文档库 最新最全的文档下载
当前位置:文档库 › 工程中的有限元方法试题

工程中的有限元方法试题

工程中的有限元方法试题

16171 工程中的有限元方法

天津大学海船方向试题

Part1填空题(30分)

1.有限元的三个控制方程:平衡方程,变形协调方程,本构方程

2.有限元的十五个状态函数:应力6,应变6,位移3

3.平面问题分为:平面应力问题和平面应变问题

4.KU=F,解释K、U、F分别表示什么?

5.对称性的单元,降低了_________,提高了__________

6.

Part3简述题(20分)

1.最小势能原理(5分)

2.解释等参元,并举例(5分)

3.写出四节点四边形单元形函数,并写出形函数的性质(5分)

4.雷利-里兹法与有限元方法的区别和联系(5分)

Part4选择题(略)(20分)

Part5计算题(30分)

1.《工程中的有限元方法》P85习题3-17(15分)

2.推导八节点、九节点单元的形函数(15分)

有限元填空选择题及答案

1有限元是近似求解_一般连续_场问题的数值方法 2有限元法将连续的求解域离散为若干个子域_,得到有限个单元,单元和单元之间用节点相连 3从选择未知量的角度来看,有限元法分为三类位移法. 力法混合法 4以_节点位移_为基本未知量的求解方法称为位移法. 5以_节点力_为基本未知量的求解方法称为力法. 6一部分以__节点位移__,另一部分以_节点力_为基本未知量的求解方法称为混合法. 7直梁在外力的作用下,横截面的内力有剪力_和_弯矩_两个. 8平面刚架结构在外力的作用下,横截面上的内力有轴力_ 、剪力_和弯矩. 9进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 10平面刚架结构中,已知单元e的坐标变换矩阵[T e ]和在局 部坐标系x’O’y’下的单元刚度矩阵[K’]e ,则单元在真体坐标 系xOy下的单元刚度矩阵为_ [K]e = [T e ] T [K’] e [T e ] 13弹性力学问题的方程个数有15个,未知量的个数有15个. 14弹性力学平面问题的方程个数有8_个,未知量个数有8_个15几何方程是研究__应变___和_位移之间关系的方程 16物理方程是描述_应力_和_应变_关系的方程 17平衡方程反映了_应力__和_位移_之间关系的 18把经过物体内任意一点各个_ 截面上的应力状况叫做__该点_的应力状态 19形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 20 形函数是_三角形_单元内部坐标的_线性位移_函数,他反映了单元的_位移_状态 21在进行节点编号时,要尽量使用同一单元的相邻节点的狭长的带状尽可能小,以使最大限度地缩小刚度矩阵的带宽,节省存储,提高计算效率. 22三角形单元的位移模式为_线性位移模式_- 23矩形单元的位移模式为__线性位移模式_ 24在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 25单元刚度矩阵描述了_节点力_和_节点位移之间的关系 26在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的_完备性和协调性要求27三节点三角形单元内的应力和应变是_常数,四节点矩形单元内的应力和应变是线性_变化的 28在矩形单元的边界上,位移是线性_变化的 29整体刚度是一个呈_ 狭长的带状_分布的稀疏矩阵 30整体刚度[K]是一个奇异阵,在排除刚体位移_后,它正义阵1从选择未知量的角度来看,有限元法可分为三类(力法,位移法,混合法) 2下列哪有限元特点的描述中,哪种说法是错误的(D需要使用于整个结构的插值函数) 3几何方程研究的是(A应变和位移)之间关系的方程式 4物理方程是描述(D应力和应变)关系的方程 5平衡方程研究的是(C应力和位移)之间关系的方程式 6在划分单元时,下列哪种说话是错误的(A一般首选矩形单元) 7下列哪种单元的单元刚度矩阵必须通过积分才能得到(D矩形单元) 8单元的刚度矩阵不取决于下列哪种因素(B单元位置) 9可以证明,在给定载荷的作用下,有限元计算模型的变形与实际结构变形之间的关系为(B前者小于后者) 10ANSYS按功能作用可分为若干个处理器,其中(B求解器)用于施加载荷和边界条件 11下列有关有限元分析法的描述中,哪种说话是错误的(B单元之间通过其边界连接成组合体) 12下列关于等参数单元的描述中,哪些说话是错误的(C将规则单元变换为不规则单元后,易于构造位移模式) 13从选择未知量的角度来看,有限元可以分为三类,混合法的未知量是(C节点力和节点位移) 14下列对有限元特点的描述中,哪种说话是错误的(B对有限元求解域问题没有较好的处理方法) 15在划分单元时,下列哪种说话错误(D自由端不能取为节点) 16对于平面问题,选择单元一般首选(D三角形单元或等参单元) 17下列哪种说法不是形函数的性质(C三角形单元任一条边上的形函数,与三角形的三个节点坐标都有关) 18下列四种假设中,哪种分析不属于分析弹性力学的基本假设(C大变形假设) 19下列四种假设中,哪种不属于分析弹性力学的基本假设(B 有限变形假设) 20下列关于三角形单元说法中哪种是错误的(C在单元的公共边上应力和应变的值是连续的) 21下列关于矩形单元的说法哪项是错误的(D其形函数是线形的) 22应用圣维南原理简化边界条件时,静力等效是指前后的力系的(D主矢量相同,对于同一点的主矩也相同) 24描述同一点的应力状态需要的应力分量是(C6个) 25在选择多项式作为单元的位移模式时.多项式阶次的确定,要考虑解答的收敛性,哪种说法不是单元必须满足的要求(D 对称性)

