文档库 最新最全的文档下载
当前位置:文档库 › 话说泛函——Hilbert空间

话说泛函——Hilbert空间

话说泛函——Hilbert空间
话说泛函——Hilbert空间

话说泛函——Hilbert空间

一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。

希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。大家知道,在一个欧几里得空间R^n上,所有的点可以写成为:

X=(x1,x2,x3,...,xn)。那么类似的,在一个无穷维欧几里得空间上点就是:X=(x1,x2,x3,....xn,.....),一个点的序列。欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离),

||X||^2=∑xn^2,可是这一重要性质在无穷维时被破坏了:

对于无穷多个xn,∑xn^2可以不存在(为无穷大)。于是希尔伯特将所有∑xn^2为有限的点做成一个子空间,并赋以X*X'=∑xn*xn' 作为两点的内积。这个空间我们现在叫做l^2,平方和数列空间,这是最早的希尔伯特空间了。

注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。只有范数的空间叫做Banach空间,(以后有时间再慢慢讲:-)。如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。Hilbert空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑xn^2为有限的点。这个最早的Hilbertspace叫做l^2(小写的l上标2,又叫小l2空间),非常类似于有限维的欧氏空间。

数学的发展可以说是一部抽象史。最早的抽象大概是一个苹果和一头牛在算术运算中可以都被抽象为“一”,也就是“数学”本身的起源(脱离具体物体的数字运算)了,而Hilbert space理论发展就正是如此:“内积+ 线性”这两个性质被抽象出来,这样一大类函数空间就也成为了Hilbert space。单位闭区间上所有平方可积的实函数(就是说f(x)的平方在[0,1]上的积分存在且有限)按

照函数的加法和数乘成为一个线性空间,然后我们定义内积如下:= ∫|f*g|dx,范数‖f‖=根号=根号∫(f)^2dx。容易验证它们满足内积和范数的几个公理(有兴趣的同学可以随便翻翻任何一本泛函书)。这样把(平方可积)函数看作一个个的点,由函数线性运算和以上定义的内积就构成一个函数空间,叫做L^2(大L2空间)。经过一些推理以后,可以证明(约化后的)L^2空间等价于小l^2空间(这个等价是指一种完全保留线性运算和内积的一一映射,我在这里就不具体讲了)。由于这个性质证起来简单,所以一般的泛函教科书都没有怎么重点提这个定理。

可是对我而言,它却是最有启发性的定理之一。这个定理我认为是继笛卡尔发明了坐标系把几何和代数联系起来以后这方面最伟大的成就,因为有了这个定理,我们就可以真正把一个函数也看作是某个空间里的一个点,而且在这个空间里也有距离:ρ(f,g)=‖f-g‖,有内积用来定出基,也就是坐标系(L^2的坐标系有很多种,最出名和常用的是三角函数系),换一句话说,我们可以用几何的工具来研究一族函数的性质了。说了这么半天,恐怕很多人还不知道为什么这们学科叫做*泛函*分析。什么是函数?

最狭义的函数恐怕就是从实数(R^1)到实数的映射了。现在我们把定义域扩展为所有Hilbert space上的点(经常本身就是一个函数了,象L^2),值域不变仍然为实数,这样的映射就是所谓的泛函数简称泛函了。就像函数在实数理论里面占的地位一样,泛函在整个泛函分析里面也起到举足轻重的作用。最简单而又不太trivial的实函数大概就是线性函数了,同样的,泛函分析也从线性泛函讲起.(球星是个例外,我当时被迫从非线性泛函课开始,那个飞机坐的...)实数上有多少线性函数呢? 无穷多? 当然是:-),那么有多么无穷多?

我们知道所有线性实函数都具有这种形式:f(x)=kx,k是一个实数。而且反过来说,不同的k都对应着一个不同的线性实函数。这样我们就有了一个从R^1上所有线性实函数到R^1自身的一一对应。也就是说,这个函数空间和R^1自身等价。对于Hilbert space也有类似的结论:一个Hilbert space的对偶空间(就是所有它的线性连续泛函组成的空间)等价于它自身,进一步,所有的线性连续泛函I(f): H---> R 可以表示成为内积的形式: I(f)= for some g* in H。(对了在这里再重新提一下,常用的平方可积函数空间L^2的内积是积分

的形式:∫f*g,f,g∈L^2,所以所有的线性连续泛函就都是带一个因子g的积分了.)这个Hilbert space上最根本的定理几乎把Hilbert space和Euclidean space (欧几里得空间)等同起来了,在那时大家都很高兴,毕竟Euclidean space的性质我们了解的最多,也最“好”。

狄立克莱(Dirichlet)原理就是在这个背景下提出的:任何连续泛函在有界闭集上达到其极值。这个结论在Euclidean space上是以公理的形式规定下来的(参见数学分析的实数基本定理部分),具体说来就叫做有界闭集上的连续函数必有极值,而且存在点使得这个函数达到它。在拓扑学上等价于局部紧性的这个东东,很可惜在一般的Hilbert space上却是不成立的:

闭区间[0,1]上的L^2空间有一个很自然的连续泛函:I(f)=∫|f(x)|dx。容易证明,它的范数‖I‖=sup|I(f)|/‖f‖=1.在这个L^2的单位闭球面(所有范数等于1的f)上存在这么一个子序列:f_n(x)=n,当x∈[0,1/n^2]; f_n(x)=0,当x>1/n^2。按照L^2上范数的定义,‖f_n‖=∫f^2(x)dx =1,for all n。0≤I(f)==>I在这个有界闭集上的最小值≤0,而且I(f_n)=1/n→0。但是我们看到,当f_n弱收敛到常函数零时,它已经不在单位闭球面上了(严格的证明可以在一些课本上找到)。

一、定义

线性完备内积空间称为Hilbert space。线性(linearity):对任意f,g∈H,a,b∈R,a*f+b*g仍然∈H。完备(completeness):对H上的任意柯西序列必收敛于H上的某一点。——相当于闭集的定义。内积(inner product):一个从H×

H-->R 的双线性映射,记为。它满足:

i)≥0,=0 <==> f=0;

ii)=a*= for any a in R;

iii)=+;iv)= ——在复内积里是复数共轭关系

内积诱导的范数(norm):‖f‖=√,它满足范数公理:i)‖f‖≥0,‖f‖=0<==> f=0;ii)‖a*f‖=a*‖f‖,for any a in R;iii)‖f+g‖≥‖f‖+‖g‖——三角不等式。范数诱导的距离(distance):ρ(f,g)=‖f-g‖,它满足距离公理:

i)ρ(f,g)≥0,ρ(f,g)=0 <==> f=0;

ii)ρ(f,g)=ρ(g,f)iii)ρ(f,g)+ρ(g,h)≥ρ(f,h)。

一个距离空间称为是紧的,如果每一个有界序列必有收敛子列。

Hilbert space上的序列f_n强收敛于g,如果‖f_n-g‖收敛于零;

Hilbert space上的序列f_n称为是一个柯西序列,如果‖f_n-f_m‖收敛于零当m,n--->∞;

Hilbert space上的序列f_n弱收敛于g,如果对于任何一个线性连续泛函I,|I (f_n)-I(g)|收敛于零。

Hilbert space上的泛函I(f)称为线性,如果它满足:对任意f,g∈H,a,b∈R,I(a*f+b*g)=a*I(f)+b*I(g);

Hilbert space上的泛函I(f)称为有界,如果‖I‖有界;

Hilbert space上的泛函I(f)称为连续,如果对于任意柯西序列f_n,I(f_n)是R 上的柯西序列。

泛函I(f)的范数定义为sup|I(f)|/‖f‖,for all f∈H。它的一个等价定义是sup|I(f)|,for all f∈H such that‖f‖=1,也就是单位球面上的极大值。从定义立刻可以看到,|I(f)|≤‖I(f)‖*‖f‖。

二、定理

1、完备的线性赋范空间上线性泛函的有界性与连续性等价。——可以推广到算子,并且Hilbert space是完备的线性赋范空间(Banach space)的一个特例。

2、Hilbert space上线性连续泛函可以完全由内积表示,并且这种表示是一一对应的。

3、Hilbert space上存在一组正交标准基(f_1,f_2,....),使得所有g∈H均有一个表示:g=∑a_n*f_n,其中的a_n叫做第n个投影或者坐标值,a_n=

4、自反空间(Hilbertspace是其中一种)的有界序列必有弱收敛子序列,这个性质叫做弱紧性。

5、任何H上的闭线性子空间M均满足射影性质:对任意点f∈H,存在g∈M,h∈M的线性补空间,使得f=g+h。

希尔伯特空间

一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900 年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。 希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。 大家知道,在一个欧几里得空间R^n 上,所有的点可以写成为:X= (x1,x2,x3,..., xn )。那么类似的,在一个无穷维欧几里得空间上点就是:X= (x1,x2,x3 ,xn,.................................................................... ),一个 点的序列。 欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离),||X||^2= ∑xn^2,可是这一重要性质在无穷维时被破坏了:对于无穷多个xn,∑xn^2 可以不存在(为无穷大)。于是希尔伯特将所有∑ xn^2 为有限的点做成一个子空间,并赋以X*X'= ∑ xn*xn' 作为两点的内积。这个空间我们现在叫做l^2 ,平方和数列空间,这是最早 的希尔伯特空间了。 注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。只有范数的空间叫做Banach 空间,(以后有时间再慢慢讲:- )。 如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。 Hilbert 空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑ xn^2 为有限的点。这个最早的Hilbert space 叫做l^2 (小写的l 上标2,又叫小l2 空间),非常类似于有限维的欧氏空间。

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离, 使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范 线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间 设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1° 的充要条件为x=y 2° 对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空 间。x 中的元素称为点。 2、常见的度量空间 (1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 (2)序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A) 中任意两点x,y ,定义 (4)可测函数空间 设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度, 若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。令 (5)C[a,b]空间 令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意 两点x,y ,定义 二、度量空间中的极限、稠密集、可分空间 1、收敛点列 设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。 收敛点列性质: (1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯 一的。 (2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。 (,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()| f t g t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-?(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

