文档库 最新最全的文档下载
当前位置:文档库 › 导数与函数的极值、最值问题(解析版)

导数与函数的极值、最值问题(解析版)

导数与函数的极值、最值问题(解析版)
导数与函数的极值、最值问题(解析版)

【高考地位】

导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】

类型一 利用导数研究函数的极值

使用情景:一般函数类型

解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;

第二步 求方程'()0f x =的根;

第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值.

例1 已知函数x x

x f ln 1

)(+=

,求函数()f x 的极值. 【答案】极小值为1,无极大值.

【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( )

A .11或18

B .11

C .18

D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232

a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33

b a .当???=-=3

3

b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.

当???-==11

4b a 时,

)1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3

11

(<'-

∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意.

所以???-==114b a .181622168)2(=+-+=∴f .故选C .

考点:函数的单调性与极值.

【变式演练2】设函数()21

ln 2

f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为

( )

A .()1,0-

B .()1,-+∞

C .()0,+∞

D .()(),10,-∞-+∞

【答案】B 【解析】

考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2

1

31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】

试题分析:因为x m x m x x f )1(2)1(2

1

31)(23-++-=

, 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

函数x

m

x

m

x

x

f)1

(2

)1

(

2

1

3

1

)

(2

3-

+

+

-

=在)4,0(上无极值,而()

20,4

∈,所以只有12

m-=,3

m=时,()

f x在R上单调,才合题意,故答案为3.

考点:1、利用导数研究函数的极值;2、利用导数研究函数的单调性.

【变式演练4】已知等比数列{}

n

a的前n项和为1

2n

n

S k

-

=+,则32

()21

f x x kx x

=--+的极大值为()

A.2 B.

5

2

C.3 D.

7

2

【答案】B

【解析】

考点:1、等比数列的性质;2、利用导数研究函数的单调性及极值.

【变式演练5】设函数32

()(1)

f x x a x ax

=+++有两个不同的极值点

1

x,

2

x,且对不等式12

()()0

f x f x

+≤恒成立,则实数a的取值范围是.

【答案】

1

(,1],2

2

??

-∞-??

??

【解析】

试题分析:因为

12

()()0

f x f x

+≤,故得不等式()()()

3322

121212

10

x x a x x a x x

++++++≤,即()()()()()

22

121212121212

3120

x x x x x x a x x x x a x x

????

++-+++-++≤

????,

由于()()

2

'321

f x x a x a

=+++,令()

'0

f x=得方程()

2

3210

x a x a

+++=,因()

2

410

a a

?=-+>, 故

()

12

12

2

1

3

3

x x a

a

x x

?

+=-+

??

?

?=

??

,代入前面不等式,并化简得

()1a +()22520a a -+≥,解不等式得1a ≤-或

122a ≤≤,因此, 当1a ≤-或1

22

a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22??

-∞-????

.

考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.

【变式演练6】已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是 . 【答案】32a << 【解析】

考点:导数与极值.

类型二 求函数在闭区间上的最值

使用情景:一般函数类型

解题模板:第一步 求出函数()f x 在开区间(,)a b 内所有极值点;

第二步 计算函数()f x 在极值点和端点的函数值;

第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.

例2 若函数()2x f x e x mx =+-,在点()()1,1f 处的斜率为1e +. (1)求实数m 的值;

(2)求函数()f x 在区间[]1,1-上的最大值. 【答案】(1)1m =;(2)()max f x e =. 【解析】

试题分析:(1)由(1)1f e '=-解之即可;

(2)()21x f x e x '=+-为递增函数且()()1110,130f e f e -''=+>-=-<,所以在区间(1,1)-上存在0x 使0()0f x '=,所以函数在区间0[1,]x -上单调递减,在区间0[,1]x 上单调递增,所以

()()(){}max max 1,1f x f f =-,求之即可.

