,有的配方中可溶性盐含量较多,这些盐溶水流失,填包料量减小,最初效果好,以后随盐分流失,阳极地床接地电阻逐渐增大。石膏粉是改善Zn、Mg阳极性能,活化阳极,使它溶解均匀的重要成分,要保证有足够量。因此,多年实线证明:镁、锌阳极最佳填包料配方是下列重量比:生石膏:膨润土:硫酸钠=75:20:5为合宜。

七、阳极的布置

阳极单支或成组埋设均可,成组埋设的阳极因电场的相互影响,组内几支阳极共同发出的电流远远小于单支阳极发出电流的几倍,阳极有效利用率太低。成组布置阳极间距加大,影响保护电位分布的均匀性,单支分散布置,即提高阳极利用率,又因阳极间距缩小而做到保护电位分布均匀。实践证明比成组布置更为优越。

八、带状镁阳极的使用

带状镁阳极用高纯镁或镁、锰合金制造,电位负(-1.7V),用在高土壤电阻率环境中,如大于100Ω.m土壤。单重0.37Kg/m,由于单位重量表面积大,发出电流大,电流输出如下:当土壤电阻率50Ω.m,输出电流10mA/m;淡水电阻率150Ω.m,输出电流3mA/m。由此看出,它不适用电阻率小的环境中,因它消耗太快。套管内输送管能否用镁带,要取决了套管内介质电阻率,如果进入套管的介质电阻率小,带状阳极消耗太快,寿命短,不如用块状阳极,可与外管同寿命,而且价廉。镁带可以做为临时性保护或借助于使用期较短的镁带对钢表面进行予极化。

九、复合式阳极的应用

复合式阳极由镁和锌或镁和铝两部分组成,锌或铝在芯部,镁在外部。或设计镁

阳极与锌阳极(或铝阳极)混用,这两种阳极材料由于驱动电位相差较大,实现先由镁阳极对钢材迅速进行予极化,从而降低达到保护电位所需要的保护电流密度,可相应减少维护保护安培·小时额定量,比较镁包覆锌阳极与普通锌阳极,所需阳极数量减少,平均使用费用节约15~20%。

十、牺牲阳极在其它方面的应用

1、牺牲阳极可做成接地电池: 它是由两支或四支牺牲阳极(多用锌阳极),用塑

料垫块隔开,并成双地绑在一起,装在填满导电性填包料的袋子里,由被隔开的牺牲阳极,各引出一根导线接至绝缘接头或绝缘法兰两侧,一旦有强电冲击,强大的电涌将通过填料的低电阻传到另一侧,而不破坏被保护构筑物。

接地电池导线可直接焊在管道上,也可通过测试桩与管道引线相连。笔者主张直接焊接更稳妥,否则测试桩遭人为破坏,或连接不好,接地电池不能发挥作用。

2、牺牲阳极可做成接地极: 牺牲阳极除了防蚀外,还具有接地功能代替惯用的

铜或钢接地极它有二个好处 (1)不影响构筑物本身的阴极保护 (2)若无阴极保护不会因接地而引起构筑物的电偶腐蚀。可单支、二支或三支串联使用。

施工时,笔者建议在接地极外,同牺牲阳极,也同样使用填包料,这样做也有二个好处 (1)将接地极直接与土壤接触改为通过填包料再与土壤接触进一步降低接地电阻 (2)由于填包料的化学成分进一步活化接地极避免发生钝化,也进一步降低接地电阻。可减少接地极的数量。

3、作参比电极: 作参比电极用的锌必须是高纯锌(99.995%以上),或锌铝硅电极。

在土壤中使用必须有化学填包料,若阴极保护电位相对Cu/饱和CuSO4参比电极为-0.85V,相对锌参比电极电位为+0.25V。笔者提醒注意,这—数值是当锌参比的开路电位是-1.10V时,它们之间的差值:即-0.85一(-1.10)=+0.25V。

要保持锌参比在稳定的-1.10V,就要求锌参比电极长年埋在潮湿的土壤中,如果土壤干燥,锌电位要发生正移,比较基准的改变使保护电位的数值也随之变化,那就不再是+0.25V了。此点应引起注意,经常用便携式Cu/饱和CuSO4参比电极进行锌参比电位值校正是十分必要的。

参考文献

1、SY/T0019-97埋地钢质管道牺牲阳极阴极保护设计规范中国石油天然气

总公司发布1998实施

2、钟富荣牺牲阳极埋土环境重要性腐蚀与防护2001年第5期

3、王芷芳牺牲阳极在高温下电化学性能的测定化工腐蚀与防护1994年

第2期

4、GEORGE W KURR,Materials Performance April,1979.

编辑:今寄去本文可修改并给于答复.以前(年初)曾寄一篇题为{消除实施阴极保护的一些模糊观点},不知收到没有是否录用,请绐于答复。王芷芳2002/6/15

牺牲阳极技术规格书

技术规格书单位:河南汇龙合金材料有限公司 牺牲阳极专业:防腐及阴极保护 日期:2019 年 11月 11日第 1 页共14 页 牺牲阳极 技 术 规 格 书 河南汇龙合金材料有限公司 项目部刘珍 2019年11月11 编制校对审核

第 2 页共14 页 目录 1设计范围 (3) 2名词定义 (3) 3项目总体要求 (3) 4采用规范、标准及法规 (4) 5供货范围及界面 (5) 6技术要求 (5) 7材料要求 (11) 8检验和测试 (11) 9 标志 (12) 10包装和运输 (12) 11技术文件提交 (13) 12技术服务 (13) 13 验收 (13) 14 售后服务 (14)

第 2 页共14 页 1设计范围 本技术规格书规定了牺牲阳极在设计制造、材料性能、测试、检验、包装运输和验收等方面的最低要求。 本技术规格书适用于油气储运工程项目牺牲阳极的采购。 2名词定义 本技术规格书用到的名词定义如下: 业主:项目投资人或其委托的管理方; 设计单位:承担工程项目设计任务的设计公司或组织; 供货商:是指按照本技术规格书的要求为业主设计、制造、提供成套设备/材料的公司或厂家; 分包商:负责设计和制造分包合同所规定的设备/材料公司或厂家; 技术规格书:业主和设计提供的完整的技术规定,包括技术要求、数据单; 数据单:是指根据各工程项目实际情况,填入的用于订货的参数; 质保期:是指供货商承诺的对所供产品因质量问题而出现故障时提供免费维修及保养的时间段。 3项目总体要求 3.1供货商资质要求 3.1.1供货商证书要求 供货商及分包商应具有中华人民共和国或相应国际认证机构颁发的有效ISO14001 环境管理体系认证证书、ISO9001 质量体系认证证书、安全生产许可证和第三方出具的型式检验报告。 3.1.2供货商业绩和经验要求 供货商应具有良好的商业信誉和业绩,近 5 年经营活动中无不良记录,产品无不良应用记录。 供货商应提供近 5 年产品在石油石化行业的有效应用业绩,业绩表中提供的产品应不低于本次投标所提供产品的性能或技术参数,业绩表应包括工程名称、产品规格型号及主要技术参数、防腐管长度、管道直径、材质和管型等、使用地点、签订合同时间、有效业绩合同复印件、业主评价、业主联系人及联系方式。 3.2投标承诺