§4.4-5 线性空间的同构

§4.4 线性空间的同构 下面讨论同构的概念在线性空间中的应用,以便将两个线性空间进行比较。设V 与V '都 是数域P 上的线性空间,在V 与V '上各有加法和数量乘法运算,并且都用普通的加法和乘法符号表示。 定义4.4.1 设V 与V '都是数域P 上的线性空间,如果存在V 到V '上的双映射σ满足 (1) )()()(βσασβασ+=+; (2) )()(ασασk k =, 其中βα,是V 中任意向量,k 是数域P 中任意数,则称σ为V 到V '的同构映射,并且称V 与V '是同构的。 同构的线性空间具有如下性质。 定理4.4.1 设V 与V '是数域P 上的同构线性空间,σ为V 到V '的同构映射,则 (1) )0(σ=0; (2) 对任意V ∈α,)()(ασασ-=-; (3) 如果m αα,,1 是V 的一个向量组,∈m k k ,,1 P ,则 )()()(1111m m m m k k k k ασασαασ++=++ ; (4) V 中向量组m αα,,1 线性相关当且仅当它们的像)(1ασ,)(,m ασ 是V '中线性相关的向量组; (5) 如果V 是n 维的,n εε,,1 是V 的一组基,则V '也是n 维的,并且 )(,),(1n εσεσ 是V '的一组基。 证明 (1)-(3) 由定义4.4.1即得。 (4) 如果向量组m αα,,1 线性相关,则存在不全为零的数∈m k k ,,1 P 使得 011=++m m k k αα 由(1)和(3)得 0)()(11'=++m m k k ασασ 所以)(1ασ,)(,m ασ 线性相关。 反过来,如果)(1ασ,)(,m ασ 线性相关,则存在不全为零的数∈m k k ,,1 P ,使得 0)()(11=++m m k k ασασ 即

距离空间泛函分析第四章习题第一部分(1-18)

第四章习题第一部分(1-18) 1. 在1中令1(x , y ) = (x y )2,2(x , y ) = | x y |1/2,,问1, 2 是否为1上的距离 [解] 显然1, 2满足距离空间定义中的非负性和对称性. 但1不满足三角不等式:取点x = 1, y = 0, z = 1,则 1(x , z ) = 4 > 2 = 1(x , y ) + 1(y , z ),所以1不是 1 上的距离。 而x , y , z 1 , 2 (x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -?-+-+-≤-+-≤- ||||)||||(2y z z x y z z x -+-=-+-==2 (x , z ) + 2 (z , y ); 所以2是1上的距离. 2. 设(X , )是距离空间,令 1 (x , y ) = n y x ),(ρ,x , y X .证明(X , 1 ) 也是距离空间. [证明] 显然1满足距离空间定义中的非负性和对称性, 故只需证明1满足三角不等式即可. 实际上x , y , z X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤= n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤ ),(),(),(),(11y z z x y z z x n n ρρρρ+=+=. 3. 设(X , )是距离空间,证明 | (x , z ) (y , z ) | (x , y ),x , y , z X ; | (x , y ) (z , w ) | (x , z ) + (y , w ),x , y , z , w X . [证明] x , y , z , w X ,由三角不等式有 (x , y ) (x , z ) (y , z ) (x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式: | (x , y ) (z , w ) | | (x , y ) (y , z ) | + | (y , z ) (z , w ) | (x , z ) + (y , w ). 4. 用Cauchy 不等式证明(| 1 | + | 1 | + ... + | n | )2 n (| 1 |2 + | 1 | 2 + ... + | n |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | i |,b i = 1,i = 1, 2, ..., n 即可. 5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做. 6. 设(X , d )是距离空间,A X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集. [证明] 若A = ,则int(A ) = ,结论显然成立. 若A ,则x A ,r > 0使得S (x , r ) A . 对y S (x , r ),令s = r d (x , y ),则s > 0,并且S (y , s ) S (x , r )

Hilbert空间

Hilbert 班级:15级自动化三班 姓名:谢洪涛 学号:115110001090 指导老师:姚洪亮 [《现代分析基础》读书报告——HILBERT 空间] 摘要:本文从初学者的角度详细介绍了Hilbert空间的引出与定义,直交性与投影定理,内积空间的直交系以及Hilbert空间在量子力学中的引用。其中包括了详细的定义定理阐述与证明,以及相应问题的典型举例。在文章最后给出了Hilbert个人的一些介绍,可以感受到Hilbert空间理论的深刻的背景,加深对理论的学习和理解,同时也向伟大的数学家致敬。

