文档库 最新最全的文档下载
当前位置:文档库 › 函数极限与连续习题及复习资料

函数极限与连续习题及复习资料

函数极限与连续习题及复习资料
函数极限与连续习题及复习资料

第一章 函数、极限与连续

(A)

1.区间[)+∞,a 表示不等式( )

A .+∞<

B .+∞<≤x a

C .x a <

D .x a ≥ 2.若()13+=t t ?,则()=+13t ?( )

A .13+t

B .26+t

C .29+t

D .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )

A .??? ??-25,31

B .??? ??-25,1

C .??

?

??-1,31 D .()1,1-

4.下列函数()x f 与()x g 相等的是( )

A .()2x x f =,()4x x g =

B .()x x f =,()()2

x x g =

C .()1

1+-=

x x x f ,()11+-=

x x x g D . ()1

1

2--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )

A .2sin x

x y = B .x

xe y 2

-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ?为( )

A .()()21x f x f +

B .()21x x f +

C .()21x x f

D .????

??21x x f

8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x f

y 1

-=的图形对称于直线( )

A .0=y

B .0=x

C .x y =

D .x y -=

10.函数2101-=-x y 的反函数是( ) A .2lg

-=x x y B .2log x y = C .x

y 1

log 2= D .()2lg 1++=x y 11.设函数()??

?=是无理数

是有理数x x a x f x ,

0,

10<

A .当+∞→x 时,()x f 是无穷大

B .当+∞→x 时,()x f 是无穷小

C .当-∞→x 时,()x f 是无穷大

D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )

A .充分条件

B .充分且必要条件

C .必要条件

D .非充分也非必要条件

13.若函数()???<≥+=1,cos 1

,2x x x a x x f π在R 上连续,则a 的值为( )

A .0

B .1

C .-1

D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值

15.数列0,31,42,53,6

4

,…是( )

A .以0为极限

B .以1为极限

C .以

n n 2

-为极限 D .不存在在极限 16.=∞→x

x x 1

sin lim ( )

A .∞

B .不存在

C .1

D .0

17.=?

?? ?

?-∞→x

x x 211lim ( )

A .2-e

B .∞

C .0

D .2

1 18.无穷小量是( )

A .比零稍大一点的一个数

B .一个很小很小的数

C .以零为极限的一个变量

D .数零

19.设()??

?

??≤≤-<≤<≤-=3

1,110,

20

1,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。

20.已知函数()x f y =的定义域是[]1,0,则()2x f 的定义域是 。 21.若()x

x f -=

11

,则()[]=x f f ,()[]{}=x f f f 。 22.函数1+=x e y 的反函数为 。

23.函数()x y πsin 5=的最小正周期=T 。

24.设211x x x f ++=??

?

??,则()=x f 。

25.(

)

=--+∞

→13lim

n n

n x 。

26.=++++++++

∞→n

n n 3

1

913112141211lim ΛΛ 。 27.=+→x x x ln lim 0

28.()()()=++-∞→50

3020152332lim x x x x 。

29.函数()??

?

??≥-<≤-<=2,321,11,

x x x x x x x f 的不连续点为 。

30.=∞→n

n n x

3sin

3lim 。

31.函数()1

1

2-=x x f 的连续区间是 。

32.设()()???<++≥+=0

,

0,

2

x x x b a x b ax x f ()0≠+b a ,()x f 处处连续的充要条件是

=b 。

33.若()???<-≥=0,10

,1x x x f ,()x x g sin =,复合函数()[]x g f 的连续区间

是 。

34.若01lim 2=????

??+-+∞→b ax x x x ,a ,b 均为常数,则=a ,=b 。 35.下列函数中哪些是偶函数,哪些是奇函数,哪既非奇函数又非偶函数?

(1)()2

2

1x x y -=,(2)3

2

3x x y -=,(3)2

2

11x

x y +-=,(4)()()11+-=x x x y (5)1cos sin ++=x x y ,(6)2

x

x a a y -+=

36.若()t t t t t f 55

222

2+++

=,证明()??

?

??=t f t f 1。 37.求下列函数的反函数

(1)122+=x x y , (2)1

1

sin 21+-+=x x y

38.写出图1-1和图1-2所示函数的解析表达式

39.设()()??

?

??+∞<≤-<<∞-=x x x x x

x f 0,10,sin 2,求()x f x 0

lim →。

40.设3212222n

n

n x n -+++=Λ,求n n x ∞→lim 。 41.若()2

1x x f =

,求()()x x f x x f x ?-?+→?0lim 。

42.利用极限存在准则证明:11211

lim 222

=??

