文档库 最新最全的文档下载
当前位置:文档库 › 材料导论碳纳米管综述

材料导论碳纳米管综述

材料导论碳纳米管综述
材料导论碳纳米管综述

班级:高材1313 姓名:欧阳一鸣学号:2013012532

潜在的碳纳米管场效应晶体管的模拟电路

介绍

在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪里。然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。这主要是因为互补金属氧化物半导体(CMOS)的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。在这些材料和器件研究,碳纳米管场效应晶体管(CNFETs)已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。自推出CNFETs,该研究已主要重点对他们的数字电路使用。甚至中等规模薄流明碳纳米管(CNT)的集成电路已报告了灵活塑料基板。然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs,因为存在金属碳纳米管[,因此需要更多的调查,他们用于数字电路。与此相反,CNFETs具有更多潜在用于高性能模拟电路,其中所述晶体管不需要充分关闭。此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-erances,也可以更轻松得的。

CNFET基础知识

场效应管的结构和MOSFET样的CNFETs

在传统的MOSFET,源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。如果电压被施加到栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。

另一方面为CNFETs,栅极,源极和漏极接触由像铬或钨金属与4.5电子伏特的功函数。H是金属接触的高度,L是长度。值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFET等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f低的,更低的寄生电容,更好的AC性能和更高的制造可行性。在MOSTFET样的CNFET之间的电流源和漏接触使用碳纳米管。根据贝壳的数量形成

管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。单壁碳纳米管通常的特点是它的手性决定了它的属性和直径。手性是由一对指数(N1,N2)的表示被称为手性矢量,它是用于选择在此工作的CNFET模型。栅极下的管子是未掺杂的,而连接所述栅极到源极和漏极的管被重掺杂,从而掺杂管被称为源-漏延伸区,栅极,以及源极-漏极扩展区不包括源极和漏极金属接触,被认为是CNFET的内在结构。源的引进和漏极金属触点增加了寄生或外部电容,因此,完成CNFET的设备型号。两个相邻的管的中心之间的距离称为音调。栅极氧化物为氧化铬的介电常数具有大致4纳米的高度。这些管坐在一个厚的氧化硅(10微米)与硅衬底的底部上。

晶体管直流特性描述

漏极电流对音高,碳纳米管和晶体管宽度

被首先观察到沥青上CNFETs的漏极电流的影响。1伏的供给电压被连接到漏极端子和栅极端子,而源极和衬底的终端被接地。漏极电流是独立的音调,除非管很近。但是,当间距为<20纳米,间CNT电容变得更加突出,漏电流降低,因为屏蔽效应。屏蔽效应被去定义为在静电视场的变化以及由于其他原因在其附近的存在的带电粒子的库仑势。因此,因为管之间的静电斥力的低球,电子排斥管的中心,导致电流的减少。

CNFET漏极电流和管子的数量为两个不同的音调而晶体管宽度不是固定的。很明显,目前与管子的数量线性增加;然而,随着筛查效果更突出5 nm。自从问直径是固定的晶体管宽度的CNFETs 数量的碳纳米管的产物和沥青。随着管密度是通过选择控制,因此增加的宽度增加碳纳米管。选择两个音高值20和5纳米。因为我们比较漏极电流在一定宽度和两个值的音高,管子的数量不再是相同的。此外,它是有趣地注意到,虽然与20纳米节距相比每管中的电流小于在5纳米的间距,所有的漏电流增加在5纳米节距