目录 1. 内积与H ILBERT空间 (1) 内积的定义与性质 (1) Hilbert空间的定义 (3) 2. 直交性与投影定理 (5) 直交性 (5) 投影定理 (6) 3. 内积空间中的直交系 (8) 标准直交系 (8) 标准直交系的一些性质 (11) 4. H ILBERT空间在量子力学中的应用 (13) 对Hilbert空间的描述 (13) 量子力学中对Hilbert空间的描述 (14) 为何要引进Hilbert空间来描述态矢量所在空间 (14) 5. 附录 (15) Hilbert简介 (15) 感想与致谢 (16) 参考文献 (17)

1. 内积与Hilbert 空间 内积的定义与性质 在欧式空间中有一些重要的基本概念,如向量的内积、夹角、正交以及投影等,这些概念在欧式空间几何学中起着重要的作用。为此,我们将把这些概念抽象化、引入到线性空间中去,就得到Hilbert 空间。首先回顾解析几何中的有关概念: 例如,在R^2中,任意两个向量),(),,(2121y y y x x x ==的内积为 2211),(y x y x y x += x 与y 的夹角为 | |||),(cos y x y x =α 当x=y 时,1cos =α,),(||2x x x =,从而向量长度为 ),(||x x x = 当x 与y 正交,2π α=,0cos =α?→? 0),(=y x 。 由此可见,内积的概念是基本的,用它可以引进向量长度(范数)、向量间的正交、投影等概念。在实欧式空间中内积还具有如下基本性质: 1) 对称性:),(),(x y y x =; 2) ),(),(),(z y z x z y x βαβα+=+(对第一变元线性) 3) 0),(≥x x ,当且仅当ο=x 时0),(=x x (正定性) 以此为基础,对一般抽象线性空间中引入内积概念如下: 定义 设X 为实(或复)数域K 上的线性空间,若X 内任意一对元素x,y 恒对应K 中一个数,记为),(y x ,它满足:

线性空间的同构

§8 线性空间的同构 一、数域 P 上的 n 维线性空间 n P 二、数域 P 上的一般的n 维线性空间 V 例如:[]n P x 等 设n εεε,,,21 是线性空间V 的一组基,在这组基下,V 中每个向量都有确定的坐标, 而向量的坐标可以看成n P 元素,因此向量与它的坐标之间的对应实质上就是V 到n P 的 一个映射.显然这个映射是单射与满射,换句话说,坐标给出了线性空间V 与n P 的 一个双射. 这个对应的重要性表现在它与运算的关系上.设 n n a a a εεεα+++= 2211, n n b b b εεεβ+++= 2211 而向量,,βα的坐标分别是),,,(21n a a a ,),,,(21n b b b ,那么 n n n b a b a b a εεεβα)()()(222111++++++=+ ; n n ka ka ka k εεεα+++= 2211. 于是向量,βα+αk 的坐标分别是 ),,,(),,,(),,,(21212211n n n n b b b a a a b a b a b a +=+++, ),,,(),,,(2121n n a a a k ka ka ka =. 以上的式子说明在向量用坐标表示之后,它们的运算就可以归结为它们坐标的运算. 因而线性空间V 的讨论也就可以归结为n P 的讨论. 三、线性空间同构 1.定义11 数域P 上两个线性空间V 与V '称为同构的,如果由V 到V '有一个双射σ,

具有以下性质: 1))()()(βσασβασ+=+; 2) ).()(ασασk k = 其中βα,是V 中任意向量,k 是P 中任意数.这样的映射σ称为同构映射. 前面的讨论说明在n 维线性空间V 中取定一组基后,向量与它的坐标之间的对应 就是V 到n P 的一个同构映射.因而,数域P 上任一个n 维线性空间都与n P 同构. 2.同构映射具有下列性质 由定义可以看出,同构映射具有下列性质: (1). )()(,0)0(ασασσ-=-=. (2). )()()()(22112211r r r r k k k k k k ασασασααασ+++=+++ . (3).V 中向量组r ααα,,,21 线性相关?它们的象)(,),(),(21r ασασασ 线性相关. 因为维数就是空间中线性无关向量的最大个数,所以由同构映射的性质可以推知, 同构的线性空间有相同的维数. (4). 如果1V 是V 的一个线性子空间,那么,1V 在σ下的象集合 {}11|)()(V V ∈=αασσ 是)(V σ的子空间,并且1V 与)(1V σ维数相同. (5). 同构映射的逆映射以及两个同构映射的乘积还是同构映射. 同构作为线性空间之间的一种关系,具有反身性、对称性与传递性. 既然数域P 上任意一个n 维线性空间都与n P 同构,由同构的对称性与传递性即得, 数域P 上任意两个n 维线性空间都同构. 3. 定理12 数域P 上两个有限维线性空间同构的充要条件是它们有相同的维数. 由线性空间的抽象讨论中,并没有考虑线性空间的元素是什么,也没有考虑其中运算 是怎样定义的,而只涉及线性空间在所定义的运算下的代数性质.从这个观点看来, 同构的线性空间是可以不加区别的.因之,定理12说明了,维数是有限维线性空间的 唯一的本质特征.