?

??++++++∞→πππn n n n n n Λ。 43.求下列函数的间断点,并判别间断点的类型 (1)()2

1x x

y +=

,(2)2

21x x

y -+=

,(3)x x y =,(4)[]x y =

44.设()????

???<<=<<=2

1,11,211

0,x x x x x f ,问:

(1) ()x f x 1

lim →存在吗?

(2) ()x f 在1=x 处连续吗?若不连续,说明是哪类间断?若可去,则补充定义,使其在该点连续。

45.设()???>+≤≤-=1,31

0,12x x x x x f ,

(1)求出()x f 的定义域并作出图形。 (2)当2

1

=

x ,1,2时,()x f 连续吗? (3)写出()x f 的连续区间。

46.设()?

??

??><<-±===2 ,4 20

,42,0 ,2 2x x x x x x f ,求出()x f 的间断点,并指出是哪一类间断点,若可去,则补充定义,使其在该点连续。

47.根据连续函数的性质,验证方程135=-x x 至少有一个根介于1和2之间。

48.验证方程12=?x x 至少有一个小于1的根。

(B)

1.在函数()x f 的可去间断点0x 处,下面结论正确的是( ) A .函数()x f 在0x 左、右极限至少有一个不存在

B .函数()x f 在0x 左、右极限存在,但不相等

C .函数()x f 在0x 左、右极限存在相等

D .函数()x f 在0x 左、右极限都不存在

2.设函数()?????=≠=0

,

00,

sin 3

1x x x x x f ,则点0是函数()x f 的( )

A .第一类不连续点

B .第二类不连续点

C .可去不连续点

D .连续点 3.若()0lim 0

=→x f x ,则( )

A .当()x g 为任意函数时,有()()0lim 0

=→x g x f x x 成立

B .仅当()0lim 0

=→x g x x 时,才有()()0lim 0

=→x g x f x x 成立

C .当()x g 为有界时,能使()()0lim 0

=→x g x f x x 成立

D .仅当()x g 为常数时,才能使()()0lim 0

=→x g x f x x 成立

4.设()x f x x 0

lim →及()x g x x 0

lim →都不存在,则( )

A .()()[]x g x f x x +→0

lim 及()()[]x g x f x x -→0

lim 一定不存在

B .()()[]x g x f x x +→0

lim 及()()[]x g x f x x -→0

lim 一定都存在

C .()()[]x g x f x x +→0

lim 及()()[]x g x f x x -→0

lim 中恰有一个存在,而另一个不存在

D .()()[]x g x f x x +→0

lim 及()()[]x g x f x x -→0

lim 有可能存在

5.x

x x x sin 1

sin

lim

20

→的值为( )

A .1

B .∞

C .不存在

D .0 6.()

()()

=+--→211sin lim

2

21

x x x x ( )

A .31

B .31-

C .0

D .3

2

7.按给定的x 的变化趋势,下列函数为无穷小量的是( )

A .1

42

+-x x x (+∞→x ) B .111-???

??+x

x (∞→x )

C .x --21 (0→x )

D .

x

x

sin (0→x ) 8.当0→x 时,下列与x 同阶(不等价)的无穷小量是( ) A .x x -sin B .()x -1ln C .x x sin 2 D .1-x e

9.设函数()x x g 21-=,()[]2

21x x x g f -=,则??

?

??21f 为( ) A .30 B .15 C .3 D .1

10.设函数()422+-=x x f (20≤≤x )的值域为E ,()1

22

2++x x x g 的值域

为F ,则有( )

A .F E ?

B .F E ?

C .F E =

D .Φ=F

E I 11.在下列函数中,()x f 与()x g 表示同一函数的是( )

A .()1=x f ,()()0

1x x g -= B .()x x f =,()x

x x g 2

=

C .()2x x f =,()x x g =

D .()33x x f =,()x x g = 12.与函数()x x f 2=的图象完全相同的函数是( )

A .x e 2ln

B .()x 2arcsin sin

C .x e 2ln

D .()x 2sin arcsin 13.若1

11

>x

B .12

C .13

D .1

C .必定有无穷多个

D .可以有有限个,也可以有无限多个 15.任意给定0>M ,总存在0>X ,当X x -<时,()M x f -<,则( ) A .()-∞=-∞

→x f x lim B .()-∞=∞

→x f x lim

C .()∞=-∞

→x f x lim D .()∞=+∞

→x f x lim

16.如果()x f x x +→0

lim 与()x f x x -→0

lim 存在,则( )