试题解析: (1)()2x f x e x m '=+-,∴()12f e m '=+-,即21e m e +-=+,解得1m =; 实数m 的值为1;

(2)()21x f x e x '=+-为递增函数,∴()()1110,130f e f e -''=+>-=-<, 存在[]01,1x ∈-,使得()00f x '=,所以()()(){}max max 1,1f x f f =-,

()()112,1f e f e --=+=,∴()()max 1f x f e ==

考点:1.导数的几何意义;2.导数与函数的单调性、最值.

【名师点睛】本题考查导数的几何意义、导数与函数的单调性、最值等问题,属中档题;导数的几何意义是拇年高考的必考内容,考查题型有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,常有以下几个命题角度:已知切点求切线方程、已知切线方程(或斜率)求切点或曲线方程、已知曲线求切线倾斜角的范围. 【变式演练7】已知x e

x x f 1

)(+=

. (1)求函数)(x f y =最值;

(2)若))(()(2121x x x f x f ≠=,求证:021>+x x .

【答案】(1) )(x f 取最大值1)0()(max -==f x f ,无最小值;(2)详见解析. 【解析】

试题解析:(1)对)(x f 求导可得x x

x x e

x

e e x e x

f -=+-='2)1()(,

令0)(=-=

'x e

x

x f 得x=0. 当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增; 当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 当x=0时,)(x f 取最大值1)0()(max -==f x f ,无最小值. (2)不妨设21x x <,由(1)得

当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增; 当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 若)()(21x f x f =,则210x x <<,

考点:1.导数与函数的最值;2.导数与不等式的证明. 【变式演练7】已知函数()ln f x x x =,2()2g x x ax =-+-. (Ⅰ)求函数()f x 在[,2](0)t t t +>上的最小值;

(Ⅱ)若函数()()y f x g x =+有两个不同的极值点1212,()x x x x <且21ln 2x x ->,求实数a 的取值范围.

【答案】(Ⅰ)min

1

10()1

ln ,t e e

f x t t t e ?-<

,;(Ⅱ)2ln 2ln 2ln()133a >--.

【解析】

试题分析:(Ⅰ)由'()ln 10f x x =+=,得极值点为1x e =,分情况讨论10t e <<及1

t e

≥时,函

数)(x f 的最小值;(Ⅱ)当函数()()y f x g x =+有两个不同的极值点,即'ln 210y x x a =-++=有两个不同的实根1212,()x x x x <,问题等价于直线y a =与函数()ln 21G x x x =-+-的图象有两

个不同的交点,由)(x G 单调性结合函数图象可知当min 1

()()ln 22

a G x G >==时,12,x x 存在,且

21x x -的值随着a 的增大而增大,而当21ln 2x x -=时,由题意1122

ln 210

ln 210x x a x x a -++=??

-++=?,214x x ∴=代入上述方程可得2144ln 23x x ==,此时实数a 的取值范围为2ln 2

ln 2ln()133

a >--.

试题解析:(Ⅰ)由'()ln 10f x x =+=,可得1

x e

=,

∴①10t e <<时,函数()f x 在1(,)t e 上单调递减,在1

(,2)t e

+上单调递增,

∴函数()f x 在[,2](0)t t t +>上的最小值为11

()f e e

=-,

②当1

t e

≥时,()f x 在[,2]t t +上单调递增,

min ()()ln f x f t t t ∴==,

min

1

10()1ln ,t e e

f x t t t e ?-<

?≥

??

,;

两式相减可得1

122

ln

2()2ln 2x x x x =-=- 214x x ∴=代入上述方程可得214

4ln 23

x x ==,

此时2ln 2

ln 2ln()133

a =--,

所以,实数a 的取值范围为2ln 2

ln 2ln()133

a >--;

考点:导数的应用.

【变式演练8】设函数()ln 1f x x =+.