牺牲阳极式阴极保护施工工艺

牺牲阳极式阴极保护施工工艺 1、牺牲阳极式阴极保护主要施工工序流程 施工准备→依据设计图纸部署开挖阳极坑→将阳极装入填料包、填充化学填料→在阳极坑里安装阳极组、浇水→埋置测试桩及测量组元→阳极、电缆连接并做好密封→阴极保护数据测试→回填土、压实→质量验收并填写单位单项工程验收记录。 施工流程图: 2、施工准备 2.1 施工作业依据(技术资料准备): 工程施工前,项目经理部人员至少要熟练掌握以下施工技术资料: 《埋地预应力钢筒混凝土管道的阴极保护》GB/T 28725-2012 《预应力钢筒混凝土管的阴极保护》NACE RP 0100-2000

《埋地钢质管道阴极保护技术规范》GB/T 21448-2008 《锌-铝-镉系合金牺牲阳极》GB/T 4950-2002 《镁合金牺牲阳极》GB/T 17731-2009 《***工程阴极保护工程招标文件》 《***工程阴极保护工程招标文件》 设计方案及图纸 2.2 阴极保护材料的准备及验收 2.2.1 材料准备 牺牲阳极组(包括锌、镁合金牺牲阳极)、电缆、测试桩、防腐涂料。 2.2.2 材料验收 材料使用前,会同业主、监理、质检人员对材料进行核对验收,合格签字后,方可使用。验收规范如下: a. 材料出厂合格证,或产品检验报告的各项指标,符合设计要求。特别是阳极化学分析报告和阳极电化学性能检测报告必须符合设计要求的相关指标,并且该报告是由国家认可的、具有材料试验检验资格的第三方验证试验机构出具。 b. 根据订货合同核对材料品种、型号、规格、颜色、数量、有效期等。 c. 外观检查。阳极的表面质量应达到下列规定。 缩孔的深度不得超过阳极厚度的10%。 冷隔深度不得超过10mm,总长度不得超过150mm。 非金属夹渣不得超过阳极表面的1%。 阳极表面不得存在以下类型的裂纹:宽度大于3mm的裂纹;纵向长度大于阳极长度的50%的裂纹;不得存在扩展到铁芯或贯穿整个阳 极的裂纹。 阳极表面没有毛刺、飞边等对人员安全有危害的突出物。 阳极工作表面应保持干净,不得沾有油漆和油污。 d. 抽检阳极纯度、化学成分情况。参照下列标准的有关条款执行: 铝纯度不低于GB/T1196-2002中A199.70A的规定。 锌纯度不低于GB/T470-1997中Zn99.99的规定。 镉纯度不低于YS/T72-1994中Cd99.99的规定。

牺牲阳极阴极保护接地电阻改善方案

牺牲阳极法阴极保护的设计计算 实施阴极保护的金属集购物上的点位和电流分布函数是复杂的,它不仅与被保护金属结构物材料、牺牲阳极材料、环境介质条件直接相关,而且还与结构物的几何构型密切有关。从原理上考虑,牺牲样激发和外加电流阴极保护的点位、电流分布的计算式基本相同的,它们都是保护电流在复杂电阻体系上产生的电压降结果。绵延分布的管线是几何构型最简单的一种结构物,它是一维延伸的,在数学上容易处理。许多复杂几何构型物往往可以看作为若干一维节段的组合和叠加。所以,阴极保护的设计计算常以埋地管线作为计算对象。 牺牲阳极法阴极保护的设计计算一般包括以下几个步骤。 ⑴确定最小保护电流密度i 对被保护结构物的最小保护电流密度确定,首选亏电实验值。可在现场安装一临时店员和接地极进行馈电试验,再根据达到保护电位时所对应的极化电流强度,推算出最小保护电流密度的取值范围。若无馈电实验值,一般可根据文献资料和经验选取。也可采用下式进行理论计算: I=△EO/RU 式中i—保护电流密度,mA/m2 △E—最小保护电位对结构物自腐蚀电位的负偏移值(极化电位,mV),△EO通常取300mV,它是最小保护电位-850mV (SCE)与钢铁在普通土壤中自腐蚀电位【一般为-550 mV(SCE)】的差值; R—结构物表面防腐层的楼电阻率,Ω?m2。 保护电流密度是阴极保护实践和设计十分重要的参数。但它受到被保护结构物/环境介质体系许多因素的影响,如结构物材料种类,防腐层质量,介质的性质、组成、分布和变化,甚至温度、气候或微生物存在与活动等。它的数值往往变化很大,即使在阴极保护运行过程中也是变化的。因此,要求准确的计算几乎是不可能的,但它仍是一个重要的参数值。对此,馈电试验或经验选取则是很有效的。 ⑵计算所需总保护电流强度I 根据被保护结构物的几何尺寸计算出需被被保护的总面积S(m),就可由保护电流密度i按下式计算所需总保护电流强度It(A): It=S?i 对于埋地管道则为: It=πDL?i 式中D—被保护管道外径,m; L—管道长度,m。 ⑶计算牺牲阳极接界电阻Ra 牺牲阳极的接界电阻是决定牺牲阳极输出电流的关键影响因素之一。它可通过实验测量或计算获得。经过一系列推导可获得接界电阻的计算公式,文献资料报道的阳极接界电阻的计算公式很多,现推荐以下一些计算公式: ①在土壤环境中的牺牲阳极接界电阻,即接地电阻的计算公式 a. 单支立式圆柱形牺牲阳极无填料(即填包料,下同)时,阳极接地电阻的计算公式为: RV1=p/2πL(In2L/d+1/2ln〔4t+L〕/〔4t-L〕) b. 单支立式圆柱形牺牲阳极有填料时,阳极接地电阻的计算公式为: RV2= p/2πLa(In2La/D+1/2ln〔4t+L〕/〔4t-L〕+pa/p×In×D/d) c. 但是水平式圆柱形牺牲阳极有填料时,阳极接地电阻的计算公式为: Rh= p/2πLa(In2La/D+In×La/2t+pa/p×In×D/d) 以上三式中,La>>d,t>>La/4。

