文档库 最新最全的文档下载
当前位置:文档库 › 催化剂制备原理

催化剂制备原理

催化剂制备原理
催化剂制备原理

1.什么是催化剂,什么是催化作用,催化剂的特性。

催化剂是一种物质,能加速反应速率而不改变反应的标准Gibbs自由焓变化。

在催化剂参与下的化学反应。在催化反应中,催化剂与反应物发生化学作用,改变了反应途径,从而降低了反应的活化能,得以提高反应速率。

催化剂的特性:加快反应速度,但不进入化学反应计量,对反应有选择性,只能加速热力学上可能的反应,不改变平衡位置,催化剂有一定寿命。2.催化剂的价格指标有什么?

3.催化剂的评价指标

活性,选择性,稳定性,寿命

4.名词解释,比表面积,比孔容,孔隙率。

比表面积:单位质量催化剂所具有的表面积

比孔容积:1g催化剂中颗粒内部细孔的总体积

孔隙率:催化剂内细孔的体积占颗粒总体积的分数

5.催化剂的制备方法

浸渍法,沉淀法,混合法,沥滤法,熔融法,水热合成法,离子交换法6.催化剂密度有几种表示方法,如何测定

7.催化剂的稳定性

化学稳定性,耐热稳定性,抗毒稳定性,机械稳定性

8.固体催化剂的一般组成。

9.浸渍法:将一中或几种活性组分载于载体上,通常是将载体与金属盐类的谁溶液接触,使金属盐类溶液吸附或贮存在载体的毛细管中,然后除去过剩的溶液,经过干燥,煅烧和活化即可得到催化剂

10.催化剂载体的作用

11.沉淀法:将金属盐溶液和沉淀剂分别加入不断搅拌的沉淀槽中,生成固体沉淀,经洗涤,过滤,干燥,煅烧,活化制得。

12.影响晶体长大的因素,晶体的大小和数量怎样影响晶体长大?

过饱和度,搅拌,晶种,温度,杂质。

加入晶种的大小应该与溶液的过饱和度相适应,晶粒过小,就可能溶解,起不到晶种的作用。晶粒用量过多,溶液的过饱和度不足以使晶核充分长大,也得不到大颗粒晶体。

13.什么是沉淀物老化,老化过程中发生的变化

沉淀法生产催化剂时,沉淀反应终了后,沉淀物与溶液在一定条件下还要接触一段时间,在这期间,沉淀物的性质随时间变化,所发生的不可逆结构变化称为老化。

老化形式:颗粒长大,晶型完善及转变,凝胶的脱水收缩。

14.提高凝胶脱水收缩程度的措施有哪些

提高老化温度,延长老化时间,在碱介质中老化

15.因共沉淀而引入杂质的具体途径有那些

因吸附引起的共沉淀,因生成固溶体产生的共沉淀,包藏或吸留共沉淀16.在不饱和溶液内均匀的得到沉淀的方法通常有那些

在溶液中进行包含氢离子变化的缓慢的化学反应,逐渐提高溶液的PH值,使溶解度逐渐下降而析出沉淀,借助形成或放出沉淀离子的反应提高沉淀离子的浓度。

17.沉淀物的洗涤需要注意哪些问题

溶解度较大的沉淀物,用沉淀剂的稀溶液洗涤,只有易分解或具有挥发性的沉淀剂才能使用。溶解度相当小的非晶态沉淀物,采用含电解质的稀溶液洗涤,避免沉淀物分散成胶体。沉淀物的溶解度很小,又不易生成胶体,用蒸馏水或去离子水洗涤。热洗涤溶液将易沉淀物洗干净,还能防止产生胶体溶液,也易通过滤布。

18.浸渍法制备催化剂是对载体有哪些要求

适应反应过程的形状和大小,足够的机械强度,足够的比表面,合适的孔结构和吸水率,足够的稳定性,耐热,合适的传热系数,不能使催化剂中毒或增加副反应,原料易得,制备方便。

19.名词解释,润湿现象:液体与固体接触时,有的立即铺展覆盖整个表面,有的则仍然团聚成凸透镜状,当液体对固体的吸引力大于液体本身的内聚力时,液体就会在固体表面展开来。