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

2011有限元试题

西安交通大学 级研究生课程考试试题 考试(查)科目:有限元方法(II )时间 年 月 日下午 一、4 ) 4,4(),()5,5(),()2,6(),()2,2(),(4 4332211====y x , y x ,y x , y x 母体单元为22?的正方形,如图所示。 求:(1)单元坐标变换()(ξηξ,,, y y x x == (2)变换的Jacobi 行列式detJ 的解析表达式,并分析该变换是否存在奇异性(8分)。 二、分析以下两种单元的位移场是否具备收敛到真实解所需的各项条件。(30) (1) 13结点矩形平面应力单元 结点参数取为:)13~ 1( ,=i v u i i 位移场为: 3 132 2 123 113 102 92 83726524321xy y x y x y xy y x x y xy x y x u ααααααααααααα++++++++++++= 3 262 2 253 243 232 222 2132021918217161514xy y x y x y xy y x x y xy x y x v ααααααααααααα++++++++++++=(2) 6自由度三角形薄板弯曲单元 结点参数取为: ()3~1=i w i ()6~4=??? ????i n w i 位移场为: 2 652 4321y xy x y x w αααααα+++++= 三、13结点平面应力单元如图所示, 在计算单元刚度矩阵时取图示的9个 积分点。试分析在单元一级是否存在 出现零变形能位移模式的可能性。 ,u x 7 8 10 9 11 12 1 2 3 4 5 6

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩. 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_

19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1.诉述有限元法的定义 答: 有限元法是近似求解一般连续场问题的数值方法 2.有限元法的基本思想是什么 答: 首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3.有限元法的分类和基本步骤有哪些 答: 分类: 位移法、力法、混合法;步骤: 结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4.有限元法有哪些优缺点 答: 优点:

机床重要部件的有限元分析及优化设计

机床重要部件的有限元分析及优化设计 摘要本文选取了某型机床中的重要部件床身作为研究对象,利用Solidworks软件进行三维设计造型,分析其在极限工作条件下的受力情况,并利用有限元分析软件ANSYS对模型进行受力分析和模态分析,得出了极限工作条件下,床身的受力、变形和振动的情况,找出设计中存在的缺陷进行优化设计,为机床的设计提供参考依据。 关键词机床;重要部件;有限元;优化设计 机床是加工制造的最基本的设备,它是由多个零部件组成的复杂组合结构,其机构的设计对机床的加工性能影响很大。传统的设计需要在原型设计的基础上经过长期的实践,不断改进,逐渐完善,最终定型为一个成熟的产品。现代的设计中,可以充分利用各种分析软件,在设计阶段就能够及时发现和解决原设计中存在的问题,对实现并行设计,提高质量和生产效率起到了非常重要的作用。 机床的各零部件中,床身作为支承和定位的主要零件对机床整体刚性和精度起到关键性作用。本文选取了某厂CK6150型车床作为研究对象,综合分析了该机床在受到综合应力的情况下,床身的受力、变形和振动情况,并对设计中的缺陷进行优化设计。 1 机床的三维造型 此次设计采用Solidworks软件对机床各个零部件进行设计造型并进行整机装配。 2 受力及约束分析 床身在加工中受到的应力主要有切削力和工艺系统的重力。 为了模拟机床在极限工作条件下的变形和振动情况,此次分析中模拟了加工φ500*1000mm的45钢棒料毛坯,使用45°外圆车刀,背吃刀量ap=5mm,进给量f=0.5mm,切削速度vc=500r/mm,切削点位置为毛坯中段。 1)由切削45钢主切削力公式Fc≈2ap·f (kN)得: Fc≈2ap·f =2*5*0.5=5 kN 由吃刀抗力公式Fp≈(0.2~0.5)Fc,估算出: Fp≈4kN 由进给抗力公式Ff≈(0.1~0.4)Fc,估算出:

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

重庆大学研究生有限元复习题及答案(2013)

1.结点的位置依赖于形态,而并不依赖于载荷的位置(×) 2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元。√ 3.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×) 4.用有限元法不可以对运动的物体的结构进行静力分析(×) 5.一般应力变化大的地方单元尺寸要划的小才好(√) 6.四结点四边形等参单元的位移插值函数是坐标x、y的一次函数√ 7.在三角形单元中其面积坐标的值与三结点三角形单元的结点形函数值相等。√ 8.等参单元中Jacobi行列式的值不能等于零。√ 9.四边形单元的Jacobi行列式是常数。× 10.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。√ 11.有限元位移模式中,广义坐标的个数应与单元结点自由度数相等√ 12.为了保证有限单元法解答的收敛性,位移函数应具备的条件是位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。√ 13.在平面三结点三角形单元中,位移、应变和应力具有位移呈线形变化,应力和应变为常量特征。√ 1.梁单元和杆单元的区别?(自己分析:自由度不同)杆单元只能承受拉压荷载,梁单元则可以承受拉压弯扭荷载。具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承担的,通常用于网架、桁架的分析;而梁单元则基本上适用于各种情况(除了楼板之类),且经过适当的处理(如释放自由度、耦合等),梁单元也可以当作杆单元使用。 2.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。 3.有限单元法的收敛性准则?完备性要求,协调性要求。位移模式要满足以下三个条件包含单元的刚体位移。当结点位移由体位移引起时,弹性体内不会产生应变。包含单元的常应变。与位置坐标无关的应变。位移模式在单元内要连续,在相邻单元之间的位移必须协调。当选择多项式来构成位移模式时,单元的连续性总得到满足,单元的协调性就是要求单元之间既不会出现开裂也不会出现重叠的现象。。 4.任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空