长输管道牺牲阳极法阴极保护施工方案

司 材 长输管道牺牲阳极 阴 极 保 护 施 工 方 案 河南汇龙合金材料有限公司 项目部

目录 一、概述- ----------------------------------------------------------- 2 (一)原理----------------------------------------------------- 2 (二)牺牲阳极法阴极保护的优点--------------------------------- 2 (三)牺牲阳极材料--------------------------------------------- 2 (四)阳极安装方式--------------------------------------------- 6 (五)测试系统------------------------------------------------- 7 (六)应用标准和规范------------------------------------------- 7 (七)主要测试设备和工具--------------------------------------- 8 二、该项目管道牺牲阳极保护法的设计- --------------------------------- 8 三、施工方法- ------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 9 2、牺牲阳极法的施工: ------------------------------------------ 9

牺牲阳极使用说明

牺牲阳极使用说明 一、阳极的埋设: 1、在施工前搬运过程中要轻搬轻放,避免刮破阳极包。 2、使用前,请先将阳极包外面的包装袋(聚乙烯编织袋)除去,然后将阳极包(棉布袋)浸泡在清水中2小时左右,或者置入阳极坑后往坑内注水,使阳极包内填包料完全浸透。 3、将阳极组的两只阳极分别埋设在管道两边1.5米-3米左右范围内,阳极体与管道底部齐平,如果阳极埋设点附近有其他障碍物,可以在管道方向上前后5米范围内移动。阳极埋设示意图如图: 二、阳极电缆的连接 1、将盘圈的阳极电缆夹用剪刀剪开拉直引到被保护管道表面。

2、将管道欲焊接部位(大约50mm×50mm)用砂轮处理干净至光亮,表面无灰尘、油渍。处理完毕后,将电缆使用铝热焊焊接管道上(参照放热焊使用说明书)。 3、焊接完毕后用热熔胶补伤片补伤,补伤片范围不小于70mm×70mm(参照补伤片补伤说明书)。 用在电力接地网上时: 1.牺牲阳极布置 牺牲阳极按照均匀分布的原则进行水平布置,距离扁钢1m左右,但不小于0.5米,垂直埋深1m(与接地网扁钢同深)左右。 2.阳极电缆选用VV1×10 mm2铜芯电缆,长度为2米,末端焊接一段与扁钢焊接用的钢片。 3.阳极安装:按照设计要求,在埋设点挖好阳极坑,检查袋装阳极电缆接头的导电性能,如有损坏及时修补;将袋装阳极放入阳极坑中就位。 将阳极电缆末端钢片的与接地网采用四周角焊连接,焊缝长度不小于100 mm,焊接必须牢固,保证电气上的导电性。 阳极电缆的埋设深度不应小于0.7米,回填土中应无石块或其它杂物,以免损坏电缆的绝缘层;电缆敷设时应留有10%的裕量,以防止土壤沉降变形造成电缆接头损坏。 确认各焊点、连接点符合要求后,回填土壤。在干燥地区,回填土将阳极布袋埋住之后,向阳极坑内灌水,使阳极填充料吸满水后,将回填土夯实、恢复地貌。 备注:若电缆末端因其他原因不焊接钢片,那么可直接在接地网扁钢上进

各材质牺牲阳极材料的比较和分析_2020

牲阳极材料的比较和分析 1.1牺牲阳极 牺牲阳极保护法是指在腐蚀介质中,当牺牲阳极与被保护金属形成电性连接后,作为牺牲阳极金属靠自身溶解释放出的电流使被保护的金属构件——阴极极化到保护电位而实现金属防蚀方法。采用牺牲阳极进行阴极保护时,其效果与阳极材料自身的性能有着直接关系。牺牲阳极材料应具备以下性能:①具有足够负的电位;②工作中阳极极化率小,溶解均匀,产物可自动脱落;③具有较高的电流效率;④电化学当量高; ⑤腐蚀产物无毒,不污染环境;⑥价格便宜,来源方便,易于加工。 目前工程上常用的牺牲阳极材料有镁基合金、锌基合金和铝基合金3种。因材料的成分和电化学性能不同,应用环境也有所不同。 2.1.1镁基牺牲阳极 由于镁具有较高的化学活性,且电极电位较负(标准电极电位为一2.37V),在水中镁表面微观腐蚀电

位驱动力大,保护膜易溶解。因此,适于用做高电阻率的淡水、低盐度水以及电阻率为20~100Q·m的土壤的阴极保护材料。另外,由于镁的腐蚀产物无毒,还可用于生活水设施的阴极保护。纯镁阳极由于电流效率低(仅为30%),使用寿命短,目前已很少使用。通常在镁中加入适量A1,zn和Mn等元素,可使镁基阳极的电化学性能得到改善。如镁基合金牺牲阳极的电流效可达55%左右,但远低于锌基和铝基合金。国外开发出Mg—Mn系合金阳极,其电流效率达到 62.36%。 2.1.2锌基牺牲阳极 锌的密度大,理论发生电量小,标准电极电位为一0.762V,在腐蚀性介质中,对铁的驱动电位较低(约为0。2V)。但是电流效率较高,一般为95%。锌基阳极在高温下易极化,通常用于常温下的海水和电阻率较低的土壤中。由于锌基合金阳极在使用中不发生析氢反应,碰撞到钢构件时不会诱发火花,故是唯一可用做油罐、油舱保护的牺牲阳极材料。锌基阳极主要有2种:①高纯金属锌,要求严格控制杂质含量,锌含量要大于99.995%,铁含量<0.0041%;②低合金化

