文档库

最新最全的文档下载
当前位置:文档库 > 第十一章 动力学(一)习题解答

第十一章 动力学(一)习题解答

第十一章 习题解答

1、298K 时N 2O 5(g)分解反应其半衰期2

1t

为5.7h ,此值与N 2O 5的起始浓度无关,试求:

(1)该反应的速率常数。

(2)作用完成90%时所需时间。

解 半衰期与起始浓度无关的反应为一级反应,代入一级反应公式即可求

(1)

1

2

11216.07.52ln 2ln -===h h

t k (2) h h

y k t 94.189.011

ln 1216.0111ln 11=-=-=-

例、某气相反应的速率表示式分别用浓度和压力表示时为:r c =k c [A]n 和r p =k p p A n ,试求k c 与k p 之间的关系,设气体为理想气体。

解 因设气体为理想气体。所以 p A V=n A RT , p A =c A RT=[A]RT 设气相反应为 aA(g)→P(g) 则

n

A p A p p k dt

dp a r =-=1 将上面结果代入

n p p RT A k dt

RT A d a r )]([)]([1=-=

化简

c n c n n p r A k A RT k dt

A d a ===--][][)(}

[11 k c 与k p 之间的关系为 1

)(-=n p

c RT k k 3、对于1/2级反应

k R P ??→试证明:

第十一章 动力学(一)习题解答

(1)

112

2

01

[][]

2R R kt -=; (2)

证 (1)2

1][][R k dt

R d r =-=,

??

=-

t

R

R kdt R R d 0

2

1

]

[][

积分

kt R R =-)][]([22

1

2

1

, 所以 kt R R 2

1]

[][2

12

1

0=

- (2)当

2

1t t =时,0][21

][R R =,代入(1)式 2102

102102102

1

])[12(2])[211(2)][21(][2R R R R kt -=-=??

? ??-=

所以

2102

1

])[12(2

R k

t -=

例、某人工放射性元素放出α粒子,半衰期为15min ,试问该试样有80%分解,需时若干? 解 放射性元素分解为一级反应,

121min 0462.0min 152ln 2ln -===t k

min 8.3480

.011ln min 0462.0111ln 11

=-=-=

-y k t

例、把一定量的PH 3(g)迅速引入温度为950K 的已抽空的容器中,待反应物达到该温度时开始计时(此时已有部分

第十一章 动力学(一)习题解答

已知反应 4PH 3(g)?→?k

P 4(g)+6H 2(g) 为一级反应,求该反应的速率常数k 值(设在t=∞时反应基本完成)。

解 对一级反应,其积分式为

kt c c A

A =0,ln

,下面找出总压

p 与反应物浓度c A 间的关系,设c A =Mp+N ,

(1)

当t=0时,c A = c A,0,p=p 0,c A,0=M p 0+N (2) 当t=∞时,c A =0,p= p ∞,0= M p ∞+N (3) (2)-(3)式,得c A,0=M (p 0-p ∞) (4) (1)-(3)式,得c A =M (p -p ∞) (5)

(4)、(5)式代入一级反应积分式得kt p p p p =--∞

0ln ,所以 当t=58s 时,1

00222.034.3685.3600.3585.36ln 581ln 1-∞∞=--=--=s s p p p p t k

当t=108s 时,100221.068

.3685.3600.3585.36ln 1081ln 1-∞∞=--=--=s s p p p p t k

10222.0-=s k

4、在298K 时,用旋光仪测定蔗糖在酸溶液中水解的转化速率,在不同时间所测得的旋光度(t α)如下

第十一章 动力学(一)习题解答

试求该反应的速率常数k 值。

解 蔗糖在酸溶液中水解可按准一级反应处理,且蔗糖浓度与旋光度之间亦存在线性关系,即c A =M

t α+N ,与上

题道理相同可得

∞--=ααααt A A c c 0

0,,代入一级反应积分方程得kt t =--∞

αααα0ln

,然后以)ln(∞-ααt 对t

作图,得一直线,斜率为-k ,求得1

3

min 102.5--?=k 。或将各组数据代入kt t =--∞

αααα0ln

,求出k 值,

然后取平均值,结果与作图求取一致。

6、含有相同物质的量的A 、B 溶液,等体积相混合,发生反应A+B →C ,在反应经过了1小时后,发现A 已消耗了75%,当反应时间为2小时后,在下列情况下,A 还剩余多少没有反应?