基于SolidWorks软件的连杆有限元分析与优化设计

第23卷第4期浙江水利水电专科学校学报Vol.23No.42011年12月J.Zhejiang Wat.Cons &Hydr.College Dec.2011 基于SolidWorks 软件的连杆有限元分析与优化设计 王 莺1,叶 菁 2 (1.浙江水利水电专科学校,浙江杭州310018;2.浙江省天正设计工程有限公司,浙江杭州310012) 摘要:CAE (计算机辅助分析)已是产品开发中不可或缺的环节.利用CAE 的结果,可以更有效地控制产品质量, 降低因修正错误所耗费的成本.通过利用三维CAD 软件SolidWorks 对连杆建模,并利用SolidWorks 提供的COS-MOSXpress 工具进行有限元分析,根据设计要求对连杆的结构进行优化,经测试连杆的优化设计是可行的.关键词:SolidWorks ;COSMOSXpress ;连杆;有限元分析;结构优化中图分类号:TP391.77 文献标志码:A 文章编号:1008-536X (2011)04- 0051-03Finite Element Analysis and Optimization Design of Connecting Rod Based on SolidWorks WANG Ying 1,YE Jing 2 (1.Zhejiang Water Conservancy and Hydropower College ,Hangzhou 310018,China ;Zhejiang Titan Design and Engineering CO.LTD.,Hangzhou 310012,China ) Abstract :CAE (computer-aided analysis )is an integral part of product development.By using of CAE ,the product quality can be controlled more effectively ,while the cost of error correcting can be reduced.In this paper ,3D modeling of Con-necting Rod is set up based on SolidWork ,and finite element analysis of Connecting Rod is also made by using COSMOSX-press.The structure is optimized in order to meet design requirements ,which is proved to be feasible by test.Key words :SolidWorks ;COSMOSXpress ;connecting rod ;finite element analysis ;structure optimization 收稿日期:2011-10-14基金项目:2011年度浙江水利水电专科学校校级科研基金资助 项目(XKY-201105)作者简介:王莺(1978-),女,浙江杭州人,讲师.主要从事 CAD /CAM 及虚拟产品设计开发的研究工作. 0引言 在过去,一个机械零部件设计完成后,需要加工一个样品来做简单的破坏性检测,觉得可以就去 开模子了.经常等到作品完成后或在开模时,才发现大问题.所以成本高,质量也不一定牢靠.而在软 件应用分析能力大幅提高的今天, CAE (计算机辅助分析)已是产品开发中不可或缺的环节.利用 CAE 的结果,可以更有效地控制产品质量,降低因修正错误所耗费的成本 [1-2] . SolidWorks 软件是一个非常方便、实用的三维建模造型软件,并且它具有强大的CAE (计算机辅助分析)功能 [3] .而CAE 的核心计算方法就是有限 元分析.用户可通过SolidWorks 提供的COSMOSX-press 工具进行有限元分析.有限元模型和产品的几何模型是相关的,经过建模和分析后,用户将得到 系统计算出的结构反应(变形、应力等).如果计算的结果不符预期,那么用户就可修改参数再次分 析, 直到达到可接受的设计值为止[4] .连杆是机械传动中应用比较广泛的零件.本文主要介绍如何通过SolidWorks 软件对连杆三维建模并进行有限元分析及优化设计,以满足设计要求. 1连杆的设计要求 连杆的结构尺寸见图1,材料为1060铝合金, 若施加垂直于大圆内圆面的力9800N ,则连杆的最大位移变形不得超过0.005mm. 2连杆的几何建模 根据图1连杆的尺寸要求,用SolidWorks 软件的拉伸、切除、圆角等命令创建连杆的三维模型,见图2.

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

土木有限元(研究生)算例练习试题.doc

例1某三角形3节点单元,3个节点的坐标分别为(0, 0)、(3, 0)、(0, 4)o 作用在单元内的点(1, 1)处作用有一个大小等于10N、方向沿x轴正向的集中 力P。求该集中力的等效节点荷载。 解:(1)形函数及形函数矩阵计算 根据面积比或形函数公式,可计算得到各形函数为: Ar 5 Ar 4 3 A, = —、A 9——、A’ 3 =— 12 12 °12 形函数矩阵为: (2)等效节点荷载计算 例2图示三角形3节点单元,设13边的长度为3m,在13边作用有如图所示的分布荷载,求该分布荷载的等效节点荷载。 解:(1)形函数及形函数矩阵计算 在13边上,节点2的形函数% = 0,设t为节点1到节点3的位置参数, 在节点1处取0,在节点3处取1,则在13边上有: A* =! —/■> M = t 1 O