牺牲阳极保护设计与施工的经验建议

随着城市建设事业的飞速发展,埋地管道的数量剧增。这些管道多采用碳钢材质,为了延长管道的使用寿命,采取相应的防护措施尤为重要,其中涂层防腐和牺牲阳极保护联合防护取得了良好的效果。本文结合一些建设案例,针对牺牲阳极保护设计和施工中的问题提出一些建议。 管道防腐通常采用涂层加牺牲阳极保护,常规阴极保护有两种方法:外加电流法和牺牲阳极法。土壤电阻率约20Ω·m,保护电流密度为0.2mA/m2,自然电位为-0.4~-0.6V,管道保护电位(参比电极Cu/Cu-SO4)低于-0.95V。经过技术经济比较,牺牲阳极保护采用牺牲阳极法较适宜,该法施工简单,安全可靠,对邻近金属管道电干扰少,不用专人管理,可延长管道寿命1倍以上。 ②带状镁阳极的使用 带状镁阳极由纯镁或镁锰合金冷轧压制而成,开路电位(参比电极Cu/CuSO4)为-1.7V,单位长度质量为0.37kg/m,宜在电阻率≥100Ω·m的环境中使用。镁带在电阻率为50Ω·m的土壤中输出电流为10mA/m,在电阻率为150Ω·m的淡水中输出电流为3mA/m。同等质量带状镁阳极比锭状镁阳极表面积大很多,如11kg 镁锭表面积为0.27m2,而11 kg镁带长度为30m,表面积为1.9m2,是前者的7倍。阳极输出电流与表面积成正比,与电阻率成反比。阳极质量决定阳极寿命。设计上应考虑当地土壤电阻率,在穿越段或套管内管道上缠绕镁带要考虑它的使用寿命应该与管道寿命相当。如果设计寿命为20年,而当地土壤电阻率较低,就不宜采用镁带,而应采用锭状镁阳极。 常规设计穿越段或套管内管道通常采用镁带缠绕安装方法。绍兴天然气利用工程中采用的带状镁阳极断面尺寸为(19±0.5)mm×(9.5±0.5)mm,每根钢管缠绕2条带状镁阳极,缠绕方式为对称分布于管道两侧,每隔1~2m设一处捆绑带,其材料为尼龙带。电缆与镁阳极采用灌锡焊。绝缘层采用复合绝缘结构,从内向外为环氧树脂、电工胶布、塑料胶布、热缩套、防腐胶布,各层胶布缠绕时搭接。电缆与管道采用双点铝热焊连接,电缆蛇行并留有余量,两焊点间距>10cm,涂层破口尺寸为3cm×3cm,补口尺寸大于5cm×5cm。但在实际施工中这种镁带缠绕安装方法操作起来有困难,尤其是穿越段管道回拖时,缠绕的镁带会增加回拖阻力,且镁带容易脱落和断裂。因此,对于穿越段管道,建议不采用镁带,而是在出、入土点两处增设锭状镁阳极,并设置测试桩,定时检测阳极消耗量。对套管内管道,建议镁带的安装方法不采用缠绕,而是在不减少镁带量的前提下和管道平行安装,这样便于管道进入套管内而不损伤镁带。 ③三层PE涂层的优越性 在当前管道防腐涂层中,三层PE是诸多涂层中性能较优的一种,它不但有良好的机械性能,而且有良好的抗腐蚀性能和抗阴极剥离性能。三层PE涂层与阴极保护配合使用,大大降低阴极保护电流密度,从而降低阴极保护的造价。众多实例证实,新建PE涂层陆地管道所需保护电流密度约1~20μA/m2,海水管道所需保护电流密度约500μA/m2大大低于其他防腐层。但在当前设计中,由于缺乏对三层PE性能及使用寿命的认识,往往设计过于保守,造成牺牲阳极材料使用量过大。 ④绝缘装置的安装 阴极保护管道上的绝缘装置有多种形式,主要是绝缘法兰和绝缘接头。绝缘法兰必须架空,绝缘接头可直埋入地。安装绝缘装置会出现两个问题:a.如何保护绝缘装置不受强电电涌的破坏。目前绝缘接头有整体自放电型和无自放电型两种。整体自放电型绝缘接头由于内部有释放高压的装置,可省去具有相同功能的

镁阳极镁合金牺牲阳极的作用及原理

镁合金牺牲阳极的作用及原理 河南汇龙合金材料有限公司 2018年5月 技术部刘珍

1.纯镁牺牲阳极 镁为活泼金属,其电化学性能受杂质和合金元素的影响很大。当其含有少量杂质,特别是含有析氢过电位较低的杂质时,会使镁的自溶倾向增大,电流效率降低。镁中的一些杂质元素,如Fe,Co,Mn是以单质的形式固溶于镁基体中的,而另一些杂质,如Al,Zn,Ni,Cu等元素则易与镁形成金属间化合物,无论哪类杂质元素,它们相对于镁固溶体都呈现出强烈的阴极性,能增大析氢的有效面积,进一步增大镁的腐蚀速度。尽可能降低纯镁阳极中杂质元素的含量是必要的。杂质元素的质量分数(%)应控在:Zn<0.03.Mn<0.01.Fe<0.02,Ni<0.001} Cu<0.001.Si<0.01.但这给纯镁阳极的生产带来了困难。一般采用合金化方法,向工业镁中加入一定量的合金元素如Mn,Al,Zn等,就可消除杂质元素的不良影响,获得性能优良的镁合金牺牲阳极材料。一般的纯镁阳极由于电流效率很低(仅为30%左右),使用寿命短,故目前己很少使用。 2.Mg-Mn牺牲阳极 锰在镁中的溶解度为3.4%,如果熔炼方法控制适当,可得到含有少量Mn 晶体的Mg-Mn单相固溶体组织。锰是控制镁中杂质的一种很有效的净化元素,可消除杂质的不良影响,降低镁的自腐蚀速度。在镁合金熔炼过程中,锰与铁能生成比较大的Fe-Mn化合物而沉积于溶体底部,而残留在合金中的铁则溶解于锰中或被锰所包围,不产生阴极杂质的有害作用。但Mn在镁合金中有偏析现象,过量的Mn反而会造成合金耐蚀性及塑性的下降。国内外生产的Mg-Mn系合金阳极的锰含量一般为0.5%-1.3%,所允许的杂质铁和铜的含量分别小于0.03%和0.02%,比纯镁阳极中允许的杂质量高出十多倍。锰的另外一个作用是

牺牲阳极法阴极保护方案

牺牲阳极法阴极保护方案 一、将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。 二、牺牲阳极法阴极保护的优点: (1)不需要外部电源; (2)对邻近金属构筑物无干扰或很小; (3)电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。(4)调试后,可不需日常管理; (5)保护电流分布均匀,利用率高; 三、牺牲阳极材料 1 作为牺牲阳极材料,必须满足以下条件: 1.1有足够负且稳定的电位,不仅要有足够负的开路电位,而且要有足够的闭路电位(或称工作电位,即在电解质介质中与金属结构连接时牺牲阳极的电位)。 1.2腐蚀率小,且腐蚀均匀,要具有高而稳定的电流效率。牺牲阳极的电流效率是指实际电容量与理论电容量的百分比,以%表示。1.3电化学当量高,即单位重量产生的电流量大。 1.4工作中阳极的极化率要小,溶解均匀,产物易脱落。 1.5腐蚀产物不污染环境、无公害。 1.6材料来源广泛,加工容易并价格低廉。