(1) 当该反应对A 为一级,对B 为零级; (2) 当该反应对A ,B 均为一级; (3) 当该反应对A ,B 均为零级。 解 (1) 一级反应时 114l n 75

.011ln 1111ln 1-=-=-=h h y t k

当t=2h 时

y

h h -=

-11l n 214l n 1, 1-y=6.25%

(2) 二级反应时,运用a=b 的二级反应公式 1

2375.0175.01111-=-??=-?=h a

a h y y ta k

当t=2h 时

y

y a h h a -??=-12131, 1-y=14.3% (3)零级反应时 1075.075.011

1-=?==ah a h

ay t k

当t=2h 时

ay h

ah 21

75.01=

-, y=1.5>1,说明A 早已作用完毕。 当y=1时A 刚好作用完,所需时间为

h a ah

ay k t 333.1175.0111

0=??==-。

7、在298K 时,NaOH 与CH 3

COOCH 3

皂化作用的速率常数k 2

与NaOH 和CH 3

COOC 2

H 5

皂化作用的速率常数'

2

k 的关系为k 2

=2.8'

2k 。试问在相同的实验条件下,当有90%的CH 3

COOCH 3

被分解时,CH 3

COOC 2

H 5

的分解百分

数为若干?(设碱与酯的浓度均相等)

解 碱与酯的皂化作用是典型的二级反应,所以

y

y t a k -=

112,

'

'

'2

11y y ta k -=

8.211'

'

'2

2=--=y y y y k k , 解得'y =0.76或'y =76%。 9、对反应2NO(g)+2H 2(g)→N 2(g)+H 2O(l)进行了研究,起始时NO 与H 2的物质的量相等。采用不同的起始压力相应的有不同的半衰期,实验数据为

第十一章 动力学(一)习题解答

解 已知n 级反应半衰期的表示式为

n

n n Ap n k p t ---=--=

101

12

1)

1(12

取对数 02

1ln )1(ln ln p n A t -+=

21ln t ~0ln p 作图,得一直线,斜率为1-n ,求得n ≈3。或用下述公式

)

/ln()

/ln(10'

0'2121p p t t n +

=

代入各组数据,求出n 值,然后取平均值得3=n 。

10、已知某反应的速率方程可表示为[][][]r k A B C αβγ

=,请根据下列实验数据,分别确定该反应对各反应物

的级数

α、β和γ的值并计算速率系数k 。

第十一章 动力学(一)习题解答

解 根据反应的速率方程,将四组实验数据代入得

55.0100.0100.0050.010k αβγ-?=??? (1) 55.0100.0100.0050.015k αβγ

-?=??? (2)

52.5100.0100.0100.010k αβγ-?=??? (3) 514.1100.0200.0050.010k αβγ-?=??? (4)

(1)/(2)得1(0.01/0.015)γ

=,解得

0γ=

(1)/(3)得2(0.005/0.010)

(1/2)β

β

==,解得

1β=-

(4)/(1)得14.1/5(0.020/0.010)2αα

==,ln(14.1/5)ln 2 1.5α==

(3)式取对数5

ln(2.510

)ln 1.5ln0.010ln0.010k -?=+-

5ln ln(2.510) 1.5ln0.010ln0.0108.294k -=?-+=-

解得k=2.5×10-4(mol·dm -3)1/2·s -1

12、某抗菌素在人体血液中呈现简单级数的反应,如果给病人在上午8点注射一针抗菌素,然后在不同时刻t 测定

第十一章 动力学(一)习题解答

3(2)

求反应的速率常数k 和半衰期2

1t

(3) 若抗菌素在血液中的浓度不低于0.37 mg/100cm 3才为有效,问约何时该注射第二针?

