文档库 最新最全的文档下载
当前位置:文档库 › -德州仪器的开关电源培训:环路补偿很容易

-德州仪器的开关电源培训:环路补偿很容易

-德州仪器的开关电源培训:环路补偿很容易
-德州仪器的开关电源培训:环路补偿很容易

环路补偿问题

电源控制模块 回顾我们在学校学习过的控制理论知识便知,所有控制系统均可以通过传输函数模块得到简化。峰值电流模式控制电源转换器中的电压控制环路也不例外。电压环路(TV(f)) 可以简化表示为不同传输模块的积(请参见图1)。首先是功率级控制输出传输函数(GCO(f)),其表示为输出电压变化(?VOUT) 与控制电压变化(?VC) 的比。请注意,该模块实际为脉宽调制(PWM) 调制器增益(K) 和电源输出滤波器增益(GF(f)) 的组合。其次通常为控制传输函数(GC(f)) 的输出有时称作补偿传输函数,可以表示为?VC与?VOUT 变化的比。如果使用了光隔离器,则也会有一个传输函数模块GOPTO(f),其位于模块K 和–GC(f) 模块之间的连线上。 图1 简化后的电源电压环路模块结构图 图 2 显示了一个峰值电流模式控制正向转换器的功能示意图,如图 1 结构图所示。控制模块由一些虚线区分。

图2 简化后的电源电压环路结构图 起初,峰值电流模式控制背后的想法是控制通过功率级电感的平均电流,从而使它看起来像是一个去除了双极的电流源,而该双极出现在输出电容(COUT) 和功率级电感(LOUT) 的交互作用之间。图 3 显示了这种模型的控制结构图。

图3将电感建模为一个电流源的峰值电流模式控制 图 2 的简化控制输出传输(GCO(f)) 函数表示如下。其中,(a) 为变压器匝数比,而RLOAD 为转换器输出负载阻抗。COUT 为转换器输出滤波器电容,而RESR 为COUT 的等效串联电阻。由该控制输出传输函数,您会看到COUT 和RESR 交互作用之间有一个零点,并在RLOAD 和COUT 交互作用之间有一个极点。 随着时间的流逝,工程师在使用峰值电流模式控制时发现了一个大约在半开关频率(fs) 出现的GCO(f) 双极(fPP)。下列方程式描述了峰值电流模式正向转换器的GCO(f),包括fPP 的影响。请注意,如果您使用网络分析仪对正向转换器进行分析时,您会发现这种传输函数并没有精确地匹配模型描述情况。由于RESR 和COUT 交互作用出现的零位(FZCO) 随负载移动。fPP 出现在略微超出半开关频率时。在没有一个精确模型的情况下,您到底会如何对电压环路进行补偿呢?您可以循规蹈矩,遵循其他工程师已使用多年的老办法。也就是使用一个网络分析仪,根据测得的GCO(f) 来补偿电压环路,并遵循一些简单原则来获得稳定性(本文将有所介绍)。 斜率补偿 人们在峰值电流模式控制转换器中发现,存在占空比突然改变引起的次谐波振荡。这是因为由于控制电压(VC) 无法足够快地校正占空比改变,因而占空比改变便会导致平均输出电流(IOUT1, IOUT2) 误差。为对这一误差进行校正,人们设计了一种的被称作斜率补偿的方法。这种方法将三角电压波形添加到电流感应信号(V2=VSLOPE+VRSENSE),该信号强制平均输出电流不随占空比改变而变化。更多详情,请参见图4。