2、镁 2.1镁阳极的特点是比重小、电位很负、对铁的驱动加压很大,且单位发生的电量大。 2.2镁作为牺牲阳极,有较快的溶解速度,镁在电解质中溶液中的腐蚀行为是由本身很负的电位和表面上保护膜的性质所决定。 2.3镁的标准电极电位为-2.37V(SHE);非平衡电极电位则随腐蚀性介质的性质而变,例如:镁在海水中的电位为-1.5V(SCE),镁在土壤之中的电位为 1.5V至-1.6(SCE),镁在碱溶液中的电位约为-0.84V(SCE)。镁的电极电位与介质的PH值有密切关系,PH值在酸性范围内,电位较负,因为生成的腐蚀产物氢氧化镁在碱性介质中是难溶的。 正因为镁在酸性及中性介质中的电位较负和保护膜的不稳定性,所以镁在酸性和中性介质中的腐蚀速度较大。而在碱性介质中,镁的表面保护膜稳定,电位较正,腐蚀速度则因此而降低。 镁作为牺牲阳极使用时,与电位较正的金属相接触,这时,镁产生阳极化,会引起负的差异效应,即在阳极极化的影响下,金属的自溶大为增强。与其他牺牲阳极相比,镁的自溶倾向最大,这是镁阳极的电流效北较低的原因之一。 杂质及合金元素对镁的腐蚀速度有很大的影响,镁合金通常比镁的腐蚀速度大。镁阳极中的杂质主要成分是铁、镍、铜、钴,其中特别是铁的含量,由于这些金属有较正的电位,引起额外的腐蚀(寄生腐蚀)而使镁的阳极效率降低。添加锰可以抑制铁的影响,因为锰可

船舶防蚀锌块计算

恒瑞7货船 牺牲阳极数量的计算 一、保护面积计算: 1、外板浸水区 S l=[(4d+B)×L/2]/(1.625-C b)=2292.2m2 式中:L=Lpp=99.8m,B=14.00m,d=6.25m,Cb=0.776 2、螺旋桨 S2=0.5nπ×d12×(A e/A0)+ nπ×d2L=6.8m2 式中:n=l,π=3.14,d1=2.64m,A e/A0 =0.55,d2=0.44m,L=0.54m 3、舵 S3=10× 2 × 1.2=24m2 二、保护电流密度的选定: 1、外板浸水区 I l=0mA/m2 2、螺旋桨(铜质) I2=350mA/m2 3、舵 I3=110mA/m2 三、牺牲阳极的选定: 选用锌合金平板状阳极ZAC-C5 四、牺牲阳极发生电流的计算: 发生电流量If=(△E/R)×1000=400mA 式中:牺牲阳极的驱动电位△E=0.20V, 牺牲阳极的接水电阻R=ρ/2S=0.5Ω 海水电阻率ρ=25Ωcm, 牺牲阳极的当量长度S=0.5(L+B)=25cm 牺牲阳极的长度L=40cm

牺牲阳极的宽度B=10cm 五、牺牲阳极的寿命计算: T=(mQ×1000)/( I m×8760×K) =2.62年 式中:每块牺牲阳极的质量m=9kg, 牺牲阳极的实际电容量Q=780Ah/kg 牺牲阳极平均发生电流量Im=0.651f=260mA 牺牲阳极的利用系数(K)-1=0.85 六、牺牲阳极的用量计算: Ni=(I i×S)/I f 式中:牺牲阳极的实际电容量Q=780Ah/kg 牺牲阳极平均发生电流量I m=0.65I f =312mA 牺牲阳极的利用系数(K)-1=0.85 1、外板浸水区 N l= (I l×S1)/ I f=57.3块,实取58块。 式中:I l=10mA/m2,S1=2144.7m2,I f =400mA 2、螺旋桨 N2=( I2×S2)/ I f =5.95块,实取6块。 式中:I2 =350mA/m2,S2=6.8m2,I f=400mA 3、舵 N3= (I3×S3) / I f =6.6块,实取7块。 式中:I3=110mA/m2,S3=24m2,I f=400mA 另通海阀上设2块,每块牺牲阳极的质量m=5.5kg。 七、牺牲阳极的布置: 详见《牺牲阳极布置图》。

牺牲阳极在使用过程中的优缺点

牺牲阳极在使用过程中的优缺点! 作者:代银 公司:河南汇龙合金材料有限公司 一直以来,不同的防腐类型产品无论是在工业范畴仍是日常日子中都十分的受欢迎,特别是工业范畴,它首要用于不耐腐蚀的产品中,所以许多厂家对防腐蚀性的产品需求量十分大,而牺牲阳极产品是腐蚀产品中功能与实践效益最为杰出的防腐产品。那么,牺牲阳极在运用中优缺陷有哪些呢? 据区域专业从事锌阳极产品研制出产方面的专家指出,牺牲阳极是将活性不同的两种金属衔接后,处于同一电解质中,活性强的金属失去电子,遭到腐蚀,活性差的金属得到电子遭到维护。因为在这一过程中,活性强的金属被腐蚀,所以称为牺牲阳极阴极维护。 牺牲阳极的长处有整个阴极维护体系的设备都不需求外部电源;对被维护管道铺设位置周围的金属结构物影响很小;设备设备完结今后的办理维护作业少;维护管道的长度越长体系设备费用越高,工程费用的多少与维护管道的长度成正比;运用牺牲阳极维护电流能够均匀的分布在管线上,并且阳极资料利用率十分高。 牺牲阳极的缺陷是当需求维护管道铺设的环境中电阻很高的情况下不适合运用;整个阴极维护体系的维护电流巨细不能够调理;对管道自身的防腐涂层的质量要求比较高;维护原理首要是耗费有色金属,所以在金属耗费完今后要定时替换阳极;周围环境中的杂散电流搅扰过的时分,不能够运用牺牲阳极阴极维护法。

而铝阳极它是一种比较更为生动的金属,当发作电化腐蚀时,被腐蚀的是那种比铁更生动的金属,而铁被维护了。它通常在轮船的尾部和在船壳的水线以下部分,装上一定数量的锌块,来避免船壳等的腐蚀,就是使用的这种方法。 维护电流的利用率较高,不会产生过维护。牺牲阳极对附近的地下金属设备无搅扰影响,适用于厂区和无电源的长输管道,以及小规划的涣散管道维护。牺牲阳极具有接地和维护统筹的效果。牺牲阳极施工技术简略,平常不需求特别专业维护办理。 据专业从事铝合金阳极产品方面的专家阐明,牺牲阳极驱动电位低,维护电流调理规模窄,维护规模小。牺牲阳极在存在激烈杂散电流搅扰区,特别受交流搅扰时,阳极功能有可能发作逆转。牺牲阳极有用阴极维护年限受牺牲阳极寿数的约束,需求定时替换。