射频描述

跨导,g

:跨导(g

漏极电流的变化)是一种测量晶体管的栅极电压的变化。这是一

个重要的基准测试参数尤其是模拟放大器等电路,因为它代表了增益和场效应晶

体管的放大。

过渡或统一电流增益截止频f

T :过渡频率或统一电流增益截止频率(f

T

),是一个

晶体管的固有速度的测量,通常用作基准参数之间不同的晶体管。

更多的射频:F

马克斯

最大可用增益(MAG),最大稳定增益和k

这个小节介绍了其他知名的射频分布。这些包括梅森的单边功率增益(U黑川纪章)、杂志、稳定因子(k)和最大振荡频率(f马克斯)。这些射频参数导出了两口的

线性网络分析使用y参数。决定了系统的稳定性k(称为Rollet的因素)和Δ。评估两个活动设备的功率增益,比较他们的U感兴趣的值在整个频率是必需的。然而,它更方便单个数字基准。这样一个实用的FOM的功率增益f马克斯频率的大小U成为零分贝。这是上面的频率,功率增益不能获得一个活跃的设备在f马克斯的大小和杂志也变成了0分贝。

射频电路的比较

1 逆变器延迟:逆变器是许多集成电路。例如,一个环形振荡器工作在射频频率由几级联逆变器阶段和在一起延迟相结合的系列逆变器决定了环形振荡器的振荡频率。这个小节比较卸载逆变器延迟和CNFETs之间。为了一致性,选择通道宽度为1 p-FETs和n-FETs。自从CNFETs寄生参数较低与场效应管,设备要快得多。此外,当管密度增加,减少,当前也在不断增加,因为增加的有效宽度的晶体管。

2 环形振荡器:环形振荡器是锁相环(pll)的一个组成部分在高频收发器。在这小节,它是用作水准电路MOSFET和CNFETs之间,特别是比较振荡频率和功耗三级环形振荡器。晶体管的漏极电压和宽度分别1 V和1μm。以来,单个逆变器的延迟较小CNFETs,环形振荡器的基础上 CNFETs振荡频率要高得多。然而,之间有一个权衡的振荡频率和功耗CNFET-based三级戒指振荡器。

3 LC振荡器:一个典型的LC振荡器由一个电感器和电容器形成振荡回路g细胞,补偿损失的实现持续振荡。LC-based振荡器、特殊电压控制振荡器广泛用于毫米波射频锁相环电路产生本地振荡器信号。

4 振荡频率:主要取决于总电路中电感和电容的值。后者不仅包括贡献从从场效应晶体管的寄生参数。

结论

CNFETs的性能进行了比较与典型MOSFET的RF电路所得到的结果表明其巨大的潜力。然而,当管密度是通过减少螺距增加到5nm,CNFETs展示当前能力的两倍场效应。因此,平版印刷技术的改进是至关重要的打入CNFETs的全部潜力,场效应管的射频参数的和CNFETs比较揭示了后者的性能。

越g米,f T和f马克斯分别为2.7、2.6和4.5倍。CNFET基于逆变器是高达10倍的速度,环形振荡器具有三倍更高的振荡频率和CNFET型LC振荡电路提供了比它的MOSFET对应两次较小的寄生电容。

参考

[1] Chen Z., Appenzeller J., Lin Y., et al. An integrated logic circuit assembled on a single carbonnanotube[J]. Science.2006, 11(3):17-35.

[2] Frank D., Dennard R., Nowak E., et al.Device scaling limits of Si MOSFETs and their application dependencies[J]. Proc. IEEE, 2001, 9(8):259–288.

[3] Durkop T., Getty S.A., Cobas E.,et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Lett, 2004, 4(3): 35–39.

[4] Zhou X., Park J.Y., Huang S., Liu J.,et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors[J].Phys. Rev. Lett, 2005, 9(5):1–3.

[5] Javey A., Guo J., Wang Q., Lundstrom M., et al. Ballistic carbon nanotube field-effect transistors[J].Nature, 2003,42(4):654–657.

[6] Javey A., Guo J., Farmer D., et al.Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays[J].Nano Lett, 2004,4(3):1319–1322.

[7] Bachtold A., Hadley P., Nakanishi T.,et al.Logic circuits with carbon nanotube

transistors[J].Science, 2011, 29(4):1317–1320.

[8] Derycke V., Martel R., Appenzeller J.,et al.Carbon nanotube inter- and intra-molecular logic gates[J]. Nano Lett, 2001, 10(3):453–456.