-20此一10N3 - 20(1 -/- Wt lot - 20 =3f 1 -1 1 一 I 10£ - 20 dt = 3 Jo d - t) (io* - 20)' o *(10* - 20) >d t 25 T o o o 20 5 1 - t0 0 0 Z 0 LA;J = 0 1 — f 0 0 0 匕 (2)分布荷载的参数表示 在13 边上,q v = 0 ,设 / = a + bt ,由: t = 0, q x = -20 t = 1 , q x = -10 可求得: a = -20 b = 10 于是有: lOt - 20 Cly 另外,由于在边上为一次函数,也可直接根据形函数插值建立分布函数: (3)等效节点荷载计算 \dl -25 - 20

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

优化设计有限元分析总结

目录 目录 (1) 1. 优化设计基础 (2) 1.1 优化设计概述 (2) 1.2 优化设计作用 (3) 1.3 优化设计流程 (3) 2. 问题描述 (4) 3. 问题分析 (5) 4. 结构静力学分析 (6) 4.1 创建有限元模型 (6) 4.2 创建仿真模型并修改理想化模型 (7) 4.3 定义约束及载荷 (7) 4.4 求解 (8) 5. 结构优化分析 (9) 5.1 建立优化解算方案 (9) 5.2 优化求解及其结果查看 (11) 6. 结果分析 (13) 7. 案例小结 (14)

1.优化设计基础 1.1优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学

模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下: 1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

重庆交通大学研究生有限元 - 复习题(36闭卷)

《结构有限元分析》复习题(闭卷) 一、绪论 1.概述有限元法分析问题的过程。 二、平面问题 2.对平面问题T3单元,推导其位移模式。 3.对平面问题T3单元,证明形函数在本节点取值为1,在其它节点取值为0。 4.对平面问题T3单元,证明形函数在任意一点上取值之和为1。 5.对平面问题T3单元,证明边界上一点的形函数,与相对顶点的坐标无关。 6.对平面问题T3单元,证明边界上的位移协调性。 7.对平面问题T3单元,说明单元边界上无限点的约束等效于对该边节点的约束。 8.对平面问题T3单元,证明Li=Ni(i=i、j、m)。 9.对平面问题T3单元,证明∑NiXi=X,∑NiYi=Y。 10.对平面问题T3单元,利用最小势能原理,推导单元刚度矩阵的矩阵表达式。 11.说明刚度矩阵的性质和物理意义。 12.对平面问题T3单元,推导单元自重的等效节点力。 13.对平面问题T3单元,推导单元边界上均布压力的等效节点力。 14.对平面问题T3单元,推导单元边界上三角形分布压力的等效节点力。 15.对平面问题R4单元,推导其位移模式。 16.对平面问题R4单元,证明边界上的位移协调性。 17.试写出处理约束的两种方法(划0置1法,乘大数法)的过程。 三、空间问题和轴对称问题 18.对轴对称问题T3单元,推导其位移模式。 19.对轴对称问题T3单元,采用简化计算,推导单元自重的等效节点力。 20.对轴对称问题T3单元,采用简化计算,推导离心力的等效节点力。 21.对轴对称问题T3单元,采用简化计算,推导边界上梯形分布压力的等效节点力。 四、等参单元 22.对平面问题Q4等参单元,构造其位移模式。 23.对平面问题Q4等参单元,推导其几何矩阵。 24.对平面问题Q4等参单元,说明雅可比行列式的意义,并加以数学证明。 25.对平面问题Q4等参单元,证明其完备性、协调性。 26.对平面问题Q4-8变节点等参单元,构造其形函数。 27.对空间问题Hex8-20变节点等参单元,构造其形函数。

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

相关文档
相关文档 最新文档