(完整版)牺牲阳极法阴极保护方案

长输管道牺牲阳极法 阴极保护方案 项目名称: 建设单位: 施工单位: 编制日期:2010年10月4日

目录 一、概述------------------------------------------------------------ 2 (一)原理 ----------------------------------------------------- 2(二)牺牲阳极法阴极保护的优点 --------------------------------- 2(三)牺牲阳极材料 --------------------------------------------- 2(四)阳极安装方式 --------------------------------------------- 6(五)测试系统 ------------------------------------------------- 7(六)应用标准和规范 ------------------------------------------- 7(七)主要测试设备和工具 --------------------------------------- 7 二、该项目管道牺牲阳极保护法的设计---------------------------------- 8 三、施工方法-------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 8 2、牺牲阳极法的施工: ------------------------------------------ 9

牺牲阳极接地电阻以及发电量计算

牺牲阳极接地电阻以及发电量计算 一、阳极接地电阻 Ra=ρln(L/r)/2πL Ra=阳极接地电阻(ohms) ρ=土壤电阻率(ohm-m) L=阳极长度(m) r=阳极半径(m) 需要指出的是,由于填料电阻率很低,阳极的长度和半径是根据填料袋尺寸来确定。 二、阳极驱动电位 假设被保护结构的极化电位为-1.0V,则驱动电压ΔV=V+1.0。 V=阳极电位:高电位镁阳极-1.75V,低电位镁阳极-1.55V,锌阳极电位-1.10V。 三、阳极发电量计算 阳极实际发电量I=ΔV/Ra 四、应用举例: 某埋地管道,长度为13公里,直径159毫米,环氧粉末防腐层,处于土壤电阻率30欧姆.米环境中,牺牲阳极设计寿命15年。计算阳极的用量。 由于土壤电阻率较高,设计采用高电位镁阳极阴极保护系统。 1、被保护面积:A=π×D×L D=管道直径,159mm

L=管道长度,13x103m A=3.14×0.159×13000=6490m2 2、所需阴极保护电流:I=A×Cd×(1-E) I=阴极保护电流 Cd=保护电流密度,取10mA/m2 E=涂层效率,98% I=6490×10×2%=1298mA 3、根据设计寿命以及阳极电容量计算阳极用量W=8760It/ZUQ I=阳极电流输出(Amps) t=设计寿命(years) U=电流效率(0.5) Z=理论电容量(2200Ah/kg) Q=阳极使用率(85%) W=阳极重量(Kg) W=8760×1.298×15/(2200×0.5×0.85)=183Kg 选用7.7公斤镁阳极,需要24支。 4、根据阳极实际发电量计算阳极用量 Ra=ρln(L/r)/2πL Ra=阳极接地电阻(ohms) ρ=土壤电阻率(ohm-m) L=阳极长度(m)

常见牺牲阳极在不同阴极保护工程中的应用

腐蚀对于国民的经济发展,人类的生活和社会环境造成很大的破坏,大多数长输管道埋在地下,由于土壤中的水份、空气、水溶性矿物盐和酸、碱这些成分都会使金属管道遭到腐蚀和破坏。因此人们利用牺牲阳极阴极保护的方式进行腐蚀防护。阴极保护在我国的应用始于1958年,到了60年代,阴极保护已经广泛的应用于输油管道。到目前为止,几乎所有输油气管道、储罐、海洋结构都施加了阴极保护。 牺牲阳极阴极保护的原理是利用不同金属的电位差异,为受保护的金属提供电子,使被保护金属整体处于电子过剩的状态,金属表面各点电位降低到同一负电位,使金属表面各点之间不再有电位差,不再有电子的流动,金属原子不再失去电子而变成离子溶入溶液。最终达到减缓腐蚀的目的。由于在实现阴极保护过程中,较活泼的金属被腐蚀,所以,被称为牺牲阳极阴极保护。这种方法简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型或处于低土壤电阻率环境下的金属结构。 常见的牺牲阳极有镁阳极,铝阳极和锌阳极等。镁是电化学阴极保护工程中常用的一种牺牲阳极材料,具有较高的化学活性,它的电极电位较负,驱动电压高。同时,镁表面难以形成有效的保护膜。因此,在水介质中,镁表面的微观腐蚀电池驱动力大,保护膜易于溶解,镁的自腐蚀很强烈,适用于电阻率较高的土壤和淡水中金属构件的保护。它由纯镁和镁合金组成,它具有高驱动电压、低电流效率、高造价的特点。

锌阳极的种类很多,可以根据顾客的要求提供不同形状的锌阳极, 如矩形, 方形, 镯式, 以及其他各种异型。锌牺牲阳极自腐蚀速率小,电流效率高,使用寿命长,具有自动调节电流性的特性,锌阳极的阴极保护法是在被保护钢铁设备上连接一种更易失去电子的金属或合金。它是一种比较活泼的金属,当发生电化学腐蚀时,被腐蚀的是那种比铁更活泼的金属,而铁被保护了。通常在轮船的尾部和在船壳的水线以下部分,装上一定数量的锌块,来防止船壳的腐蚀。 目前使用最广泛的是铝合金阳极,它的特点是容量大、寿命长、易安装,制造工艺简单。大多数是用在海水环境金属结构或原油储罐内底板的阴极保护上,不能用于氯离子含量较低的土壤环境。铝阳极直接可以固定在被保护结构上,无需填料。 中国防腐材料行业在国内的发展已日趋成熟,随着行业及国家标准的日趋完善,阴极保护专业技术与实际性能也越来越被长输管线及储油罐大型项目的投资者所重视,过去投资过的项目通过几年的检测与评估确实达到了良好的效果。 详情咨询河南汇龙合金材料有限公司刘珍

埋地钢质管道牺牲阳极阴极保护方案

埋地钢质管道牺牲阳极法阴极保护技术 技术支持单位:甘肃拓维地理信息工程有限公司 示范案例:银川某燃气公司埋地钢质管道牺牲阳极阴极保护系统安装 时间:2016年6月18日 (一)原理: 埋地钢质管道牺牲阳极法阴极保护技术是将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。 (二)牺牲阳极法阴极保护的优点 1、不需要外部电源; 2、对邻近金属构筑物无干扰或很小; 3、电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。 4、调试后,可不需日常管理; 5、保护电流分布均匀,利用率高。 (三)阳极包的选材 牺牲阳极选择镁阳极包的特点是比重小、电位很负、对铁的驱动加压很大,且单位发生的电量大。镁的标准电极电位为(SHE);非平衡电极电位则随腐蚀性介质的性质而变,例如:镁在海水中的电位为(SCE),镁在土壤之中的电位为至(SCE),镁在碱溶液中的电位约为(SCE)。镁的电极电位与介质的PH值有密切关系,PH值在酸性范围内,电位较负,因为生成的腐蚀产物氢氧化镁在碱性介质中是难溶的。 (四)主要应用的规范