(1)已知函数()()2131

424

F x f x x x =+

-+,求()F x 的极值; (2)已知函数()()()()2210G x f x ax a x a a =+-++>,若存在实数()2,3m ∈,使得当(]0,x m ∈时,函数()G x 的最大值为()G m ,求实数a 的取值范围.

【答案】(1)极大值为0,极小值为3

ln 24

-;(2)()1ln 2,-+∞.

【解析】

()(),'F x F x 随x 的变化如下表:

x ()0,1

1

()1,2

2

()2,+∞

()'F x + 0 - 0

+ ()F x

3ln 24

-

当1x =时,函数()F x 取得极大值()10F =;当2x =时,函数()F x 取得极小值()32ln 24

F =-

.

③当

112a <, 即12a <时, 函数()f x 在10,2a ?? ???和()1,+∞上单调递增, 在1,12a ??

???

上单调递减, 要存在实数()2,3x ∈,使得当(]0,x m ∈时, 函数()G x 的最大值为()G m ,则()122G G a ??

< ???

,代入化

简得

()()1

ln 2ln 2104a a

+

+->*. 令

()()11ln 2ln 2142g a a a a ??

=+

+-> ???

,因

()11'104g a a a ??=

-> ???恒成立, 故恒有()111ln 20,222g a g a ??

>=->∴> ?

??

时,()* 式恒成立; 综上,实数a 的取值范围是()1ln 2,-+∞. 考点:函数导数与不等式. 【高考再现】

1. 【2016高考新课标1卷】(本小题满分12分)已知函数有两个零点.

(I)求a 的取值范围;

(II)设x 1,x 2是?Skip Record If...?的两个零点,证明:?Skip Record If...?.

【答案】?Skip Record If...?

试题解析;(Ⅰ)?Skip Record If...?

. (i )设?Skip Record If...?,则?Skip Record If...?,?Skip Record If...?

只有一个零点. (ii )设?Skip Record If...?,则当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.所以?Skip Record If...?在?Skip Record If...?上单调递减,在?Skip Record If...?

上单调递增.

又?Skip Record If...?,?Skip Record If...?,取?Skip Record If...?满足?Skip Record If...?且

?Skip ,则

Record If...?

,

?Skip Record If...?

故?Skip Record If...?存在两个零点.

(iii)设?Skip Record If...?,由?Skip Record If...?得?Skip Record If...?或?Skip Record If...?.

,则?Skip Record If...?,故当?Skip Record If...?时,?Skip Record If...?,因此?Skip Record If...?

?Skip Record If...?在?Skip Record If...?上单调递增.又当?Skip Record If...?时,?Skip Record If...?,所以?Skip Record If...?不存在两个零点.

,则?Skip Record If...?,故当?Skip Record If...?时,?Skip Record If...?;当?Skip 若

?Skip Record If...?

Record If...?时,?Skip Record If...?.因此?Skip Record If...?在?Skip Record If...?单调递减,在?Skip Record If...?单调递增.又当?Skip Record If...?时,?Skip Record If...?,所以?Skip Record If...?不存在两个零点.

综上,?Skip Record If...?的取值范围为?Skip Record If...?.

(Ⅱ)不妨设

?Skip Record If...?,由(Ⅰ)知?Skip Record If...?,?Skip Record If...?,?Skip Record If...?在?Skip Record If...?上单调递减,所以?Skip Record If...?等价于?Skip Record If...?,即?Skip Record If...?.

由于

?Skip Record If...?,而?Skip Record If...?,所以

?Skip Record If...?.

设?Skip Record If...?,则?Skip Record If...?.

所以当?Skip Record If...?时,?Skip Record If...?,而?Skip Record If...?,故当?Skip Record If...?时,?Skip Record If...?.

从而

?Skip Record If...?,故?Skip Record If...?.

考点:导数及其应用

2. 【2016高考山东理数】(本小题满分13分) 已知

?Skip Record If...?

.

(I )讨论?Skip Record If...?的单调性; (II )当?Skip Record If...?

时,证明?Skip Record If...?