[9] Liu X., Lee C., Han J., et al.Carbon nanotube field-effect inverters[J]. Appl. Phys. Lett, 2001, 9(7):3329–3331.

[10] Javey A., Wang Q., Ural A.,et al.Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators[J].Nano Lett, 2002, 2(1):929–932.

碳纳米管吸波材料的研究现状与展望

3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com 碳纳米管吸波材料的研究现状与展望3 王生浩,文 峰,李 志,郝万军,曹 阳 (热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如 吸波材料,但目前国内关于此类研究的报道还不多。较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。 关键词 碳纳米管 吸波材料 吸波性能 复合 The R esearch Status and Prospect of Electromagnetic W ave 2 absorbing C arbon N anotubes WAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang (Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science , School of Science and Engineering ,Hainan University ,Haikou 570228) Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemical properties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM. K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagnetic wave absorbing properties ,composite   0 引言 随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。 自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。近 年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的 热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。 1 碳纳米管的吸波机理 碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

材料导论碳纳米管综述

姓名:欧阳一鸣学号:2013012532 班级:高材 1313

潜在的碳纳米管场效应晶体管的模拟电路 介绍 在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪 里。然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。 这主要是因为互补金属氧化物半导体(CMOS的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。在这些材料和器件研究,碳纳米管场效应晶体管(CNFET) 已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。自推出CNFETs该研究已主要重点对他们的数字电路使用。甚至中等规模薄流明碳纳米管(CNT的集成电路已报告了灵活塑料基板。然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs因为存在金属碳纳米管[, 因此需要更多的调查,他们用于数字电路。与此相反,CNFETs具有更多潜在用 于高性能模拟电路,其中所述晶体管不需要充分关闭。此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-era nces ,也可以更轻松得的。 CNFETS础知识 场效应管的结构和MOSFE样的CNFETs 在传统的MOSFET源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。如果电压被施加到 栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。 另一方面为CNFETs栅极,源极和漏极接触由像铬或钨金属与 4.5电子伏特的功函数。H是金属接触的高度,L是长度。值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFE等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f 低的,更低的寄生电容,更好的AC性能和更高的制造可行性。在MOSTFE样的CNFE■之间的电流源和漏接触使用碳纳米管。根据贝壳的数量形成管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。单壁碳

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.wendangku.net/doc/50180969.html,;cxpan@https://www.wendangku.net/doc/50180969.html, 个人网页:https://www.wendangku.net/doc/50180969.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

2018年石墨烯导电剂和碳纳米管导电剂行业分析报告

2018年石墨烯导电剂和碳纳米管导电剂行业分析报告 2018年10月

目录 一、行业监管体制、法律法规及产业政策 (4) 1、行业主管部门和监管体系 (4) 2、行业主要法律法规及政策 (5) 二、行业发展情况 (6) 1、石墨烯 (6) (1)石墨烯创新成果显著 (6) (2)石墨烯下游应用领域广泛 (8) (3)石墨烯在锂电池领域前景良好 (8) (4)国家关于石墨烯行业的规划 (9) 2、碳纳米管 (11) (1)动力电池市场快速发展带动碳纳米管导电剂需求上升 (11) (2)高能力密度发展趋势加速对常规导电剂的替代 (12) 三、行业主要企业情况 (12) 1、常州第六元素材料科技股份有限公司 (12) 2、鸿纳(东莞)新材料科技有限公司 (13) 3、厦门凯纳石墨烯技术股份有限公司 (13) 四、影响行业发展的因素 (13) 1、有利因素 (13) (1)国家产业政策支持 (13) (2)产业联盟推动行业整体发展 (14) (3)技术进步 (15) (4)原材料供应稳定 (15) 2、不利因素 (15)

(1)产业化应用尚不成熟 (15) (2)石墨烯行业标准尚需进一步规范 (16) 五、行业进入壁垒 (16) 1、技术和经验壁垒 (16) 2、客户及市场开发壁垒 (16) 3、资金壁垒 (17) 六、行业技术特点及技术水平 (17) 1、行业经营模式 (17) 2、行业周期性 (18) 3、行业区域性 (18) 4、行业季节性 (18) 七、行业上下游之间的关联性 (19) 1、行业上游 (19) 2、行业下游 (19)