开关电源闭环反馈响应及测试

开关电源闭环反馈响应及测试 开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电压和电流。反馈控制环路的设计影响到许多因素,包括电压调整、稳定性和瞬态响应。当某个反馈控制环路在某个频率的环路增益为单位增益或更高且总的相位延迟等于360 时,反馈控制环路将会产生振荡。稳定性通常用下面两个参数来衡量: 相位裕量:当环路增益为单位增益时实际相位延迟与360 间的差值,以度为单位表示。 增益裕量:当总相位延迟为360 时,增益低于单位增益的量,以分贝为单位表示。 对多数闭环反馈控制系统,当环路增益大于0dB时,相位裕量都大于45 (小于315 )。当环路相位延迟达到360 时,增益裕量为-20dB或更低。 如果这些条件得到满足,控制环将具有接近最优的响应;它将是无条件稳定的,即不会阻尼过小也不会阻尼过大。通过测量在远远超出控制环通常操作带宽的情况下控制环的频率响应,可以保证能够反映出所有可能的情况。 一个单输出开关电源的控制环增益和相位响应曲线。测量是利用一个GP102增益相位分析仪(一种独立的用来评价控制环增益和相位裕量的仪器)进行的,然后输入到电子表软件中。 在这一例子中,从0dB增益交点到360 测量得到的相位裕量为82 (360 到 278 )。从0dB增益交点到相位达到360 的增益裕量为-35dB。把这些增益和相位裕量值与-20dB增益裕量和60 相位裕量的目标值相比较,可以肯定被测试电源的瞬态响应和调节是过阻尼的,也是不可接受的。 0dB交点对应的频率为160Hz,这导致控制环的响应太慢。理想情况下,在1或2KHz处保持正的环增益是比较合适的,考虑到非常保守的增益和相位裕量,不必接近不稳定区即可改善控制环的动态特性。当然需要对误差放大器补偿器件进行一些小的改动。进行修改后,可以对控制环重新进行测试以保证其无条件稳定性。通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行这种测量。这些仪器采用了离散傅里叶变换(DFT)技术,因为被测信号经常很小且被掩盖在噪声和电源开关台阶所产生的失真中。DFT用来从中提取出感兴趣的信号。 测试信号注入 为进行测量,FRA向控制环中注入一个已知频率的误差信号扰动。利用两个FRA通道来判断扰动要多长时间才能从误差放大器输入到达电源输出。 扰动信号应该在控制环反馈信号被限制在单条路径的地方注入,并且来自低阻抗的驱动源。连接到电源输出或误差放大器输出的反馈路径是注入扰动信号的好地方。 通过信号发生器通过一个隔离变压器连接到测试电路,以保证FRA信号发生器和被测试电路间的电气隔离。注入方法将扰动信号注入到误差放大器的输入。对于电源输出电压在FRA最大输入电压限制以内的情况,这一方法是合适的。 如果被测量电源的输出电压比FRA最大输入电压还要高,那么第一种注入方法就不适用了。扰动信号被注入到误差放大器的输出,此处的控制环对地电压比较低。如果电源电压超过FRA输入范围则应采用这种注入方法。

德州仪器公司(TI)最新DSP选型指南

DSP Selection Guide

Worldwide Contact Information

Table of Contents Introduction to TI DSPs Introduction to TI DSP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 DSP Developer’s Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 TMS320? DSPs TMS320C6000? DSP Platform – High Performance DSPs TMS320C64x?, TMS320C62x?, TMS320C67x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Complementary Analog Products for the TMS320C6000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .10 TMS320C5000? DSP Platform – Industry’s Best Power Efficiency TMS320C55x?, TMS320C54x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Complementary Analog Products for the TMS320C5000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .17 TMS320C2000? DSP Platform – Most Control-Optimized DSPs TMS320C28x?, TMS320C24x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Complementary Analog Products for the TMS320C2000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .24 TMS320C3x? DSP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Complementary Analog Products for the TMS320C3x DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 eXpressDSP? Real-Time Software Technology eXpressDSP Real-Time Software Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Code Composer Studio? Integrated Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 DSP/BIOS? Scalable Real-Time Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 TMS320? DSP Algorithm Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TI DSP Third-Party Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 eXpressDSP-Compliant Algorithms and Plug-Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Support Resources DSP Development Tools Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DSP Development Tools Feature Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Online Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Training Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

开关电源反馈设计

第六章 开关电源反馈设计 除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。 开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。 为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。 6.1 频率响应 在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。 6.1.1 频率响应基本概念 电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示 )()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。 典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。 在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高 频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义 L H f f BW -= (6-1) 为系统的带宽。 6.1.2 基本电路的频率响应 1. 高频响应 在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到 R s C sC R sC s U s U s G i o +=+== 11 /1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令 BW f H 103 103 (b) 图6.1 波特图

电源管理——德州仪器 (TI)