话说泛函——Hilbert空间

话说泛函——Hilbert空间 一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。 希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。大家知道,在一个欧几里得空间R^n上,所有的点可以写成为: X=(x1,x2,x3,...,xn)。那么类似的,在一个无穷维欧几里得空间上点就是:X=(x1,x2,x3,....xn,.....),一个点的序列。欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离), ||X||^2=∑xn^2,可是这一重要性质在无穷维时被破坏了: 对于无穷多个xn,∑xn^2可以不存在(为无穷大)。于是希尔伯特将所有∑xn^2为有限的点做成一个子空间,并赋以X*X'=∑xn*xn' 作为两点的内积。这个空间我们现在叫做l^2,平方和数列空间,这是最早的希尔伯特空间了。 注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。只有范数的空间叫做Banach空间,(以后有时间再慢慢讲:-)。如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。Hilbert空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑xn^2为有限的点。这个最早的Hilbertspace叫做l^2(小写的l上标2,又叫小l2空间),非常类似于有限维的欧氏空间。 数学的发展可以说是一部抽象史。最早的抽象大概是一个苹果和一头牛在算术运算中可以都被抽象为“一”,也就是“数学”本身的起源(脱离具体物体的数字运算)了,而Hilbert space理论发展就正是如此:“内积+ 线性”这两个性质被抽象出来,这样一大类函数空间就也成为了Hilbert space。单位闭区间上所有平方可积的实函数(就是说f(x)的平方在[0,1]上的积分存在且有限)按

向量空间的同构

5.6向量空间的同构 授课题目: 向量空间的同构 教学目标 1.理解向量空间同构的概念、性质及重要意义. 2.掌握有限维向量空间同构的充要条件. 授课时数:2学时 教学重点:向量空间同构的概念. 教学难点:同构的判别. 教学过程: 一、线性空间同构的定义 定义1: 设()V, F 、()W, F 是两个向量空间。V 到W 的一个映射f 叫做一个同构映射,如果 (i )f 是V 到W 的双射; (ii )()()(), V f f f αβαβαβ?∈?+=+; (iii ) ()()F, V a f a af ααα?∈∈?= 如果V 到' V 的同构映射存在,则称V 与' V 同构,记为' .V V ? 二、 同构映射的性质 1. 设f 是V 到W 的同构映射,则1 f -是W 到V 的同构映射。 2. 设f 是V 到W 的同构映射,则 (i )()00f = (ii )()()V f f ααα?∈?-=- (iii )()()(), F, , V a b f a b af bf αβαβαβ?∈∈?+=+ (iv )12, , , n ααα 线性相关12(),( ), , ()n f f f ααα? 线性相关. 证明: (i) 由定义的条件(3), 取0α=, 那么(0)(0)0()0f f f αα===. (i i) 由定义的条件(2), ()()(())(0)0f f f f αααα+-=+-==. 所以有()()f f αα-=-. (i i i) 利用条件(2)和(3)可直接得到. (iv) 如果12,, ,n ααα线性相关, 那么存在不全为零的数12,, ,n a a a F ∈, 使得

第六章线性空间自测练习

第六章 线性空间—自测练习 一.判断题 1.两个线性子空间的和(交)仍是子空间。 2.两个线性子空间的并仍是子空间。 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。 4.线性空间中两组基之间的过渡阵是可逆的。 5.两个线性子空间的和的维数等于两个子空间的维数之和。 6.同构映射的逆映射仍是同构映射。 7.两个同构映射的乘积仍是同构映射。 8.同构的线性空间有相同的维数。 ? 9.数域P 上任意两个n 维线性空间都同构。 10.每个n 维线性空间都可以表示成n 个一维子空间的和。 二.计算与证明 1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维 数。 2. 求22P ?中由矩阵12113A ??= ?-??,21020A ??= ???,33113A ??= ???,41133A ??= ?-??生成的子空间的基与维数。 3.设4P 的两个子空间112(,)W L αα=,其中1(1,1,0,1)α=-,2(1,0,2,3)α=,21234124{(,,,)|20}W x x x x x x x =+-=。求12W W +与12W W 的基与维数。 4.P 为数域,22P ?中1,,x x V x y z P y z ?-???=∈?? ?????,2,,a b V a b c P a c ????=∈?? ?-???? 1)证明:12,V V 均为22P ?的子空间。 2)求12V V +和1 2V V 的维数和一组基。 5. P 为数域,3P 中{}1(,,),,,V a b c a b c a b c P ===∈,{}2(0,,),V x y x y P =∈ {

(完整版)泛函分析第6章广义函数与Sobolev空间简介

第六章 广义函数与Sobolev 空间简介 函数是经典分析中的基本概念之一,然而这样的一个基本概念,在近代科学技术的发展中逐渐不够用了。下面用几个例子加以说明。 例6.1(脉冲) 20世纪初,Heaviside 在解电路方程时,提出了一种运算方法,称之为算子演算。这套算法要求对如下函数 10 ()00x h x x ?≥?=?