A .()x f x x 0

lim →存在且()()00

lim x f x f x x =→

B .()x f x x 0

lim →存在,但不一定有()()00

lim x f x f x x =→

C .()x f x x 0

lim →不一定存在

D .()x f x x 0

lim →一定不存在

17.无穷多个无穷小量之和,则( ) A .必是无穷小量 B .必是无穷大量

C .必是有界量

D .是无穷小,或是无穷大,或有可能是有界量 18.()1ln arccos 2-=x y ,则它的连续区间为( ) A .1>x B .2>x C .[][

]1,22,1+-+-e e Y D .()(

)

1,22,1+-+-e e Y

19.设()nx

nx

x f n -=∞→13lim

,则它的连续区间是( )

A .()+∞∞-,

B .n

x 1

≠ (n 为正整数)处

C .()()+∞∞-,00,Y

D .0≠x 及 n

x 1

≠处

20.设()???≥+<=0,0

,x x a x e x f x 要使()x f 在0=x 处连续,则=a ( )

A .2

B .1

C .0

D .-1

21.设()?????=≠=0,0,3

sin

1

x a x x x x f ,若()x f 在()+∞∞-,上是连续函数,则=a ( )

A .0

B .1

C .3

1

D .3

22.点1=x 是函数()???

??>-=<-=1,31,

11,13x x x x x x f 的( ) A .连续点 B .第一类非可去间断点

C .可去间断点

D .第二类间断点 23.方程014=--x x 至少有一根的区间是( )

A .??? ??21,0

B .??

?

??1,21 C .()3,2 D .()2,1

24.下列各式中的极限存在的是( )

A .x x sin lim ∞

→ B .x

x e 1

0lim → C .1352lim 22-+∞→x x x x D .121lim

0-→x x 25.=→x

x x sin lim

( )

A .1

B .0

C .-1

D .不存在

26.=??? ?

?+++∞→22221

lim n n n n n Λ 。

27.若31122++=??? ?

?

+x x x x f ,则()=x f 。

28.函数()1ln 2+=x y 的单调下降区间为 。

29.已知22

35

lim

22=-++∞→n bn n a n ,则=a ,=b 。 30.212lim e x x ax

x =??

?

??++∞→,则=a 。

31.函数()x

e x

f 1

=的不连续点是 ,是第 类不连续点。

32.函数()x

x f 1

sin =的不连续点是 ,是第 不连续点。

33.当0→x 时,~113-+x 。

34.已知()()x

x x f 1

1-=,为使()x f 在0=x 连续,则应补充定义()=0f 。 35.若函数()1=x f 与函数()x

x x g =的图形完全相同,则x 的取值范围

是 。

36.设()3x x x f -=,若()0=x f ,则=x ;若()0>x f ,则

∈x ;若()0

37.设()???≥<=0,0,2x x x x x f ,()???≥-<=0,30

,5x x x x x g ,则()[]=x g f 。

38.设10≤

1

1+-=n n x 的前n 项和为n S ,那么n

x 1

lim

∞→ ()n S S S +++Λ21 = 。

40.如果0→x 时,要无穷小()x cos 1-与2

sin 2

x

a 等价,a 应等于 。 41.要使()0lim 1

=+-→x

x b ax ,则b 应满足 。 42.(

)

=-++∞

→x x x 1lim

2 。

43.函数()???

??-=-≠+-=1,1,112

x A x x x x f ,当=A 时,函数()x f 连续。

44.已知22

lim 2

22=--++→x x b

ax x x ,则=a ,=b 。 45.()??

???=≠=-0,0

,2

1x a x e x f x ,()=→x f x 0

lim ;若()x f 无间断点,

则=a 。

46.函数()x

x x f 1

sin =在点0=x 处可可连续开拓,只须令()=0f 。 47.=-→x

x x

x cos cos 1lim

20 。

48.=+∞→x x e

x 3

lim 。

49.=-→202cos 1lim

x

x

x 。 50.设()x x G ln =,证明:当0>x ,0>y ,下列等式成立:

(1)()()()xy G y G x G =+,(2) ()()???

?

??=-y x G y G x G 。

51.设()?

??

??>-=<=1,11,01,1x x x x f ,()x e x g =,求()[]x g f 和()[]x f g 。

52.若()x x

x +-=11lg

?,证明:()()???