2 Description 78 DC/DC Description u -t r a c k .c m t o b y N O -t r a c k .c o

Description Description Description

Description Description

Description Description 2 Description

2 11 Part Number Description Sub Family Name Iout (max)(A) Vin (min)(V) Vin (max)(V) Vout (min)(V) Vout (max)(V) Pin/Package Approx. Price (US$) DCP012405B 1W DC/DC 1W & 2W 0.221.626.4 4.75 5.257PDIP 7SOP 5.35 | 1ku DCP022405 2W DC/DC 1W & 2W 0.4 21.6 26.4 4.85 5.35 12SOP 7PDIP 5.75 | 1ku 2 51 PWM Part Number Description PWM Outputs (#) Vin (min) (V) Vin (max) (V) Pin/Package Approx. Price (US$) UC2844A PWM 1 10 30 14SOIC 8PDIP 8SOIC 0.48 | 1ku UC2823 PWM 18.43016PDIP 16SOIC 20PLCC 1.70 | 1ku | | | / TI | | | ( ) | | | my.TI | | ? Copyright 1995-2012 Texas Instruments Incorporated. All rights reserved. | | l i k u W w w .d o c u -t r a c k .c m C c t o b y N O ! w w .d o c u -t r a c k .c o

环路相位-开关电源稳定性设计

环路相位-开关电源稳定性设计 专业技术 环路相位-开关电源稳定性设计 摘要:环路,相位,增益,负载,开关电源,稳定性,电压,相移,电源,频率, 信号接收机-基于单芯片的GPS接收机硬件设计白光调光-白光和彩色光智能照明系统解决方案设备方案-台达UPS在中小企业中的创新应用方案触摸屏电容-电容式触摸屏系统解决方案测量肺活量-利用高性能模拟器件简化便携式医疗设备设计测量温度-热敏电阻(NTC)的基本参数及其应用动能产品-动能电子企业文化活动丰富员工生活电路板镀锡-无锡华文默克发布PCB/SMT工艺方案引擎电压-采用接近传感器的火花探测器太阳能控制器-太阳能LED街灯的挑战及安森美半导体高能效解决方案众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式 有意地引入了180°相移,如果反馈 众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。 1 稳定性指标衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB 时所对应的相位。增益裕度是指:相位为-180度时所对应的增益大小(实际是衰减)。在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。相位裕度只能用来保证“小信号稳定”。在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相

环路计算,补偿和仿真

BUCK 电路的环路计算,补偿和仿真 Xia Jun 2010-8-14 本示例从简单的BUCK 电路入手,详细说明了如何进行电源环路的计算和补偿,并通过saber 仿真验证环路补偿的合理性。 一直以来,环路的计算和补偿都是开关电源领域的“难点”,很多做开关电源研发的工程师要么对环路一无所知,要么是朦朦胧胧,在产品的开发过程中,通过简单的调试来确定环路补偿参数。而这种在实验室里调试出来的参数真的能满足各种实际的使用情况吗?能保证电源产品在高低温的情况下,在各种负载条件下,环路都能够稳定吗?能保证在负载跳变的情况下收敛吗? 太多的未知数,这是产品开发的大忌。我们必须明明白白的知道,环路的稳定性如何?相位裕量是多少?增益裕量是多少?高低温情况下这些值又会如何变化?在一些对动态要求非常严格的场合,我们如何折中考虑环路稳定性和动态响应之间的关系? 有的放矢,通过明确的计算和仿真,我们的产品设计才是科学的,合理的,可靠的。我们的目标是让产品经得起市场的检验,让客户满意,让自己放心。 一切从闭环系统的稳定性说起,在自动控制理论中,根据乃奎斯特环路稳定性判据,如果负反馈系统在穿越频率点的相移为180°,那么整个闭环系统是不稳定的。 很多人可能对这句话很难理解,虽然自动控制理论几乎是所有大学工科学生的必修课,可大部分是是抱着应付的态度的,学完就忘了。 那就再给大家讲解一下吧。 等式:V out=[Vin-V out*H(S)]*G(S) 公式:Vout Vin G S ()1G S ()H S ()?+ G(S)/(1+G(S)*H(S))就称之为系统的闭环传递函数,如果1+G(S)*H(S)=0,那么闭环系统的输出值将会无限大,此时闭环系统是不收敛的,也即是不稳定的。 G(S)*H(S)是系统的开环传递函数,当G(S)*H(S)=-1时,以S=j ω带入,即获得开环系统的频域响应为G(j ω)*H(j ω)=-1,此时频率响应的增益和相角分别为: gain =‖-1‖=1 angle=tan -1(0/-1)=180° 从上面的分析可以看出,如果扰动信号经过G(S)和H(S)后,模不变,相位改变180°,那么这个闭环系统就是不稳定的。 但是,别忘了,这是负反馈系统,信号经过H(S)之后,本身就有180°的相移,所以,针对负反馈的闭环系统而言,其描述为:如果扰动信号经过系统主电路和反馈系统之后,其模不变,相位也不变,那么这个系统是不稳定的。为什么相位也不变?因为G(S)*H(S)造成的180°相移和负反馈本身造成的180°相移,两者叠加之后是360°,所以等于相位不变。 什么是穿越频率? G(S)*H(S)对应的增益为1(即幅值不变)的频率即为穿越频率。换算为dB 单位:20log1=0dB 。