内积空间与希尔伯特空间

2.3 内积空间与希尔伯特空间 通过前面的学习,知道n 维欧氏空间就是n 维线性赋范空间的“模型”,范数相当于向量的模,表明了线性赋范空间的代数结构.对于三维向量空间,我们知道向量不仅有模,而且两个向量有夹角,例如θ为向量α和β的夹角时有:cos αβ θαβ ?= 或者cos αβαβθ?=,其中αβ?表示两个向量的数量积(或点积或内积),α表示向量的模.于是便有了直交性、直交投影以及向量的分解等概念,这些均反映了空间的“几何结构”.通过在线性空间上定义内积,可得到内积空间,由内积可导出范数,若完备则为Hilbert 空间. 2.3.1 内积空间 定义1.1 设U 是数域K 上的线性空间,若存在映射( , )??:U U ?→K ,使得,,x y z U ?∈, α∈K ,它满足以下内积公理: (1) (,)0x x ≥;(,)00x x x =?=; 正定性(或非负性) (2) (,)(,)x y y x =; 共轭对称性 (3) (,)(,)(,)x z y x y z y αβαβ+=+, 线性性 则称在U 上定义了内积( , )??,称(,)x y 为x 与y 的内积,U 为K 上的内积空间(Inner product spaces ).当=K R 时,称U 为实内积空间;当=K C 时,称U 为复内积空间.称有限维的实内积空间为欧几里德(Euclid spaces )空间,即为欧氏空间;称有限维的复内积空间为酉(Unitary spaces )空间. 注1:关于复数:设z a bi =+∈C ,那么z oz =;(cos sin )z r i θθ=+其中θ为辐射角、r z =;2 z z z ?=;z z =;对于12,z z ∈C ,有1212z z z z ?=?. 注2:在实内积空间中,第二条内积公理共轭对称性变为对称性. 注3:在复内积空间中,第三条内积公理为第一变元是线性的,第二变元是共轭线性的. 因为(,)(,)(,)(,)(,)x y y x y x y x x y ααααα===?=,所以有 (,)(,)(,)x y z x y x z αβαβ+=+, 即对于第二变元是共轭线性的.在实内积空间中,第三条内积公理为第一变元、第二变元均为

一线性空间的同构(基本概念)

?? ???↓ 映射集合线性空间的同构 直和和并子空间与子空间的运算与坐标变换过度矩阵线性空间的基变换坐标基线性空间的维数→→→→,,:)(, ,, 同构映射、同构映射的六个性质,两个线性空间同构 二.习题举例 例1:求线性空间的维数 1)数域P 上所有反对称矩阵组成的线性空间。 2 ) 1(-n n 2)数域P 上所有上三角形矩阵组成的线性空间。2 ) 1(+n n 例2:证明:P n 的任意一个真子空间都是若干个n-1维子空间的交。 证明:设V 是P n 的任意一个真子空间,不仿设 V=L(r ααα ,,21), )(n r < 它是线性方程组?? ? ??? ?=++=+++=+++--,0,0, 0)(11)(22221211212111n n r n r n n n n n x b x b x b x b x b x b x b x b 的解空间, 记k W 为线性方程组02211=+++n kn k k x b x b x b ,k=1,2,…,n -r 的解向量空间,显然是P n 的n-1维子空间,且V 恰好是这n-r 个n-1维子空间的交。

例3设n ααα ,,21是n 维线性空间V 中的n 个向量,V 中的每个向量都可以由它们线性给出,求证:n ααα ,,21是V 的一组基。 证明:只须证明n ααα ,,21线性无关,事实上,如果rk r r ααα ,,21是 n ααα ,,21的一个极大线性无关组,则rk r r ααα ,,21是V 的一组基,所 以n k =,向量组rk r r ααα ,,21就是向量组n ααα ,,21,是线性无关。 例4:在5R 中求齐次线性方程组 ??? ??=-+-+=+-+-=+-+-0 220322402254321 5432154321x x x x x x x x x x x x x x x , 的解空间的维数与一组基。 解:????? ??------=211213224111122A ??? ? ? ??------→533605336021121????? ? ??----→00 000351 12021 121 ??????? ? ? ?? ---→0000035 1120310001;解空间的维数是3,一组基是 ) 6,0,0,5,2()0,2,0,1,0(), 0,0,2,1,0(321=-==βββ 例5:设??? ? ??-=0110A ,证明:实数域上矩阵 A 的全体实系数多项式)(A f 组成的空间? ?? ? ?? ???? ??-==0110|)(A A f V 与 复数域C 作为实数域R 上的线性空间},|{R b a bi a V ∈+='同构。