1、《埋地钢质管道阴极保护电参数测试方法》SY/T0023-97 2、《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T0019-97 3、《钢质管道及储罐防腐工程设计规范》SY0007-99 4、《阴极保护管道的电绝缘标准》SY/T0086-95 5、《埋地钢质管道直流排流保护技术标准》SY/T0017-96。 (五)施工方法 1、牺牲阳极法阴极保护施工安装程序简述如下: 袋装阳极制作→阳极床定位→阳极床开挖→阳极埋设→阳极浇水浸透饱和及各参数测试→阳极通电点处理及焊接→通电点导通测试→通电点补口防腐(补口处防腐材料与管体防腐材料是匹配的)→阳极回填→标记记录。 图1 阳极床定位

BV和DNV船舶牺牲阳极常见问题

阳极保护:阳极金属在一定介质条件下,会产生表层保护膜,有活化态变成钝化态。 使金属产生阳极钝化的方法:偶接保护器法、外加电源阳极保护法(通过直流电源,使阳极达到致钝电流,获得阳极保护的方法)、合金化法、介质添加重金属离子沉积层法。 阴极保护:是对被保护的金属表面施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,腐蚀的阳极溶解过程就会得到有效抑制。 根据提供阴极电流的方式不同,阴极保护又分为牺牲阳极法和外加电流法两种,前者是将一种电位更负的金属(如镁、铝、锌等)与被保护的金属结构物电性连接,通过电负性金属或合金的不断溶解消耗,向被保护物提供保护电流,使金属结构物获得保护。后者是将外部交流电转变成低压直流电,通过辅助阳极将保护电流传递给被保护的金属结构物,从而使腐蚀得到抑制。 问:关于牺牲阳极的阴极保护法,本来是原电池,为什么叫阴阳极? 这个问题本来很简单,只是在它的名称上有时给人疑惑。这是一个原电池,是在“牺牲负极,保护正极”。之所以称为“牺牲阳极的阴极保护法”是根据电解液中的反应,一般我们把电解液中发生氧化反应的极板称为“阳极”,发生还原反应的称为“阴极”,这个名称来源于“电解电镀”,在外电源的作用下,与外电源正极相连的极板处发生的是氧化反应,对应极板称为“阳极板”,与外电源负极相连的极板处发生的是还原反应,对应极板称为“阴极板”。 所以,在这个牺牲负极保护正极的“原电池”中,如果从“电解液中化学反应”的角度看极板,阴极恰是原电池电源正极,阳极恰是原电池负极。从因果关系来看,原电池由化学能转化为电能,电解电镀是由电能转化为化学能。从电流方向来看,可以统一为“溶液中阴离子流向阳极板,在极板处发生氧化反应;溶液中阳离子流向阴极板,在极板处发生还原反应”。电解电镀中与电源正极连接的是阳极板,而原电池中电源的正极称为“阴极板”,反之亦然。 电化学腐蚀:电化学腐蚀是金属表面与离子导电性介质发生电化学作用引起的,在作用过程中有阳极区和阴极区。其特点是金属与介质中有电流流动。是船舶腐蚀中最常见的一种腐蚀。 化学腐蚀:化学腐蚀是由于金属表面与介质直接发生化学作用引起的,其特点是在作用进行过程中没有电流产生。 微生物腐蚀:某些微生物的生命活动,能够促进阳极区和阴极区的电化学反应,或能削弱金属表面膜的耐腐蚀作用,或能产生腐蚀性物质,从而加快电化学腐蚀,如硫酸盐还原菌和铁细菌对金属的腐蚀。 电化学腐蚀:①氧的浓差电池作用:近水面氧比较多,得到电子成为阴极,水中金属失去电子,成为阳极,构成原电池。腐蚀发生后,缝隙/缺口处氧比较多,底部比较少,底部继续腐蚀,形成锈坑。 ②两种不同金属:电偶腐蚀,电势低的成为阳极。 ③氧化皮引起的腐蚀:氧化皮电极电位比钢铁高0.26V。 ④涂膜下腐蚀:涂膜有微孔存在,海水进入,发生电化学腐蚀。 ⑤杂散电流引起的腐蚀:供电/电焊,漏电,船体大阳极。 机械腐蚀:(冲击腐蚀和空泡腐蚀) 空泡腐蚀:高速流动的液体,因不规则流动,产生空泡,形成水锤作用,破坏金属表面的保护膜,加速腐蚀,如螺旋桨,泵轴。。。 生物腐蚀:海洋生物在船底附着,破坏漆膜,造成钢板局部电化学腐蚀 微生物新陈代谢,分泌出具有侵蚀物的产物。 腐蚀电池: 1原电池:把两种不同金属放在电解质溶液内,已导线连接,可以发现导线上有电流通过,这种装置称为

牺牲阳极材料的种类选择和适用特点

铝合金阳极牺牲阳极 工程上常用镁基、锌基和铝基合金阳极等作为牺牲阳极材料。其中,镁阳极适用于各种土壤环境,具有密度小、电位负、极化率低、单位质量发生的电量大等特点,堪称牺牲阳极的理想材料。其缺点是电流效率低,~般只有50%左右;锌阳极适用于土壤电阻率较低且比较潮湿的土壤环境,具有电流效率高、自腐蚀小、使用寿命长和自动调节的特点,同其他钢制构筑物碰撞时,不会诱发火花,也不会“过保护”;至于对铝阳极,国内外具有不同的观点。铝具有足够负的电位,在溶解时表面生成的保护性氧化膜引起钝化,导致电位升高,故未合金化的铝不适合作为牺牲阳极材料使用。铝合金阳极具有单位质量发生的有效电量大、密度小、施工搬运方便、来源广泛、价格低廉等特点。不足之处在于,阳极的腐蚀产物在土壤中无法疏散,使阳极钝化而失效。因而,铝合金阳极主要适合用于海洋环境中金属构筑物的阴极保护。高电阻率土壤环境下可使用带状镁阳极。带状牺牲阳极主要用于高电阻率的土壤、淡水中及套管内等空间狭窄局部场合。这类牺牲阳极的截面有方型和菱形等形状,中间为铁芯,长度可达数百米。 我国在上世纪90年代基本解决了常规铸造阳极的生产技术。此外,高性能连续带状阳极和大型铸造阳极的应用和制造技术发展得也很快。例如,北京有色金属研究总院研制