对于任意的?Skip Record If...?成立.

【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】

试题分析:(Ⅰ)求?Skip Record If...?的导函数,对a 进行分类讨论,求?Skip Record If...?的单调性;

(Ⅱ)要证?Skip Record If...?对于任意的?Skip Record If...?成立,即证?Skip Record If...?,根据单调性求解.

(1)?Skip Record If...?

,?Skip Record If...?

当?Skip Record If...?或?Skip Record If...??Skip Record If...?时,?Skip Record If...?,?Skip Record

If...?

单调递增; 当?Skip Record If...??Skip Record If...?时,?Skip Record If...?,?Skip Record If...?

单调递减; (2)?Skip Record If...?时,?Skip Record If...?,在?Skip Record If...??Skip Record If...?内,?Skip Record If...?,?Skip Record If...?单调递增;

(3)?Skip Record If...?时,?Skip Record If...?,

当?Skip Record If...?或?Skip Record If...??Skip Record If...?时,?Skip Record If...?,?Skip Record If...?单调递增;

时,?Skip Record If...?,?Skip Record If...?单调递减.

当?Skip Record If...?

?Skip Record If...?

综上所述,

(Ⅱ)由(Ⅰ)知,?Skip Record If...?时,

?Skip Record If...?

,?Skip Record If...?,

?Skip Record If...?

,?Skip Record If...?.

?Skip Record If...?

则?Skip Record If...?,

可得?Skip Record If...?,当且仅当?Skip Record If...?时取得等号.

?Skip Record If...?

?Skip Record If...?

设?Skip Record If...?,则?Skip Record If...?在?Skip Record If...??Skip Record If...?单调递减,

因为?Skip Record If...?,

考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.

【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.

3. 【2016高考江苏卷】(本小题满分16分)

已知函数?Skip Record If...?.设?Skip Record If...?.

(1)求方程?Skip Record If...?的根;

(2)若对任意?Skip Record If...?,不等式?Skip Record If...?恒成立,求实数?Skip Record If...?的最大值;

(3)若?Skip Record If...?,函数?Skip Record If...?有且只有1个零点,求?Skip Record If...?的值。

【答案】(1)①0 ②4(2)1

【解析】

试题解析:(1)因为?Skip Record If...?,所以?Skip Record If...?.

①方程?Skip Record If...?,即?Skip Record If...?,亦即?Skip Record If...?,

所以?Skip Record If...?,于是?Skip Record If...?,解得?Skip Record If...?.

②由条件知?Skip Record If...?.

因为?Skip Record If...?对于?Skip Record If...?恒成立,且?Skip Record If...?,

所以?Skip Record If...?对于?Skip Record If...?恒成立.

而?Skip Record If...?,且?Skip Record If...?,

所以?Skip Record If...?,故实数?Skip Record If...?的最大值为4.

(2)因为函数?Skip Record If...?只有1个零点,而?Skip Record If...?,

所以0是函数?Skip Record If...?的唯一零点.

因为?Skip Record If...?,又由?Skip Record If...?知?Skip Record If...?,

所以?Skip Record If...?有唯一解?Skip Record If...?.

令?Skip Record If...?,则?Skip Record If...?,

从而对任意?Skip Record If...?,?Skip Record If...?,所以?Skip Record If...?是?Skip Record If...?上的单调增函数,

于是当?Skip Record If...?,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.

因而函数?Skip Record If...?在?Skip Record If...?上是单调减函数,在?Skip Record If...?上是单调增函数.

下证?Skip Record If...?.