泛函分析第2章 度量空间与赋范线性空间

第2章 度量空间与赋范线性空间 度量空间在泛函分析中是最基本的概念。事实上,它是n 维欧几里得空间n R 的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。因而,度量空间理论已成为从事科学研究所不可缺少的知识。 2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念 在微积分中,我们研究了定义在实数空间R 上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R 上现有的距离函数d ,即对y x y x d R y x -=∈),(,,。度量是上述距离的一般化:用抽象集合X 代替实数集,并在X 上引入距离函数,满足距离函数所具备的几条基本性质。 【定义2.1】 设X 是一个非空集合,),(??ρ:[)∞→?,0X X 是一个定义在直积X X ?上的二元函数,如果满足如下性质: (1) 非负性 y x y x y x X y x =?=≥∈0,(,0),(,,ρρ; (2) 对称性 ),(),(,,x y y x X y x ρρ=∈ (3) 三角不等式 ),(),(),(,,,y z z x y x X z y x ρρρ+≤∈; 则称),(y x ρ是X 中两个元素x 与y 的距离(或度量)。此时,称X 按),(??ρ成为一个度量空间(或距离空间),记为),(ρX 。 注:X 中的非空子集A ,按照X 中的距离),(??ρ显然也构成一个度量空间,称为X 的子空间。当不致引起混淆时,),(ρX 可简记为X ,并且常称X 中的元素为点。 例2.1 离散的距离空间 设X 是任意非空集合,对X 中任意两点,,x y X ∈令 1 (,)0 x y x y x y ρ≠?=?=? 显然,这样定义的),(??ρ满足距离的全部条件,我们称(,)X ρ是离散的距离空间。这种距离是最粗的。它只能区分X 中任意两个元素是否相同,不能区分

线性空间的性质

学院数学与信息科学学院 专业信息与计算科学 年级2011级 姓名魏云 论文题目线性空间的性质 指导教师韩英波职称副教授成绩 2013年3月16日

学年论文成绩评定表

目录 摘要 (1) 关键字 (1) Abstract (1) Key words (1) 前言 (1) 1 线性空间的概念 (2) 2 线性空间的相关理论 (3) 2.1 线性空间的一些简单性质 (3) 2.2 向量的线性关系 (3) 2.3 基、维数、坐标 (6) 3 两个特殊的子空间 (7) 3.1 欧几里得空间的定义与性质 (7) 3.2 酉空间的介绍 (8) 4 线性空间的同构 (8) 4.1 同构映射与线性空间同构的定义 (8) 4.2 同构映射的性质 (9) 参考文献 (10)

线性空间的性质 摘要:本文首先介绍了与线性空间相关的一系列基本概念,然后归纳总结了线性空间的一些相关性质,包括线性空间的维数、基及坐标;同构映射以及性质等,还包括了向量的线性关系,同时介绍了一些特殊的线性空间,以及它们的简单性质. 关键词:线性空间;基;维数;同构 The properties of linear vector space Abstract: In thesis, we introduce a series of basic concepts of the linear vector space firstly, and then summarized some properties of the linear space, including linear vector space definition, linear vector space, the nature of the linear vector space dimension, base and coordinates, isomorphism mapping and judgments. The thesis also includes linear vector space relationship, some special linear spaces and their simple properties. Key words: Linear space; Base ; Dimension; Isomorphism 前言:线性空间是线性代数最基本的数学概念之一,是线性代数的主要研究对象,它用公理化的方法引入了一个代数系统.同时线性空间与线性变换也是学习现代矩阵论时经常用到的两个极其重要的概念,线性空间的理论和方法在自然科学和工程技术领域中都有广泛的应用.下面我们主要研究线性空间及、向量的线性关系、基、维数、坐标、特殊的线性空间以及线性空间的同构问题. 1.线性空间的概念

希尔伯特空间

希尔伯特空间 量子化学维基,人人都可编辑的量子化学百科全书。 Jump to: navigation, search Template:Zhwp 在数学领域,希尔伯特空间是欧几里德空间的一个推广,其不再局限于有限维的情形。与欧几里德空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西列等价于收敛列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种 有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公式化数学和量子力学的关键性概念之一。 简单介绍 希尔伯特空间以大卫·希尔伯特的名字命名,他在对积分方程的研究中研究了希尔伯特空间。冯·诺伊曼在其1929年出版的关于无界厄米算子的著作中,最早使用了“希尔伯特空间”这个名词。冯·诺伊曼可能是最早清楚地认识到希尔伯特空间的重要性的数学家之一,他在进行对量子力学的基础性和创造性地研究的时候认识到了这一点。此项研究由冯·诺伊曼与希尔伯特和朗道展开,随后由尤金·维格纳(Template:Lang)继续深入。“希尔伯特空

间”这个名字迅速被其他科学家所接受,例如在外尔1931年出版的著作《群与量子力学的理论》(Template:Lang)中就使用这一名词,此书的英文平装版ISBN编号为0486602699。 一个抽象的希尔伯特空间中的元素往往被称为向量。在实际应用中,它可能代表了一列复数或是一个函数。例如在量子力学中,一个物理系统可以被一个复希尔伯特空间所表示,其中的向量是描述系统可能状态的波函数。详细的资料可以参考量子力学的数学描述相关的内容。量子力学中由平面波和束缚态所构成的希尔伯特空间,一般被称为装备希尔伯特空间(rigged Hilbert space)。 在一个复向量空间H上的给定的内积< .,. > 可以按照如下的方式导出一个范数(norm): 此空间称为是一个希尔伯特空间,如果其对于这个范数来说是完备的。这里的完备性是指,任何一个柯西列都收敛到此空间中的某个元素,即它们与某个元素的范数差的极限为0。任何一个希尔伯特空间都是巴拿赫空间,但是反之未必。 任何有限维内积空间(如欧几里德空间及其上的点积)都是希尔伯特空间。但从实际应用角度来看,无穷维的希尔伯特空间更有价值,例如