20.什么情况下适合使用混合法制备催化剂,这种方法的优缺点

21.吸附法的特点

金属负载催化剂,金属晶粒细小,粒径分布范围窄,活性高,作为活性组分的溶质,必须有一定的吸附能力,具有吸附活性的组分溶质很容易被载体吸附,吸附速度很快。

22.举例说明熔融沥滤法制备催化剂的流程

固体粉碎—高温熔融或烧结—冷却—破碎成一定粒度

合成氨催化剂合成:磁铁矿、碳酸钾、氧化铝—1600℃熔融—液态混合物—冷却—粉碎—颗粒—还原—催化剂

23.煅烧过程中催化剂发生的变化有哪些

热分解除去化学结合水、二氧化碳、氮氧化物等挥发性杂质,生成有催化活性的化合物,在较高温度下氧化物还可能发生固相反应,形成具有活性的化合状态。通过分解产物的再结晶,得到一定晶型,晶粒大小,孔结构和比表面。通过高温下的热移动,可能形成晶格缺陷或因外来离子的嵌入,使化合物的化学价态发生变化,使催化剂具有活性。使微晶适当烧结,提高催化剂机械强度。

24.名词解释:tamman 温度:开始发生烧结时的温度,固体熔融温度绝对温标的2/3。

25.烧结:固体加热到一定温度时(低于熔点),固体微晶或颗粒粘接成聚集体的过程

26.还原过程中如何提高金属微晶的还原度和分散度

在不发生烧结的前提下,尽可能地提高还原温度(特别是还原初期)。使用较高的氢空速。尽可能的降低还原气体中的水蒸气分压。

27.简述合成氨催化剂的制备过程,属于何种制备方法,并说明其作用28.纳米材料的特性:表面与界面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应

29.加氢反应的特点:绿色化学反应,原子经济性高,产品收率高,质量好,反应条件温和,设备通用。

30.什么是染多酸:杂多酸(Heteropoly Acid,简写为HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有酸性,而且具有氧化还原性,是一种多功能的新型催化剂,杂多酸稳定

性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。31.商品还原镍催化剂的制备采用的是何种方法,如何保存该催化剂,骨架镍催化剂一般采取什么方法保存

还原镍催化剂:硝酸镍、硅藻土混合蒸干—三氧化二铝、NiO热分解(400-500℃)—氢气还原

骨架镍催化剂:三水氧化铝—Ni-Al合金与水一起加热、熔融合金—NaOH溶液加入

32.试解释工业上制备氢氧化物沉淀时,在含金属盐溶液中加入尿素并加热的原因

33.催化剂的组成:单组元催化剂,多组元催化剂(主催化剂,共催化剂,助催化剂,载体)

34.助催化剂:加到催化剂中的少量物质,本身没有活性或者活性很低,但能显著改变催化剂效能(结构型,调变型,扩散型,毒化型)

35.载体的作用:分散,稳定化,支撑,传热和稀释,助催化

36.沉淀剂的选择要求:形成沉淀物的溶解度要小,沉淀剂本身的溶解度要大,尽可能不带入不溶性杂质

37.浸渍液的选择:活性组分的金属盐易溶于水,浸渍后,煅烧时能分解为所需要的活性组分,或还原后变成金属活性组分,无用的组分特别是对催化剂有毒的物质在热分解或还原过程中挥发除去。

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

催化剂制备方法

催化剂制备 共沉淀法 按照Co3O4和CeO2在催化剂中的比例,计算出所需0.5mol/L Ce(NO3)3溶液的体积和Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH 值在8.5~9.5 之间。在室温下搅拌 3 小时。按50mL 蒸馏水/g.cat 的比例用80℃蒸馏水洗涤三次,在80℃下干燥24 小时,一定温度下焙烧5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法 考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性 原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1 vol.% CO,50 vol.% H2,N2平衡气;Co3O4-CeO2催化剂的制备方法及钴含量、焙烧温度等制备条件对催化剂的活性有很大影响,本实验范围内的最佳条件为:共沉淀法制备,Co3O4含量为80wt.%,焙烧温度为350℃,采用氧化预处理。