开关电源环路稳定的试验方法

6.5 开关电源环路稳定的试验方法 前面频率特性分析方法是以元器件小信号参数为基础,同时在线性范围内,似乎很准确。但有时很难做到,例如电解电容ESR 不准确且随温度和频率变化;电感磁芯磁导率不是常数,还有由于分布参数或工艺限制,电路存在分布参数等等,使得分析结果不可能完全吻合,有时甚至相差甚远。分析方法只是作为实际调试的参考和指导。因此,在有条件的情况下,直接通过测量运算放大器以外的环路的频率响应,根据6.4节的理论分析,利用测得的频率特性选择Venable 误差放大器类型,对环路补偿,并通过试验检查补偿结果,应当说这是最直接和最可靠设计方法。采用这个方法,你可以在一个星期之内将你的电源闭环调好。前提条件是你应当有一台网络分析仪。 6.5.1 如何开环测试响应 桥式、半桥、推挽、正激以及Buck 变换器都有一个LC 滤波电路,输出功率电路对系统性能影响最大。为了讨论方便,以图6.31为例来说明测试方法,重画为图 6.48(a)。电路参数为:输入电压115V ,输出电压为5V ,如前所述,滤波电感和电容分别为L =15μH ,C =2600μF ,PWM 控制器采用UC1524,它的锯齿波幅值为3V ,只用两路脉冲中的一路,最大占空比为0.5。为了测量小信号频率特性,变换器必须工作在实际工作点:额定输出电压、占空比和给定的负载电流。 从前面分析知道,如果把开关电源看着放大器,放大器的输入就是参考电压。从反馈放大器电路拓扑来说,开关电源的闭环是一个以参考电压为输入的电压串联负反馈电路。输入电源的变化和/或负载变化是外界对反馈控制环路的扰动信号。取样电路是一个电阻网络的分压器,分压比就是反馈系数,一般是固定的(R2/(R1+R2))。参考电压(相应于放大器的输入电压)稳定不变,即变化量为零,输出电压也不变(5V)。 如上所述,所有三种误差放大器都有一个原点极点。在低频闭环时,由于原点极点增益随频率减少而增高(即在反馈回路电容)在很低频率,有一个最大增益,由误差放大器开环 增益决定。直流增益很高,这意味着直流电压 仅有极小误差(相对于参考电压)。例如,误差放大器在很低频率增益可能达到80dB 或更高,因为80dB 即10000倍,迫使输出检测电压接近参考电压,误差仅万分之一,即0.01%。这当然远优于一般参考电压的精度,因而通常输出电压的误差由参考电压的误差决定。 为保证电源在任何干扰下输出稳定,我们将测试除误差放大器以外的开关电源的环路频率特性,来判断闭环穿越频率、放大器需要的增益以及需要补偿的相位,以此选择误差放大器类型。 为了开环测量误差放大器以外的环路增益,你可以利用控制芯片中的误差放大器。将误差放大器接成跟随器,利用跟随器输入阻抗高的特点,在输入端将测试的扫频信号和决定直流工作点的偏置电压求和Σ。直流工作点的偏置电压是一个可调直流电源(调节工作点)和一个交流扫频交流信号叠加一起送入跟随器。调节可调直流电压,输出电压随之变化。可调电压增大输出电压也增大。调节可调直流电压,使输出电压和负载达到规定的测试条件(输入电压最大和最小,负载满载和轻载),然后测试分压器输出AC out 和扫频信号输出AC in 的交流信号的幅值和相位,就得到相似于图6.36的除放大器以外的增益特性G t (AC out /AC in )。。应当注意,我们正在研究的是电源的小信号响应,是在一定工作点附近的线性特性,所以测试应当在实际工作点(在规定的输出电压和负载以及规定的输入电源电压)进行。即输出如果是5V ,就应当将输出精确调节到5V ,而不是3V 或10V 。一定要调节可调电源精密调整到额定输出相差mV 级以内,再进行开环测试。 (a ) 图 6.48 正激变换器环路增益测试