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称 为度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度 量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d) 中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

HILBERT空间

Hilbert 空间 定义:完备的内积空间称为Hilbert 空间 (1)内积 线性空间K 上的一个共轭双线性函数(,):v K K K ??→ 称为一个内积,如果它满足 a: (,)(,)x y y x = (,)x y K ?∈ (共轭对称性) b: (,)0x x ≥ ()x K ?∈ (,)0x x x θ=?= (正定性) (2)具有内积的线性空间称为内积空间 (3)完备 空间中所有基本列都是收敛列就称该空间是完备的 Hilbert 空间能将更多的集合概念,如角度、垂直性等成功地引入 中线公式 2 2 22 2()x y x y x y ++-=+ 证明:,,,x y x y x y x y x y y x +=++=+++ 同理有,,,x y x y x y x y x y y x -=--=+-- 故等式显然成立 定义:(1)设,x y X ∈若(,)0x y =,则说x 与y 正交,记作x y ⊥ (2)设{:}i x i I X ∈?,若当i j ≠时i j x x ⊥,则称{}i x 为正交系(或正交集、正交组),若{}i x 是正交系且1i x =(i I ?∈)则称{}i x 为标准正交基。 (3)设,A B X ?,约定A B ⊥ ,:;{}a A b B a b x A x A ??∈∈⊥⊥?⊥ {:}A x X x A ⊥=∈⊥称A ⊥为集A 的正交补 ★定理: 设{:}i e i N ∈是Hilbert 空间X 中的标准正交系,则以下条件互相等价 (1)对每个x X ∈有以下Fourier 展开式1 i i i x x e ∞ ∧ ==∑, 其中,(1,2,)i i x x e i ∧?=<>=???称为x 关于{}i e 的Fourier 系数 (2){}i e 是X 的基本集 (3){}i e 是极大正交系,即若i x e ⊥ (1,2,)i =???,则必有0x =

6.8 线性空间的同构

第六章 线性空间 学习单元8: 线性空间的同构 _________________________________________________________ ● 导学 学习目标: 了解同构映射的概念,掌握线性空间同构的概念;理解同构映射的性质;掌握线性空间同构的判别。 学习建议: 建议大家多看书,认真阅读定义,理论联系实际,通过具体线性空间去理解相关概念与结论,对例题要深刻理解,认真完成练习题。 重点难点: 重点:线性空间的同构映射的概念与性质。 难点:同构映射在实际问题中的应用。 _________________________________________________________ ● 学习内容 一、n 维线性空间中向量与坐标的对应关系 令V 为P 上n 维线性空间,1,,n ααL 为V 的一个基,V 中每个向量在1,,n ααL 下有唯一的坐标,令 :n V P σ→ αα→在1,,n ααL 下的坐标 即当11n n x x ααα=++L 时,1()(,,)n x x σα=L 。 命题 σ为V 到n P 的一一映射(双射),并且 ()()(),,V σαβσασβαβ+=+∈;

()(), ,k k k P V σασαα=∈∈。 注:这种对应正是几何问题转化为代数问题的理论依据。 二、线性空间同构的概念 定义 设V 与'V 均为数域P 上线性空间,若存在V 到'V 的双射σ满足。 (1)()()(),,V σαβσασβαβ+=+∈(即σ保持加法)。 (2)()(), ,k k k P V σασαα=∈∈(即σ保持数乘) 。 则称σ为V 到'V 的一个同构映射。 若V 到'V 之间存在同构映射,则称V 与'V 同构,记为'V V ?。 定理 设V 为数域P 上n 维线性空间,则n V P ?。 三、线性空间同构的性质 令,'V V 为P 上线性空间,σ为V 到'V 的同构映射。 1.(0)0,()σσαα=-=-。 2.1111()()()r r r r k k k k σαασασα++=++L L 。 3.1,,r ααL 为V 中一个向量组,则 1,,r ααL 线性相关当且仅当1(),,()r σασαL 线性相关。 4.dim dim 'V V =,特别当1V V ≤时,1 |V σ为1V 到1()V σ的同构映射,且 111dim dim (),()'V V V V σσ=≤。 5.1σ-为'V 到V 的同构映射。 6. 令,',''V V V 为P 上线性空间,σ为V 到'V 的同构映射,τ为'V 到''V 的同构映射,则τσ为V 到''V 的同构映射。 命题 线性空间之间的同构关系为一个等价关系。 定理 设V 与'V 为P 上两个有限维线性空间,则'V V ?的充要条件是 dim dim 'V V =。

相关文档