第十一章 动力学(一)习题解答

c 0=0.705 mg/100cm 3

h h

c c k t 7.637.0705.0ln 09629.01ln 11

0===-。6.7hr

应在6.7hr 后注射第二针。

第十一章 动力学(一)习题解答

13、在抽空的刚性容器中,引入一定量纯A 气体(压力为p 0)发生如下反应:A(g)→B(g)+2C(g),设反应能进行完求该反应的级数及速率常数。

解 此题的关键是找出反应物A 的分压随时间的变化规律。题中给出的是总压,因此要通过反应方程式找出A 的分压与总压间的定量关系。

设开始计时时A 的分压为p 0,B 的分压为p ’,计时后某时刻A 的分压为p ,

A(g) → B(g) + 2C(g)

t=0 p 0 p ’ 2p ’ p 总(0) t=t p (p 0 – p)+ p ’ 2(p 0 – p)+2p ’ p 总(t) t=∞ 0 p 0+p ’ 2(p 0 + p ’) p 总(∞) p 总(0)= p 0 +3p ’=53.33kPa (1) p 总(t)=3(p 0 + p ’)-2p (2) p 总(∞)= 3(p 0+ p ’)=106.66kPa (3) 由方程(1)、(3),解得

p ’=8.893kPa ; p 0 =26.66kPa

由方程(2), 当p 总(t)=73.33 kPa 时, p =16.67 kPa 当p 总(t)=80.00 kPa 时, p =13.33 kPa

由尝试法求反应级数,将两组数据代入二级反应的速率方程

t k p p p =-0

11

m i n 3066.261

67.161?=-p k kPa

kPa , k p =7.5×10-4(kPa)-1〃min -1

min 5066.261

33.131?=-p k kPa

kPa , k p =7.5×10-4(kPa)-1〃min -1

k p 值为一常数,说明该反应为二级反应,k p 值为7.5×10-4(kPa)-1〃min -1。

15、当有碘存在作为催化剂时,氯苯(C 6H 5Cl)与氯在CS 2溶液中有如下的平行反应(均为二级反应): C 6H 5Cl+Cl 2

?→?1

k HCl+邻-C 6H 4Cl 2 C 6H 5Cl+Cl 2

?→?2k HCl+对-C 6H 4Cl 2

设在温度和碘的浓度一定时,C 6H 5Cl 和Cl 2在CS 2溶液中的起始浓度均为0.5mol 〃dm -3, 30min 后有15%的C 6H 5Cl

转化为邻-C 6H 4Cl 2,有25%的C 6H 5Cl 转化为对-C 6H 4Cl 2,试计算k 1和k 2。 解 设邻-C 6H 4Cl 2和对-C 6H 4Cl 2在反应到30min 时的浓度分别为x 1和x 2。

x 1=0.5mol 〃dm -3×15%=0.075 mol 〃dm -3 x 2=0.5mol 〃dm -3×25%=0.125 mol 〃dm -3 x= x 1+ x 2=0.20 mol 〃dm -3

因为是双二级平行反应,其积分方程为

t k k a

x a )(1

121+=--

1

321)(5.012.05.01min 301111--???

? ??--?=??? ??--=+dm mol a x a t k k

=0.0444(mol 〃dm -3)-1〃min -1

又知 k 1/k 2=x 1/x 2=0.075/0.125=0.6

解得 k 1=1.67×10-2(mol 〃dm -3)-1〃min -1

k 2=2.78×10-2(mol 〃dm -3)-1〃min -1。 16、有正、逆反应各为一级的对峙反应:

第十一章 动力学(一)习题解答

已知两个半衰期均为10min ,今从D-R 1R 2R 3CBr 的物质的量为1.0mol 开始,试计算10min 之后,可得L-R 1R 2R 3CBr

若干?