若?Skip Record If...?,则?Skip Record If...?,于是?Skip Record If...?,

又?Skip Record If...?,且函数?Skip Record If...?在以?Skip Record If...?和?Skip Record If...?为端点的闭区间上的图象不间断,所以在?Skip Record If...?和?Skip Record If...?之间存在?Skip Record If...?的零点,记为?Skip Record If...?. 因为?Skip Record If...?,所以?Skip Record If...?,又?Skip Record If...?,所以?Skip Record If...?与“0是函数?Skip Record If...?的唯一零点”矛盾. 若?Skip Record If...?,同理可得,在?Skip Record If...?和?Skip Record If...?之间存在?Skip Record If...?的非0的零点,矛盾. 因此,?Skip Record If...?.

于是?Skip Record If...?,故?Skip Record If...?,所以?Skip Record If...?. 考点:指数函数、基本不等式、利用导数研究函数单调性及零点

【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数. 4. 【2016高考天津理数】(本小题满分14分)

设函数?Skip Record If...?,?Skip Record If...?,其中?Skip Record If...?

(I)求?Skip Record If...?

的单调区间; (II) 若?Skip Record If...?存在极值点?Skip Record If...?,且?Skip Record If...?,其中?Skip

Record If...?,求证:?Skip Record If...?

(Ⅲ)设?Skip Record If...?,函数?Skip Record If...?,求证:?Skip Record If...?在区间?Skip

Record If...?上

的最大值不小于...?Skip Record If...?

.

【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析

【解析】

试题分析:(Ⅰ)先求函数的导数:?Skip Record If...?,再根据导函数零点是否存在情况,分类讨论:①当?Skip Record If...?时,有?Skip Record If...?恒成立,所以?Skip Record If...?的单调增区间为?

Skip Record If...?.②当?Skip Record If...?时,存在三个单调区间

试题解析:(Ⅰ)解:由?Skip Record If...?,可得?Skip Record If...?.

下面分两种情况讨论:

(1)当?Skip Record If...?时,有?Skip Record If...?恒成立,所以?Skip Record If...?的单调递增区间为?Skip Record If...?.

(2)当?Skip Record If...?时,令?Skip Record If...?,解得?Skip Record If...?,或?Skip Record If...?. 当?Skip Record If...?变化时,?Skip Record If...?,?Skip Record If...?的变化情况如下表:

?Skip Record

If...??Skip Record

If...?

?Skip Record

If...?

?Skip Record

If...?

?Skip Record

If...?

?Skip Record

If...?

?Skip Record

If...?

+0 -0 +

?Skip Record

If...?

单调递增极大值单调递减极小值单调递增

所以?Skip Record If...?的单调递减区间为?Skip Record If...?,单调递增区间为?Skip Record If...?,?Skip Record If...?.

(Ⅲ)证明:设?Skip Record If...?在区间?Skip Record If...?上的最大值为?Skip Record If...?,?Skip Record If...?表示?Skip Record If...?两数的最大值.下面分三种情况同理:

(1)当?Skip Record If...?时,?Skip Record If...?,由(Ⅰ)知,?Skip Record If...?在区间?Skip

Record If...?上单调递减,所以?Skip Record If...?在区间?Skip Record If...?上的取值范围为?Skip Record If...?,因此

?Skip Record If...?

?Skip Record If...?

?Skip Record If...?,所以?Skip Record If...?.

(2)当?Skip Record If...?时,?Skip Record If...?,由(Ⅰ)和(Ⅱ)知,?Skip Record If...?,?Skip Record If...?,

所以?Skip Record If...?在区间?Skip Record If...?上的取值范围为?Skip Record If...?,

因此?Skip Record If...?

?Skip Record If...?

?Skip Record If...?.

考点:导数的运算,利用导数研究函数的性质、证明不等式

【名师点睛】1.求可导函数单调区间的一般步骤

(1)确定函数f(x)的定义域(定义域优先);

(2)求导函数f′(x);

(3)在函数f(x)的定义域内求不等式f′(x)>0或f′(x)<0的解集.

(4)由f′(x)>0(f′(x)<0)的解集确定函数f (x)的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.

2.由函数f(x)在(a,b)上的单调性,求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意“=”是否可以取到.