TI(德州仪器)公司产品导购手册

TI(德州仪器) 德州仪器,简称TI,全球约 30,300人,总部位于美国得克萨斯州的达拉斯,2008年营业额为185亿美元, 是全球领先的半导体公司,为现实世界的信号处理提供创新的数字信号处理(DSP)及模拟技术, 应用领域涵盖无线通讯、宽带、网络家电、数字马达控制与消费类市场。 TI(德州仪器)目录 更多关于产品 ?MSP430系列单片机 ?TMS370系列单片机 ?TMS470系列单片机 ?Stellaris系列单片机 ?32位C2000单片机 ?C2000 DSP ?C5000 DSP ?C6000 DSP ?达芬奇 DSP ?A/D转换器 ?D/A转换器 ?电池管理 ?PWM控制器 ?DC/DC控制器

MSP430系列单片机 MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,在 1996 年问世,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。MSP430 系列单片机的迅速发展和应用范围的不断扩大,主要取决于以下的特点。 强大的处理能力 MSP430 系列单片机是一个 16 位的单片机,采用了精简指令集( RISC )结构,具有丰富的寻址方式( 7 种源操作数寻址、 4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令;有较高的处理速度,在 8MHz 晶体驱动下指令周期为 125 ns 。这些特点保证了可编制出高效率的源程序。 在运算速度方面, MSP430 系列单片机能在 8MHz 晶体的驱动下,实现 125ns 的指令周期。 16 位的数据宽度、 125ns 的指令周期以及多功能的硬件乘法器(能实现乘加)相配合,能实现数字信号处理的某些算法(如 FFT 等)。 MSP430 系列单片机的中断源较多,并且可以任意嵌套,使用时灵活方便。当系统处于省电的备用状态时,用中断请求将它唤醒只用 6us 。 超低功耗 MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压及灵活而可控的运行时钟方面都有其独到之处。 MSP430 系列单片机最新报价

开关电源环路设计过程

1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。 2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2 描述一个由高通滤波器电路引起的零点。 存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和

BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。 3.1 相位裕量 参看图4,相位裕量是在穿越频率处相位高于0度的数量。这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。其中包括DC负反馈所提供的180度初始相移。在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。 根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。如果相位裕量小于45度,

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计 万山明,吴芳 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路

S 导通时,对电感列状态方程有 O U Uin dt dil L -= ⑴ S 断开,D 1续流导通时,状态方程变为 O U dt dil L -= (2) 占空比为D 时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D )T s 的时间(T s 为开关周期),因此,一个周期内电感的平均状态方程为 ())()(O in O O in U DU U D U U D dt dil L -=--+-=1 稳态时,dt dil =0,则DU in =U o 。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in 成 正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L =(D +d )(U in +)-(U o +) (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d 为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L =D +dU in - (5) 由图1,又有 i L =C + (6) U o =U c +R e C (7)

开关电源环路设计(详细)