? ??++=+yz z y z y 1???。 53.根据数列极限的定义证明:

(1) 2

3

1213lim

=-+∞→n n x ,(2) ()

01lim =-+∞→n n n ,

(3) 19990lim =?∞

→321Λ个

n n ,(4)1lim

2=+∞

→n

n

n n 54.根据函数极限的定义证明

(1) 01

sin lim 0=→x

x x ,(2) 32321lim

22=+∞→x x x , (3) 0lim

=∞→x

arctgx

x ,(4)02lim 2=-+→x x

55.求下列极限

(1) 231lim 220---→x x x x (2) 1

1lim 1--→m n x x x (n ,m 为正整数),

(3) x

x x -++∞

→11lim

(4) 7

cos lim

---∞

→x x

x x (5)

()()()

10019

81328574lim ---∞→x x x x (6) ??? ??---→311311

lim x x x (7) x x x x sin 2cos 1lim

0-→ (8) 2

cos lim 2ππ-

x x

x

(9) x

x

x arcsin lim 0→ (10) a x a x a x --→22sin sin lim

(11) ()x

x x 1

021lim +→ (12) x

x x x 1011lim ??

?

??-+→

(13) ()

x

x tgx cos 0

1lim +→ (14) kx

x x ??

?

??-∞

→11lim (k 为正整数)

56.当0→x 时,求下列无穷小量关于x 的阶

(1)63x x +,(2)32sin x x ,(3)x x --+11,(4)x tgx sin -

57.试证方程b x a x +=sin ,其中0>a ,0>b ,至少有一个正根,并且不超过b a +。

58.设()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上至少存在一个x ,使()()a x f x f +=。

59.设()x f 在[]b a ,上连续,且()a a f <,()b b f >,试证:在()b a ,内至少有一点ξ,使得:()ξξ=f 。

60.设数列n x 有界,又0lim =∞

→n n y ,证明0lim =∞

→n n n y x 。

61.设43

434343321n n n n n x n ++++=Λ,求n n x ∞→lim 。

62.设()???

??<<=<<-=21 ,31 ,21

1 ,32x x x x x x f ,求()x f x 0lim →及()x f x 1

lim →。

63.求x

x x

x x e e e e --+∞→+-lim 。

64.求3

02sin sin 2lim

x x

x x -→。

65.求下列极限

(1) t e t t 1lim 2+-→ (2) ()

x x x -→ππcos 22sin lim 4

(3) 145lim

1

---→x x x x (4) a

x a

x a x --→sin sin lim

(5) (

)

x x x x x --++∞

→22lim

(6) ()

x

x x

tg cos 20

31lim +→

(7) x e x x 1lim 0-→ (8) 1

1232lim +∞→??

?

??++x x x x

66.求()

x x

x +→1ln lim

0。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

第二章极限习题及答案:函数的连续性

函数的连续性 分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21 )10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1 ==- - →→x x f x x 11lim )(lim 1 1 ==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 2 1)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 x f x f x f x x x x x x →→→+ - =才存在. 函数的图象及连续性 例 已知函数2 4)(2 +-= x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(lim )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2 -=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2 -=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ? ??-=--≠+-=)2(4)2(2 4 )(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根 例 利用连续函数的图象特征,判定方程01523 =+-x x 是否存在实数根.

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

函数与极限练习题

题型 一.求下列函数的极限 二.求下列函数的定义域、值域 三.判断函数的连续性,以及求它的间断点的类型 内容 一.函数 1.函数的概念 2.函数的性质——有界性、单调性、周期性、奇偶性 3.复合函数 4.基本初等函数与初等函数 5.分段函数 二.极限 (一)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则 (二)函数的极限 1.函数在无穷大处的极限 2.函数在有限点处的极限 3.函数极限的性质 4.极限的运算法则 (三)无穷小量与无穷大量 1.无穷小量 2.无穷大量 3.无穷小量的性质 4.无穷小量的比较 5.等价无穷小的替换原理 三.函数的连续性 x处连续的定义 1.函数在点0 2.函数的间断点 3.间断点的分类 4.连续函数的运算 5.闭区间上连续函数的性质 例题详解 题型I函数的概念与性质 题型II求函数的极限(重点讨论未定式的极限) 题型III求数列的极限 题型IV已知极限,求待定参数、函数、函数值 题型V无穷小的比较 题型VI判断函数的连续性与间断点类型 题型VII与闭区间上连续函数有关的命题证明