一、行业监管体制、法律法规及产业政策 1、行业主管部门和监管体系 石墨烯行业的行政监管主体以工信部、国家发改委、科技部为主。工信部拟订并组织实施有关于石墨烯行业的规划、产业政策和标准,同时监测石墨烯行业的日常运行。国家发改委研究分析国内外经济形势和发展情况并制定相关战略外,负责推进产业结构战略性调整和升级。科技部主要工作是研究提出石墨烯行业改革的方针、政策和措施,提高石墨烯行业的科技创新能力。 石墨烯行业自律组织包括中国非金属矿工业协会石墨专业委员会、中国炭素行业协会和中国石墨烯产业技术创新战略联盟。 中国非金属矿工业协会石墨专业委员会:成立于1987年,业务范围包括行业管理、信息交流、业务培训、国际合作、咨询服务;分析研究石墨市场发展形势,解决行业存在的问题,进行信息交流,招商引资,向政府反映企业的呼声等,并及时为企业提供信息和服务,促进企业技术进步和结构调整,增强竞争力,提高管理水平。 中国炭素行业协会:由炭素生产、经营企业和科研、设计院所自愿组成的全国性、行业性的社会团体法人。主要任务包括:开展行业调查研究,向政府部门提出行业政策、立法等方面的建议;研究、制定行业发展规划;进行行业统计,发布行业信息;参与制定、修改行业标准;组织行业产品展览及技术交流与合作;开展国际交流与合作;举办行业情况报告会、研讨会等。

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

碳纳米管(CNTs)及其制备技术综述

碳纳米管(CNTs)及其制备技术 1.概述 1991年,Iijima在石墨电弧放电产物中发现了碳纳米管(CNTs),从此碳纳米管成为碳家族的一个新成员。CNTs是纳米科学的一颗耀眼明珠,其独特的结构、优良的物理和化学性能、巨大的应用前景吸引了大批的物理学家、化学家和材料学家的兴趣,成为科学领域的研究热点。尤其是单壁碳纳米管的发现和研究被科学界权威杂志《Science》评为1997年世界十大科技成果之一。 2.碳纳米管的结构和性能 2.1碳纳米管的结构 碳纳米管是由多个碳原子六方点阵的同轴圆柱面套构而成的空心小管,相临的同轴圆柱面之间的距离与石墨的层间距相当,约为0.34nm,管壁由六边形排列的碳原子组成,每个碳与周围的三个碳原子相邻,碳/碳间通过sp2杂化键结合。管的直径为零点几纳米到几十纳米,管的长度为微米级。管的直径和长度随不同的制备方法及条件的变化而不同。管的端部由五边形排列的碳原子封顶。碳纳米管绝大多数两端是封闭的,并且这种封闭与碳纳米管圆管平滑连接,较小直径的碳纳米管的封闭形式一般呈半圆状,这对应于半个富勒烯(Fullerence)笼。 依据组成碳纳米管的石墨片层数的不同,碳纳米管可分为单壁碳纳米管即含一层石墨片的碳纳米管以及由一层以上石墨片组成的多壁碳纳米管。碳纳米管结构示意图如图1所示。 图1 碳纳米管结构示意图(a)四层碳纳米管结构(b)单层碳纳米管结构 2.2碳纳米管的性能 碳纳米管具有独特的电子结构和物理化学性质,可以在许多方面得到广泛的应用。碳纳米管的直径-长度比很大,一般情况下,长度都是直径的几千倍,远远大于普通的纤维材料;它的强度比钢高约100倍,而重量仅仅为钢材料的六分之一,有可能成为一种新型的高强度碳纤维材料。这种“超级碳纤维”材料既具有碳素材料的固有本性,又具有金属材料的导电性、导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性以及高分子材料的轻质、易于加工性,因而具有极大的应用潜力。 由于碳纳米管具有纳米尺度的尖端曲率半径,在相对比较低的电压下就能够发射大量的电子,因此,碳纳米管材料能够呈现出良好的场致发射特性,非常适