6.4 开关电源闭环设计 从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。反馈越深,干扰引起的输出误差越小。但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。 开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref ,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准 一定时,取样电路分压比(k v )也是固定的(U o =k v U ref ) 。开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。 对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。如果恒流输出,就是电流串联负反馈。 如果是恒压输出,对电压取样,闭环稳定输出电压。因此,首先选择稳定的参考电压,通常为5~6V 或2.5V ,要求极小的动态电阻和温度漂移。其次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。一般功率电路、滤波和PWM 发生电路增益低,只有采用运放(误差放大器)来获得高增益。再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。根据不同的电路条件,可以采用Venable 三种补偿放大器。补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。 6.4.1 概述 图6.31为一个典型的正激变换器闭环调节的例子。可以看出是一个负反馈系统。PWM 控制芯片中包含了误差放大器和PWM 形成电路。控制芯片也提供许多其他的功能,但了解闭环稳定性问题,仅需 考虑误差放大器和PWM 。 对于输出电压U o 缓慢或直流变化,闭环当然是稳定的。例如输入电网或负载变化(干扰),引起U o 的变化,经R 1和R 2取样(反馈网络),送到误差放大器EA 的反相输入端,再与加在EA 同相输入端的参考电压(输入电压)U ref 比较。将引起EA 的输出直流电平U ea 变化,再送入到脉冲宽度调制器PWM 的输入端A 。在PWM 中,直流电平U ea 与输入B 端0~3V 三角波U t 比较,产生一个矩形脉冲输出,其宽度t on 等于三角波开始时间t0到PWM 输入B 三角波与直流电平相交时间t1。此脉冲宽度决定了芯片中输出晶体管导通时间,同时也决定了控制晶体管Q1的导通时间。U dc 的增加引起U y 的增加,因U o =U y t o n /T ,U o 也随之增加。U o 增加引起Us 增加,并因此U ea 的减少。从三角波开始到t1的t on 相应减少, U o 恢复到它的初始值。当然,反之亦然。 PWM 产生的信号可以从芯片的输出晶体管发射极或集电极输出,经电流放大提供Q1基极驱动。但不管从那一点-发射极还是集电极-输出,必须保证当U o 增加,要引起t on 减少,即负反馈。 应当注意,大多数PWM 芯片的输出晶 体管导通时间是t0到t1。对于这样的芯片,U s 送到EA 的反相输入端,PWM 信号如果驱动功率NPN 晶体管基极(N 沟道MOSFET 的栅极),则芯片输出晶体管应由发射极输出。 然而,在某些PWM 芯片(TL494)中,它们的导通时间是三角波U t 与直流电平(U ea )相交时间 图6.31 典型的正激变换器闭环控制

Ti(德州仪器)-芯片手册-cd4030b

Data sheet acquired from Harris Semiconductor SCHS035C – Revised September 2003 The CD4030B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

PACKAGING INFORMATION (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. Addendum-Page 1

开关电源反馈电路

电流型开关电源中电压反馈电路的设计 2007-11-29 09:35:15| 分类:电源| 标签:|字号大中小订阅 尚修香侯振义空军工程大学电讯工程学院 在传统的电压型控制中,只有一个环路,动态性能差。当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。为了解决这个问题,可以采用电流型控制模式。电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。电流型控制方法的特点如下: 1、系统具有快速的输入、输出动态响应和高度的稳定性; 2、很高的输出电压精度; 3、具有内在对功率开关电流的控制能力; 4、良好的并联运行能力。 由于反馈电感电流的变化率直接跟随输入电压和输出电压的变化而变化。电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。 一、uc3842简介 图1为UC3842PWM控制器的内部结构框图。其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。反馈电压由2脚接误差放大器反相端。1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。UC3842PWM 控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。正因如此,可有效地防止电路在阈值电压附近工作时的振荡。 图1UC3842的内部结构框图如下: UC3842具有以下特点: 1、管脚数量少,外围电路简单,价格低廉; 2、电压调整率很好; 3、负载调整率明显改善; 4、频响特性好,稳定幅度大; 5、具有过流限制、过压保护和欠压锁定功能。 UC3842具有良好的线性调整率,因为输入电压Vi 的变化立即反应为电感电流的变化,它不经过任何误差放大器就能在比较器中改变输出脉冲宽度,再增加一级输出电压Vo至误差放大器的控制,能使线性调整率更好;可明显地改善负载调整率,因为误差放大器可专门用于控制由于负载变化造成的输出电压

相关文档
相关文档 最新文档