5. 【2016高考新课标3理数】设函数?Skip Record If...?,其中?Skip Record If...?,记?Skip Record If...?的最大值为?Skip Record If...?.

(Ⅰ)求?Skip Record If...?;

(Ⅱ)求?Skip Record If...?;

(Ⅲ)证明?Skip Record If...?.

【答案】(Ⅰ)?Skip Record If...?;(Ⅱ)?Skip Record If...?;(Ⅲ)见解析.

【解析】

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

函数的极值与导数优秀教学设计

函数的极值与导数教学设计 【内容分析】 本节内容选自人民教育出版社A版的理科选修2-2或者文科选修1-1的导数及其应用的内容,这些是在学生学习了函数的单调与导数的下一节课的内容,函数是描述客观世界变化规律的重要数学模型,而导数是研究函数的最有效的工具,运用导数研究函数的性质,从中可以体会到导数在研究函数中的巨大作用. 【学情分析】 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值.在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫. 【教学目标】 (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 【学法指导】阅读自学、探究交流、合作展示. 【数学思想】数形结合、合情推理. 【知识百科】 1.函数的最值 函数最值一般分为函数最小值与函数最大值.简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值.函数最大(小)值的几何意义---函数图像的最高(低)点的纵坐标即为该函数的最大(小)值. 2.函数的极值 函数在其定义域的某些局部区域所达到的相对最大值或相对最小值.当函数在其定义域的某一点的值大于该点周围任何点的值时,称函数在该点有极大值;当函数在其定义域的某一点的值小于该点周围任何点的值时,称函数在该点有极小值.这里的极大值和极小值只具有局部意义.函数极值点的几何意义---函数图像的某段子区间内上极

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数学 利用导数研究函数的极值和最值

专题4 利用导数研究函数的极值和最值 专题知识梳理 1.函数的极值 (1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。如果对附近的所有的点,都 有.就说是函数的一个极小值,记作y 极小值=,是极小值点。极大值与极 小值统称为极值. (2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根; ①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。 ①根据表格下结论并求出需要的极值。 2. 函数的最值 (1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作; (2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值; ①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。 考点探究 )(x f x 0x 0f (x )f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ?I f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ?I f (x )3f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,

用导数求函数的极值..

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+= x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1() 1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处 取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2 --=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3) 2(533)5(2)5(32)(33323x x x x x x x x x f -=+-= +-= ' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

函数的极值与导数-复习课导学案(可编辑修改word版)

f(a) O a x y f ( b) O b x 【学习目标】: 函数的极值与导数(复习学案) 1.回顾函数极值的概念. 2.总结掌握函数极值的四种类型题型. 3.培养分析问题、解决问题的能力. 【温故知新】: 极值的概念: 一般地,设函数f(x)在点x0附近有意义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的,其中x0叫作函数的. 如果对x0附近的所有的点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个,其中x0叫作函数的. 【类型1】:函数y=f(x)的图象与函数极值 【针对训练1】 1.图3 中的极大值点有;极小值点有. 2.观察函数在X2 与X6 的极值,能发现什么? 【类型2】导数y=f(x)的图象与函数极值 1.由图3 分析极值与导数的关系

x0是函数f(x)的极值点f(x0) =0 f(x0) =0 x0是函数f(x)的极值点 总结:f(x0)=0 是函数取得极值的条件. 2.利用导数判别函数的极大(小)值: 一般地,当函数f(x)在点x0处连续时,且f ' (x0)=0,判别f(x0)是极大(小)值的方法是: (1)如果在x0附近的左侧f '(x)>0,右侧f '(x)<0,那么,f(x0)是; ⑵如果在x0附近的左侧f '(x)<0,右侧f '(x)>0,那么,f(x0)是;【针对训练2】 导函数y=f’(x)的图像如图,试找出函数y=f(x)的极值点, 并指出那些是极大值点,那些是极小值点? 【针对训练3】 导函数y=f’(x)的图像如图,在标记的点中哪一点处 (1)导函数y=f’(x)有极大值? (2)导函数y=f’(x)有极小值? (3)函数y=f(x)有极大值? (4)函数y=f(x)有极小值? 【类型3】求函数y=f(x)的极值 求函数极值(极大值,极小值)的一般步骤: (1) (2) (3) (4) (5)

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

函数的极值与导数(教案

1.3.2 函数的极值与导数(教案) 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单调性的关系是什么?