碳纳米管的制备

常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 电弧放电法 碳纳米管制备 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电 法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在 这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳 米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难 得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。 发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态 烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得 的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。 激光烧蚀法 激光烧蚀法的具体过程是:在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。 固相热解法

2019年碳纳米管行业分析报告

2019年碳纳米管行业 分析报告 2019年9月

目录 一、技术替代效应显著,碳纳米管市场进入爆发期 (4) 1、导电剂是碳纳米管材料最常见应用场景 (4) 2、正极材料导电剂更新换代,碳纳米管迎来爆发期 (6) 3、导电剂市场受到新能源汽车产业链强势驱动,增量可观 (11) 4、导电性拓展新的应用场景 (14) (1)硅碳负极 (14) (2)导电塑料 (16) 二、高技术壁垒保证行业高毛利 (18) 1、生产技术难度大,行业毛利率高 (18) 2、产学结合,高研发投入形成高技术壁垒 (21) 三、绑定核心优质客户是快速拓展市场关键 (25) 1、行业扩产较为保守,预计供需偏紧 (25) 2、降价趋势清晰,但幅度受供需限制 (26) 3、客户集中度高,拓展客户是关键 (28) 四、相关企业简况 (32) 1、天奈科技 (32) 2、道式技术 (33)

技术替代效应显著,碳纳米管市场进入爆发期。目前碳纳米管最广的应用范围是作为导电剂加入到锂电池材料中。产业界综合产品性能、经济性等因素逐步选择用碳纳米管代替炭黑,碳纳米管在导电剂中18年占比32%,较14年提升18%,随着技术成熟预计替代效应将会持续且更为显著。增量角度看,受到新能源汽车产业链强势驱动,导电剂市场持续爆发。预计在锂电池正极领域,未来5年全球碳纳米管导电浆料需求量将保持40.8%的年复合增长率,2021年需求量达10.82万吨。 碳纳米管应用有望拓展至硅碳负极和导电塑料。新能源汽车行业对电池的能量密度提出更高的要求,硅碳负极被认为是合理的途径。2018年硅碳负极占负极材料比例仅为2.8%,我们测算未来三年硅碳负极用碳纳米管浆料需求量年复合增长率为97.9%,2021年需求量达1.6万吨。 高技术壁垒保证高毛利。碳纳米管导电剂行业毛利率约为40%。左右,盈利性好。其生产途径包括制粉和混浆两步。制粉工艺关键是催化剂,技术难度高,行业主要采用产学结合方式获得专利,并持续研究开发更新换代,形成较高技术壁垒,保证高毛利。混浆工艺较为简单,溶剂NMP 的成本占比达到总工序的60%左右。业绩弹性大,但作为基础工业品其价格波动较小。 绑定核心优质客户是快速拓展市场关键。行业扩产较为保守,预计短期内供需仍然偏紧。但新能源汽车产业链受到补贴退坡市场化影响,碳纳米管的材料价格下行趋势较为清晰。碳纳米管行业目前体量

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米管的制备方法

碳纳米管的制备方法 摘要:本文简单介绍了碳纳米管的结构性能,主要介绍碳纳米管的制备方 法, 包括石墨电弧法、催化裂解法,激光蒸发法等方法,也对各种制备方法的优缺 点进行 了阐述。 关键词:碳纳米管制备方法 Preparation of carbon nanotubes Abstract: The structure and performance of carbon nanotubes are briefly introduced, and some synthesis methods, including graphite arc discharge method, catalytic cracking method, laser evaporation method and so on, are reviewed. And the advantages and disadvantages of various preparation methods are also described. Key words:carbon nanotubes methods of preparation 纳米材料被誉为是21世纪最重要材料,是构成未来智能社会的四大支柱之一 ,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管是碳 的一种同素异形体,它包涵了大多数物质的性质,甚至是两种相对立的性质,如从高 硬度到高韧性,从全吸光到全透光、从绝热到良导热、绝缘体/半导体/高导体和高临界温度的超导体等。正是由于碳纳米材料具有这些奇异的特性,被发现的短短十几年