自测题一 一. 填空题 二. 选择题 三. 解答题 3月18日函数与极限练习题 一.填空题 1.若函数121)x (f x -??? ??=,则______)x (f lim x =+∞ → 2.若函数1 x 1 x )x (f 2--=,则______)x (f lim _1x =→ 3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________ 4. 设 cos 0()0 x x f x x x ≤??=? >?? ,则 (0)f = __________ 5.已知函数 2 ()1 ax b x f x x x +

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

函数极限与连续

函 数 1.1.1 函数及其性质 1.函数的概念 引例 汽车以60千米/小时的速度均速行驶,那么行驶里程与时间有什么关系 设行驶路程为s 千米,行驶时间为t 小时,依题意可得()600s t t =<<+∞.变量s 和t 的这种对应关系,即是函数概念的实质. 定义 设x 和y 是两个变量,D 是一个非空实数集,如果对于数集D 中的每一个数x 按照一定的对应法则f 都有唯一确定的实数y 与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,其中D 称为函数的定义域,x 称为自变量,y 称为因变量. 如果对于确定的0x D ∈,通过对应法则f ,有唯一确定的实数0y 与之对应,则称0y 为)(x f y =在0x 处的函数值,记作00()y f x =.集合{} (),Y y y f x x D ==∈称为函数的值域. 2.函数的表示法 (1)解析法:用一个等式来表示两个变量的函数关系.如一次函数y kx b =+ (,k b 为常数,且0k ≠). (2)列表法:列出表格来表示两个变量的函数关系.如三角函数表. (3)图像法:用函数图像表示两个变量之间的函数关系.如二次函数图像. 3.函数的两个要素 函数的对应法则和定义域称为函数的两个要素.函数的对应法则通常由函数的解析式给出,函数的值域由定义域和对应法则确定.函数的定义域是使函数表达式有意义的自变量取值的全体.在实际问题中,函数的定义域要由问题的实际意义确定.在求函数的定义域时,应注意:分式函数的分母不能为零;偶次根式的被开方式必须大于等于零;对数函数的真数必须大于零;反正弦函数与反余弦函数的定义域为[]1,1-等,如果函数表达式中含有上述几种函数,则应取各部分定义域的交集. 两个函数只有当定义域和对应法则都相同时,才是同一个函数. 例如函数 y =y x =是相同的函数;而函数()2lg f x x =与()2lg f x x =因定义域不

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

(完整版)函数极限与连续习题含答案,推荐文档

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、已知四个命题:(1)若在点连续,则在点必有极限 )(x f 0x )(x f 0x x →(2)若在点有极限,则在点必连续 )(x f 0x x →)(x f 0x (3)若在点无极限,则在点一定不连续 )(x f 0x x →)(x f 0x x =(4)若在点不连续,则在点一定无极限。 )(x f 0x x =)(x f 0x x →其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若,则下列说法正确的是( C ) a x f x x =→)(lim 0A 、在处有意义 B 、)(x f 0x x =a x f =)(0 C 、在处可以无意义 D 、可以只从一侧无限趋近于)(x f 0x x =x 0 x 3、下列命题错误的是( D ) A 、函数在点处连续的充要条件是在点左、右连续 0x 0x B 、函数在点处连续,则)(x f 0x )lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的 D 、对于函数有)(x f )()(lim 00 x f x f x x =→4、已知,则的值是( C )x x f 1)(= x x f x x f x ?-?+→?)()(lim 0A 、 B 、 C 、 D 、21x x 21x -x -5、下列式子中,正确的是( B )A 、 B 、 C 、 D 、1lim 0=→x x x 1)1(21lim 21=--→x x x 111lim 1=---→x x x 0lim 0=→x x x 6、,则的值分别为( A )51lim 21=-++→x b ax x x b a 、A 、 B 、 C 、 D 、67和-67-和67--和6 7和7、已知则的值是( C ),2)3(,2)3(-='=f f 3)(32lim 3--→x x f x x A 、 B 、0 C 、8 D 、不存在4-8、( D ) =--→33lim a x a x a x