从图4-4 至图4-6 可见,共沉淀法制备的催化剂活性明显好于浸渍法的催化剂。共沉淀法的15wt.%Co3O4-CeO2在175℃时达到100%的CO 转化率,而浸渍法的15wt.%Co3O4-CeO2在200℃实现CO 的完全转化。图4-6 显示浸渍法制得的催化剂选择性略好于共沉淀法,但若对比在相同CO 转化率时的选择性,则可看出制备方法对选择性没有明显的影响 二 催化剂酌制备 溶胶一凝胶法 采用溶胶一凝胶法制备介孔ceO,载体.首先向不断搅拌的十六烷基三甲基溴化铵(CTABr)(36.5g/L)溶液中加人一定量的氨水(20%),直到获得澄清透明的模板剂溶液.将硝酸铈溶液(43.4 g/L)逐滴加入到模板剂溶液中,并在强烈搅拌的情况F使其混合均匀.用氨水将上述溶液的pH值调到11左右。然后搅拌至形成溶胶.将溶胶移入带聚四氟乙烯内衬的不锈钢晶化釜内,100℃晶化5 d,过滤分离出固体产物,用去离子水和乙醇分别洗涤三次,于80℃烘箱中干燥24 h,然后在马弗炉中以5℃/min的速率升温至450℃煅烧4 h,制得介孔Cc02.非介iL CeCh(non—meso—Ce02)载体与介孔CeO:载体制备过程相同,但

催化剂论文

负载型金催化剂的研究及应用 化工07-3 张波 摘要讨论了有关金属催化剂的相关知识并着重介绍了负载型金催化剂的发展、常用的制备方法及应用,金催化剂的性能,展望了金催化剂的前景。 关键词负载型金催化剂制备性能应用 Supported Gold Catalysts for Research and Application chemicial engineering and technology class of 073 zhangbo Abstract This paper discusses the metal catalyst-related knowledge and highlights the development of supported gold catalysts, commonly used preparation methods and application of the performance of gold catalysts and looking forward to the prospect of the gold catalyst. Key words supported gold catalyst preparation, performance, application 1金属催化剂的概述 存在少量就能显着加速反应而不改变反应的总标准吉布斯函数变的物质称为该反应的催化剂。金属催化剂是一类重要的工业催化剂。主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等。?几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。金属适合于作哪种类型的催化剂,要看其对反应物的相容性。发生催化反应时,催化剂与反应物要相互作用。除表面外,不深入到体内,此即相容性。如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。 2金催化剂的发展 金一直被认为是化学惰性最高的金属[1] ,由于其化学惰性和难于高分散,一般不被用来作为催化剂。但是到80年代,Haruta 发现担载在过渡金属氧化物上的金催化剂,不仅对CO 低温氧化具有很高的催化活性,而且还具有良好的抗水性、稳定性和湿度增强效应[2 ,3 ] , 另一方面, 作为一种贵金属催化剂, 金催化剂具有商业化的经济优势,致使人们对其催

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

催化剂的制备方法与成型技术简汇

\催化剂的制备方法与成型技术1314100125 13化工本一万立之 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 目录 摘要 (1) 1 固体催化剂的组成: (1) 2 催化剂的一般制备方法 (1) 2.1 浸渍法 (1) 2.2 沉淀法 (2) 2.3 混合法 (2) 2.4 滚涂法 (3) 2.5 离子交换法 (3) 2.6 热熔融法 (3) 2.7锚定法 (4) 3 催化剂成型技术 (4) 3.1喷雾成型 3.2油柱成型 3.3转动成型 3.4挤条成型 3.5压片成型 4 小结 (5) 参考文献 (6)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

催化剂的制备及贵金属催化剂的回收

论文题目:催化剂的制备及贵金属催化剂的回收课程名称:石油化工 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月29日