(提高学生回答) 2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数 ()h t =-4.9t 2 +6.5t+10的图象,回答 以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: a o h t

函数极值与导数练习(基础)

函数极值与导数(基础) 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、函数3()13f x x x =+-有( ) A .极小值-1,极大值1 B .极小值-2,极大值3 C .极小值-2,极大值2 D .极小值-1,极大值3 4、如果函数()y f x =的导函数的图象如图所示,给出下列判断: ①函数()y f x =在区间13,2?? -- ?? ?内单调递增; ②函数()y f x =在区间1,32?? - ??? 内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当4x =时,函数()y f x =有极小值; ⑤当12 x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 5、函数3223y x x a =-+的极大值是6,那么实数a 等于_______ 6、函数x x x f ln 1 )(+= 的极小值等于_______. 7、求下列函数的极值: (1).x x x f 12)(3-=;(2).2()x f x x e =;(3)..21 2)(2-+= x x x f 8、已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f . (1).试求常数a 、b 、c 的值; (2).试判断1±=x 是函数的极小值还是极大值,并说明理由. 9、已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是.

《函数的极值与导数》教学设计

3.3.2 函数的极值与导数教学设计 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单 调性的关系是什么? (提问学生回答)

2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: (1)函数y=f(x)在a.b 点的函数值与这些点附近的函数值有什么关系? (2) 函数y=f(x)在a.b.点的导数值是多少? (3)在a.b 点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢? a o h t

3-3-2 函数的极值与导数 函数的最大(小)值与导数

1.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12;-8 B .1;-8 C .12;-15 D .5;-16 [答案] A [解析] y ′=6x 2-6x -12,由y ′=0?x =-1或x =2(舍去).x =-2时y =1,x =-1时y =12,x =1时y =-8. ∴y max =12,y min =-8.故选A. 2.函数y =2-x 2-x 3的极值情况是( ) A .有极大值,没有极小值 B .有极小值,没有极大值 C .既无极大值也无极小值 D .既有极大值也有极小值 [答案] D [解析] y ′=-3x 2-2x =-x (3x +2), 当x >0或x <-23时,y ′<0, 当-230, ∴当x =-23时取极小值,当x =0时取极大值. 3.设函数f (x )=x 3+bx 2+cx +a 在x =±1处均有极值,且f (-1)=-1,则a 、b 、c 的值为( ) A .a =-1,b =0,c =-1

B .a =12,b =0,c =-32 C .a =-3,b =0,c =-3 D .a =3,b =0,c =3 [答案] C [解析] ∵f ′(x )=3x 2+2bx +c ,∴由题意得, ????? f ′(1)=0f ′(-1)=0f (-1)=-1,即????? 3+2b +c =03-2b +c =0-1+b -c +a =-1, 解得a =-3,b =0,c =-3. 4.函数y =2x x 2+1 的极大值为____________,极小值为____________. [答案] 1,-1 [解析] y ′=2(1+x )(1-x )(x 2+1)2 ,令y ′>0得-11或x <-1,∴当x =-1时,取极小值-1,当x =1时,取极大值1. 5.(2012·重庆文)已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16. (1)求a 、b 的值; (2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. [解析] (1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b ,由于f (x )在点x =2处取得极值c -16 故有????? f ′(2)=0f (2)=c -16,