来,已经广泛影响了物理、化学、材料等众多科学领域并显示出巨大的潜在应用前景。 碳纳米管又名巴基管,即管状的纳米级石墨晶体。它具有典型的层状中空结构, 构成碳纳米管的层片之间存在一定夹角,管身是准圆筒结构,并且大多数由五边形截 面组成,端帽部分由含五边形的碳环组成的多边形结构。是一种具有特殊结构(径向 尺寸为纳米量级、轴向尺寸为微米两级,管子两端基本上都封口)的一维纳米材料。 碳纳米管存在多壁碳纳米管(MWNTS)和单壁碳纳米管(SWNTS)两种形式。单层碳纳米管结构模型如图1所示。理想的多层碳纳米管可看成多个直径不等的单层管同轴套构而成,层数可以从二层到几十层,层与层之间保持固定距离约为0.34nm,直径一般为2~20nm.但实际制备的碳纳米管并不完全是直的或直径均匀的,而是局部 1 区域出现凸凹弯曲现象,有时会出现各种形状如L、T、Y形管等。研究认为所有这 些形状的出现是由于碳六边形网络中引入五边形和七边形缺陷所致。五边形的引入引 起正弯曲,七边形的引入引起负弯曲。

聚合物碳纳米管复合材料研究综述

聚合物/碳纳米管复合材料研究综述 摘要 综述了目前碳纳米管在填充聚合物来制备介电、导电、吸波、导热等复合材料方面的应用。对常见的几种聚合物/碳纳米管复合材料的制备工艺以及碳纳米管在聚合物中的分散方法进行了详细地阐述。最后对聚合物/碳纳米管在研究过程中存在的问题和未来的研究方向进行了相应地分析和展望。 关键词:碳纳米管; 逾渗理论; 复合材料; 制备工艺; 分散 Review of Research on Polymer /Carbon Nanotube Composite Abstract The current carbon nanotube-filled polymer compound to prepare the electricity,conductive,absorbing,thermal conductivity,and other aspects of application of composite materials are reviewed.Several common polymer / carbon nanotube composite preparation process as well as the dispersion of carbon nanotubes in polymer are elaborated.Finally,the polymer /carbon nanotube in the study process and future research is analyzed and prospected. Key words: carbon nanotubes; percolation theory; composite; preparation; dispersion

碳纳米管的性能综述

碳纳米管的性能综述 摘要 碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。 关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性 碳纳米管/FeS类Fenton催化剂催化性能 杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。CNTs /FeS类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。 碳纳米管的连接性能 2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。 2006年,Chen等提出一种新颖的超声纳米焊接技术该技术使用超高频微幅振动的压头,成功地将CNTs压焊到金属电极上,形成可靠的电接触结果表明,焊接后的结构具有较高的机械强度和较低的接触电阻采用这种超声纳米焊接技术,能极大地改善基于CNTs的场效应晶体管性能。目前的纳米连接技术主要包括局部焦耳热法高温退火法电子束焊接法超声纳米焊接和原子力显微镜操纵法。 2011年,Karita等研究了多壁碳纳米管( MWCNTs) 和金电极间的电接触,并在接触处施加电流结果表明,当电流密度达到108A /cm2时,金表面沿着MWCNTs端开始熔化当电流密度提高2倍时,观察到接触区域的金表面结构发生显著性改变,从而减少了接触阻抗该研究组还针对开口和封口CNTs与金电极的纳米连接进行了研究发现,在与Au电极接触的区域中,采用开口CNTs所获单位面积电导率约为封口CNTs电导率的4倍但同时观测到,采用局部焦耳热法时,所产生的大电流引起连接区域材料过度熔化及表面形貌的改变,进而影响器件的性能。 碳纳米管的稳定性能

相关文档
相关文档 最新文档