的达上千米长的各种型号的锌阳极带和镁阳极带,已经投入了一定规模的生产。一种利用采用挤压技术开发的带状镁基牺牲阳极产品,也已经投人市场。镁带阳性因其特殊的形状和性能在阴极保护工程中有着多方面独特的应用:长输管道、穿越管段、大型贮罐的罐底、防雷接地网以及复合阳极中的短期阳极等川。 河南汇龙合金材料有限公司 刘珍

储罐内壁牺牲阳极阴极保护

储罐内壁牺牲阳极阴极保护 由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S-2、Cl -、HCO-3、Na+、Ca+2等)和较高的温度,因此其腐蚀性较强。目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。 牺牲阳极保护法特点: ①施工快速、简便,不会产生腐蚀干扰。 ②投入成本较低,经济性强。 ③安全可靠,无需专人管理。 ④保护效果显著。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。 根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。 针对储罐内壁牺牲阳极的设计步骤: ①计算阴极保护面积(罐内浸水面积) 罐底内壁保护面积计算:S=πr2 S-保护面积 r-储罐半径 ②选定保护电流密度,计算保护电流 保护电流计算:I= SIa S-保护面积 Ia-保护电流密度 ③确定保护年限,计算所需阳极总量 阳极使用寿命:T=0.85 W/ωI T-阳极工作寿命a W-阳极净质量,kg ω-阳极消耗率kg/(A.a)

④根据阳极单支数量,计算阳极支数 阳极数量:N=f.IA/Ia N-阳极数量 IA-所需保护电流A Ia-单支阳极输出电流A F-备用系数,取2-3倍 牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。 根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。 钢质容器在做阴极保护时通常也可采用外加电流和牺牲阳极两种方法;强制电流法适用于大型水罐,如高架水罐、海水储罐、锅炉供水罐、电站的河水罐等,辅助阳极可选择硅铁、镀铂钛、石墨或铅(饮用水不适用),由罐顶适当位置悬挂下去,也可通过罐壁钻孔,固定阳极。在高电阻率水中,应选用铜芯连续式镀铂钛线形阳极,以获得均匀的电流分布。 采用牺牲阳极保护时,阳极应直接固定到罐内壁上,位于最低水位线以下600mm,尽可能均匀分布。 牺牲阳极施工需要注意以下事项: 1、清罐除锈,达到涂料施工标准; 2、将阳极块焊接到罐底内侧及内壁下部800mm的壁板上,焊接牢固,清除残渣。 3、涂覆施工,内底板及1m 以下壁板采用绝缘型油罐涂料,其他部位采用导电涂料。施工中,阳极块只要求暴露本体,焊接引线,焊点及阳极块下表面及罐底板均需涂覆。

牺牲阳极阴极保护施工方案

珠海粤裕丰钢厂干散货码头钢桩牺牲 阳极阴极保护工程 施工组织设计方案 濮阳市豫安防腐有限公司吉林分公司 2011年10月

目录 第一章工程概况 (2) 第二章施工方案 (3) 第三章施工组织机构和人员配置 (10) 第四章主要施工设备、检测仪器表 (16) 第五章质量保证措施和施工安全措施 (18)

第一章工程概况 1.工程概述 珠海粤裕丰钢厂干散货码头为防止钢管桩的腐蚀设计采用环氧粉末全涂加牺牲阳极阴极保护的方法。材质为Q345、尺寸为Φ****×*****的钢管桩共计408根,每根钢管桩上布置1支高效铝阳极,共计安装铝合金牺牲阳极408支;安装阴极保护电位测试系统6套。 2.施工计划周期 开工日期:2011年9月10日 竣工日期:2011年11月30日 3.施工作业总体安排 牺牲阳极水下安装施工,采用两个作业班;阴保电位测试系统的安装选用一个作业班进行施工安装。三个作业班可根据工程进度安排采取同时作业或交叉作业的方式,最大程度的提高工效保证本工程按时竣工。 4.阴极保护施工及验收规范 4.1 JTS 153-3-2007 《海港工程钢结构防腐蚀技术规范》 4.2 GJB156A-2008 《港工设施牺牲阳极保护设计和安装》 4.3 GB/T 4948-2002 《铝-锌-铟系合金牺牲阳极》 4.4 GB/T 4949-2007 《铝-锌-铟系合金牺牲阳极化学分析方法》 4.5 GB/T 17848-1999《牺牲阳极电化学性能试验方法》

第二章、施工方案 1.牺牲阳极水下焊接 1.1牺牲阳极水下焊接方式的比较 1.1.1 根据钢管桩码头建造特点,打桩前,钢管桩表面不能焊接较大构件,以免影响打桩施工。牺牲阳极只能在钢管桩完成打桩工程后进行水下安装。 1.1.2牺牲阳极的水下安装方法主要有以下几种:螺栓固定法、捆扎法和水下焊接法。 1.1.3螺栓固定法是将牺牲阳极通过固定在焊在钢管桩上的钢制固定架上,达到阳极安装固定的目的。螺栓固定法的缺点是工艺复杂、安装困难,尤其是牺牲阳极在长期使用中受海水冲击、海流推动,螺帽容易产生松动,造成牺牲阳极与钢管桩之间接触电阻增大,降低阳极发生电流量和工作性能,影响钢管桩的保护效果。 1.1.4捆扎法是采用钢制卡环或钢带将牺牲阳极捆扎在钢管桩上,达到牺牲阳极安装固定的目的。捆扎法的缺点是由于海浪冲击,海流扭动,牺牲阳极的不断溶解,造成牺牲阳极与捆扎带之间产生松动,使阳极与钢管桩之间接触电阻增大,影响牺牲阳极发生电流和使用效果,严重者阳极脱落,造成保护工程失败。 通过以上比较,螺栓法固定法和捆扎法一般不宜采用。 1.1.5水下焊接安装法是采用水下焊接设备和水下焊条通过电焊方法把牺牲阳极安装固定在钢管桩上。水下电焊方法具有技术成熟、牢固可靠,牺牲阳极与钢 气管桩接触电阻小、导电性能好、使用寿命长等特点。水下焊接法又分自动CO 2 气体局部排水干法焊技术难度体局部排水干法焊和普通湿法焊两种。半自动CO 2 大、造价高,主要用于水下高强钢结构材料的焊接。本工程钢管状材质为Q345钢,采用水下SRE TS 208湿法焊条焊接工艺完全满足工程技术要求。 1.2牺牲阳极水下焊接设备 1.2.1 牺牲阳极水下焊接安装设备采用ZX-500直流弧焊机,ZX-500焊机的特点是电压调节范围大,工作电流稳定,起弧电压稳定,水下操作不易断弧,连续性强,焊缝质量好。 1.2.2空压机 施工用空压机型号为V-0.67/14-1型。该机排气量0.67/min,工作压力1.4MPa,

相关文档