催化剂的制备及回收 摘要:在工业领域,催化剂是一种重要的化学制品,不但能够促进化学反应的发生,还能控制化学反应的速率,在工业领域有着重要的应用。对于有些化学反应来讲,如果没有催化剂的介入,将无法正常实现。然而,在参与反应后很多催化剂很难回收利用或已经中毒。 关键词:催化剂;回收技术;贵金属;催化剂中毒 Preparation Of Catalysts And Recycling Abstract:In industry, the catalyst is an important chemical products, not only to promote the chemical reaction, but also to control the chemical reaction rate, in the industrial field has important applications. For some chemical reactions in terms of, if not the catalyst intervention will not work properly achieved. However, after involved in the reaction a lot of catalyst is difficult to recycle or have been poisoned. Keywords: Catalyst; recycling technology; precious metals; catalyst poisoning 引言 催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,贝采里乌斯偶然发现,白金粉末可以加快酒精和空气中的氧气发生化学反应,生成了醋酸。后来,人们把这一作用叫做触媒作用或催化作用,希腊语的意思是“解去束缚”。后来,经过科学家们的不断研究和总结,将催化剂普遍定义[1]为--催化剂是一种能够改变一个化学反应的速度,却不能改变化学反应热力学平衡位置,本身在化学反应中不被明显的消耗的化学物质。 1 催化剂的主要分类 催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂, 1.1 均相催化剂 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作

催化剂的制备方法与成型技术

\催化剂的制备方法与成型技术 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 Abstract: this paper introduces the composition of the catalyst, solid catalyst preparation of the general method of preparation, catalyst of new technology, and catalysts used molding technology. Keywords: Solid catalyst; Preparation methods; Molding technology

目录 摘要 (1) 1 固体催化剂的组成: (2) 2 催化剂的一般制备方法 (2) 2.1 浸渍法 (2) 2.2 沉淀法 (3) 2.3 混合法 (4) 2.4 滚涂法 (4) 2.5 离子交换法 (4) 2.6 热熔融法 (4) 2.7锚定法 (5) 2.8 其他方法 (5) 3 催化剂成型技术 (6) 4 小结 (7) 参考文献 (8)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

催化剂的制备和表征方法

简论催化剂的制备和表征方法 关键词:催化剂制备表征 催化剂是一种能够改变化学反应的速率,控制反应方向和产物结构,而又本身又不参与最终产物构成的物质。催化科学的发展可以追溯到公元前,中国很早就利用发酵方法酿酒和制醋,这是生物催化剂在古代的应用,那时的应用可以说只是根据经验对催化剂的简单应用。而如今,人们已经研究出催化剂的作用原理,催化剂也已经广泛应用到生活、工业等各个领域,成为我们现在乃至未来不可或缺的物质。催着催化领域的发展,催化剂的制备技术也随着各种需要而不断产生,到现在已经有很多完善的催化剂制备方法,同时也还是有一大批科研工作者致力于催化剂制备的新方法的研究。本文主要介绍几种常用的催化剂制备和表征方法,并对比较新颖的制备方法进行了简单的介绍。 催化剂一般有三种组分,即活性组分、载体和助催化剂。活性组分是起催化作用的根本性物质,载体是活性组分的分散剂、粘合剂,而助催化剂本身并没有活性,且量比较少但是却可以改变活性组分的活化性能。催化剂的制备是一系列单元操作组成的,一般用最核心的单元操作来命名方法,常用的有沉淀法、吸附法、离子交换法和浸渍法。 沉淀法主要用于制备分散度要求高并含有一种或多种金属氧化物的催化剂。一般是在金属盐溶液中加入适当的沉淀剂使金属盐溶液沉淀分布在载体上,然后经过滤、洗涤、干燥、活化得到催化剂。沉淀法制备催化剂最主要的是要控制沉淀过程均匀,一种有效的方法是用尿素代替碱,将尿素加入金属盐-载体浆状液中,在搅拌下加热,尿素在90摄氏度下分解生成的OH基团均匀地分布在容器和载体的孔中,可以做到均匀的发生沉淀过程。 对于负载量高于10%-20%(质量分数)的催化剂,沉淀法是较好的制备方法。而吸附法则在较小的沉积量时比较优异。吸附法的过程是载体物料在金属盐溶液中吸附平衡梁的盐离子,载体从溶液中可能吸附阳离子也可能吸附阴离子,这取决与表面的性质。一般,沸石是强的阳离子交换剂,二氧化硅是弱的阳离子吸附剂,氧化铝对阳离子和阴离子的吸附都弱,氧化镁是强的阴离子吸附剂,炭与电子施主优先形成电荷专业络合物,但也吸附阳离子。吸附法的饱和量一般较小,虽然可以通过多次吸附增加,但比较麻烦,因此一般只适合低负载量的催化剂制备。

相关文档