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

极限知识点(2020年10月整理).pdf

高中数学第十三章-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim

函数极限与连续知识梳理

知识梳理函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难

一、函数极限的概念 1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

成人高考数学知识点之函数

成人高考数学知识点之函数 (一)函数 1、知识范围 (1)函数的概念 函数的定义、函数的表示法、分段函数、隐函数 (2)函数的性质 单调性、奇偶性、有界性、周期性 (3)反函数 反函数的定义、反函数的图像 (4)基本初等函数 幂函数、指数函数、对数函数、三角函数、反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2、要求 (1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。 (3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。 (4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。 (6)了解初等函数的概念。 (7)会建立简单实际问题的函数关系式。

(二)极限 1、知识范围 (1)数列极限的概念 数列、数列极限的定义 (2)数列极限的性质 唯一性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理 (3)函数极限的概念 函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义 (4)函数极限的性质 唯一性、四则运算法则、夹通定理 (5)无穷小量与无穷大量 无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶 (6)两个重要极限 2、要求 (1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。

函数与极限测试题及答案一

函数与极限测试题(一) 一、 填空题 二、 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 三、 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 四、 3、若0x →时,无穷小221ln 1x x -+与2sin 2a 等价,则常数a =_____。 五、 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则 ()f x 的间断点为x =_____。 六、 单选题 七、 1、当0x →时,变量 211 sin x x 是( ) 八、 A 、无穷小 B 、无穷大 九、 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 十、 2、设函数()bx x f x a e = +在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) 十一、 A 、0,0a b << B 、0,0a b >> 十二、 C 、0,0a b ≥< D 、0,0a b ≤> 十三、 3、设()232x x f x =+-,则当0x →时( ) 十四、 A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 十五、 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 十六、 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????,则 ()lim x f x →∞ 为( ) 十七、 A 、存在且等于零 B 、存在但不一定等于零 十八、 C 、一定不存在 D 、不一定存在 十九、 例:()()()11 ,,22 1 x x f x x g x x x x ?==+=+ ++ 二十、 求下列极限 二十一、 1、 2 241lim sin x x x x x +-+、()2 21212lim 1x x x x x -→?? ?+??

【高一数学函数相关知识点分析】函数极限的相关知识点总结

【高一数学函数相关知识点分析】函数极限的相关知识点总结 一、增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数。 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。 二、单调区间 单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。 一、指数函数的定义 指数函数的一般形式为y=a(a0且≠1) (x∈R). 二、指数函数的性质 1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞) 2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞) 一、对数与对数函数定义 1.对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 2.对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。 二、方法点拨 在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果[标签:内容] 感谢您的阅读!

函数极限连续单元测试与答案

函数单元测试(A ) 一、填充题: 1、设的定义域为[]1,0,则)2(+x f 的定义域是________________。 2、1sin )(,)(2 +==x x q x x f ,则[]=)(x q f ________,()[]=x f q __________。 3、设()2212 ++=+x x x f ,则()=x f _____________。 4、 ()_________ )2(_________,)4(,1 ,01 ,sin =-=?????≥=ππf f x x x x f π。 5、已知函数()x f 是偶函数,且在()+∞,0上是减函数,则函数()x f 在()0,∞-上必 是____________函数。 6、设x v v u u y arccos , 1 ,3 =+==,则复合函数()_____________==x f y 。 7、______________,cos sin )(2 2其周期为设函数x x x f -=。 二、选择题: 1、函数??? ??? ? > ≤+=2,sin 2,)1ln()(ππx x x x x f 则) 4(π f 等于( ) (A ) ) 41ln(π + (B )22 (C )2π (D )4π 2、设x e x g x x f ==)(,)(2,则=)]([x g f ( ) (A )2 x e (B )x e 2 (C )2 x x (D )x e 3、设函数()x f 的定义域是]1,0[,则()2 x f 的定义域是( ) (A )[-1,1] (B )[0,1] (C )[-1,0] (D )(- ∞,+∞) 4、函数()x x x f -+=1010是( ) (A )奇函数 (B )偶函 数 (C )非奇非偶函 (D )既是 奇函数又是偶函数 5、函数()[]2 13arcsin +=x y 的复合过程是( ) ()()13sin ,sin ,(D) 13,arcsin ,)(13,arcsin B) ( 13arcsin ,)(2222+===+===+==+==x v v u u y x v v u u y C x u u y x u u y A 6、3 4x y -=的反函数是( ) ()()33334(D) 4C) ( 4(B) 4)(x y x y x y x y A -=-=-=-= 7、下列函数中为基本初等函数的是( ) 1 23)()( )15arctan()()( 0,10 ,0)()( 1)ln()()(-=+=???≥=+=x x f D x x f C x x x f B x x f A π

相关文档
相关文档 最新文档