人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习

人教版高中数学精品资料 高中数学 1.3.2函数的极值与导数练习 新人 教A 版选修2-2 一、选择题 1.(2015·吉林实验中学高二期中)已知函数y =f (x )在定义域内可导,则函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 [答案] B [解析] 根据导数的性质可知,若函数y =f (x )在这点处取得极值,则f ′(x )=0,即必要性成立;反之不一定成立,如函数f (x )=x 3 在R 上是增函数,f ′(x )=3x 2 ,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立. 故函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的必要不充分条件,故选B. 2.函数y =14x 4-13x 3 的极值点的个数为( ) A .0 B .1 C .2 D .3 [答案] B [解析] y ′=x 3 -x 2 =x 2 (x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表 3.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3 的极大值点坐标为(b ,c ),则 ad 等于( ) A .2 B .1 C .-1 D .-2 [答案] A

[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3 的极大值点, ∴c =3b -b 3 ,且0=3-3b 2, ∴? ?? ?? b =1, c =2,或? ?? ?? b =-1, c =-2.∴a d =2. 4.已知f (x )=x 3 +ax 2 +(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .-16 D .a <-1或a >2 [答案] C [解析] f ′(x )=3x 2 +2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根, ∴Δ=4a 2 -12(a +6)>0,∴a <-3或a >6. 5.已知函数f (x )=x 3 -px 2 -qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.4 27 ,0 B .0,4 27 C .-4 27,0 D .0,-4 27 [答案] A [解析] f ′(x )=3x 2 -2px -q , 由f ′(1)=0,f (1)=0得, ? ?? ?? 3-2p -q =0,1-p -q =0,解得? ?? ?? p =2, q =-1,∴f (x )=x 3-2x 2 +x . 由f ′(x )=3x 2 -4x +1=0得x =13或x =1, 易得当x =13时f (x )取极大值4 27. 当x =1时f (x )取极小值0. 6.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )的大小关系不能确定

导数与函数的极值、最值-高考理科数学试题

(十五)导数与函数的极值、最值 [小题常考题点——准解快解] 1.(2018·太原一模)函数y=f(x)的导函数的图象如图所示,则下列说法错误的是() A.(-1,3)为函数y=f(x)的单调递增区间 B.(3,5)为函数y=f(x)的单调递减区间 C.函数y=f(x)在x=0处取得极大值 D.函数y=f(x)在x=5处取得极小值 解析:选C由函数y=f(x)的导函数的图象可知,当x<-1或35或-10,y=f(x)单调递增.所以函数y=f(x)的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y=f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C错误,故选C. 2.函数f(x)=2x3+9x2-2在[-4,2]上的最大值和最小值分别是() A.25,-2 B.50,14 C.50,-2 D.50,-14 解析:选C因为f(x)=2x3+9x2-2,所以f′(x)=6x2+18x,当x∈[-4,-3)或x∈(0,2]时,f′(x)>0,f(x)为增函数,当x∈(-3,0)时,f′(x)<0,f(x)为减函数,由f(-4)=14,f(-3)=25,f(0)=-2,f(2)=50,故函数f(x)=2x3+9x2-2在[-4,2]上的最大值和最小值分别是50,-2. 3.已知a∈R,函数f(x)=1 3x 3-ax2+ax+2的导函数f′(x) 在(-∞,1)上有最小值, 若函数g(x)=f′(x) x,则() A.g(x)在(1,+∞)上有最大值B.g(x)在(1,+∞)上有最小值C.g(x)在(1,+∞)上为减函数D.g(x)在(1,+∞)上为增函数 解析:选D函数f(x)=1 3x 3-ax2+ax+2的导函数f′(x)=x2-2ax+a,f′(x)图象的 对称轴为x=a,又f′(x)在(-∞,1)上有最小值,所以a<1.函数g(x)=f′(x) x=x+ a x-2a, g′(x)=1-a x2= x2-a x2,当x∈(1,+∞)时,g′(x)>0,所以g(x)在(1,+∞)上为增函数.故

相关文档
相关文档 最新文档