解 对正、逆反应各为一级的对峙反应,利用平衡数据,可得产物浓度x 与时间t 的积分方程为

t k x

x x a x e e

e 1ln =- 已知两个半衰期相同,即k 1=k -1, 或x e /(a-x e )= k 1/k -1=1, 将a=1.0mol 代入,得x e =0.5mol 。又k 1=ln2/(10min)=0.0693min -1,代入积分方程

m i n 105.05.0ln min 0693.00.15.0ln 11=-?=-=-x

mol mol x x x ak x t e e e 解得x=0.375mol ,即10min 之后,可得L-R 1R 2R 3CBr0.375mol 。

17、某反应在300K 时进行,完成40%需时24min 。如果保持其它条件不变,在340K 时进行,同样完成40%,需时6.4min 。求该反应的实验活化能。

解 要求反应的活化能,须知两个温度时的速率系数,设反应为n 级,则

,00A

A c t A

n c A

dc k dt kt c -==??,在保持其它条件不变,两个温度下反应都同样完成

40%的情况下,积分式的左边

应不变,而右边的kt 随温度变化而变化,因此有k 1t 1=k 2t 2,即k 2/k 1= t 1/t 2,据阿累尼乌斯方程

ln(k 2/k 1)=ln(t 1/t 2)=-(E a /R)(1/T 2-1/T 1)

-111212ln(/)8.314J mol K ln(24/6.4)1/1/1/300K 1/340K

a R t t E T T -??==--

=28022J·mol -1=28.022kJ·mol -1

例:硝基异丙烷在水溶液中与碱的中和反应是二级反应,其速率常数可用下式表示:

383.27/4

.7284]}min )/[(ln{1

1

3+-=??---K

T dm mol k

(1) 计算反应的活化能E a 。

(2) 在283 K 时,若硝基异丙烷与碱的浓度均为0.008mol 〃dm -3,求反应的半衰期。

解 (1)由阿累尼乌斯方程知K R

E a

4.7284=,则E a =7284.4K 〃R=60.56kJ 〃mol -1 (2)

643.1383.27283

4.7284ln =+-=k , k=

5.17(mol 〃dm -3)-1〃min -1

m i n 18.24008.0)(17.5113322

1=???==--dm

mol dm mol a k t 21、在673 K 时,设反应NO 2(g)=NO(g)+(1/2)O 2(g)可以进行完全,产物对反应速率无影响,经实验证明该反应是二级

2

22][][NO k dt

NO d =-,

k

T

27.20/7

.12886]})/[(ln{113+-=

??---K

T s dm mol k

(1) 求此反应的指数前因子A 及实验活化能E a 。

(2)

若在673 K 时,将NO 2(g)通入反应器,使其压力为26.66kPa ,然后发生上述反应,试计算反应器中的压力达到32.0 kPa 时所需的时间(设气体为理想气体)。

解 (1)对照阿累尼乌斯公式RT

E A k a

-

=ln ln

27.20]})/[(ln{113=??---s dm mol A , A=6.36×108(mol 〃dm -3)-1〃s -1

E a /R=12886.7K, E a =107.1kJ 〃mol -1。

(2)将NO 2(g)用A 表示,因是二级反应,p A 与时间t 的关系式为

t k p p p A A =-0

,11 题中所给k 与温度T 之间的关系是k c ,代入温度673 K

122.127.20673

7

.12886ln =+-=c k

k c =3.07(mol 〃dm -3)-1〃s -1

二级反应

RT

k k c

p =

找出反应中A 的分压与总压间的关系

NO 2(g) = NO(g)+(1/2)O 2(g)

t=0 p A,0 0 0 t=t p A,0-p p (1/2) p

p 总= p A,0-p + p +(1/2) p= p A,0+(1/2) p=26.66kPa+(1/2) p=32.0 kPa 解得 p=10.68 kPa ,p A = p A,0-p=26.66kPa-10.68 kPa=15.98 kPa

所以

???

?

??-=???? ??-=0,0,11111A A c A A p

p p k RT p p

k t s kPa kPa s mol dm K mol K J 7.4566.26198.15107.3673)314.8(1

1311=??

? ??-??????=---- 例、已知对峙反应

第十一章 动力学(一)习题解答

在不同温度下的k 值为:

第十一章 动力学(一)习题解答

试计算:(1)不同温度下反应的平衡常数值。

(2)该反应的Δr U m (设该值与温度无关)和600 K 时的Δr H m 。

解 (1)3

141

3116251110902.7min 39.8min 1063.6)600()600()600(dm mol dm mol dm mol K k K k K K c ??=?????==------

3

141

3116251110602.1min 7.40min 1052.6)645()645()645(dm mol dm mol dm mol K k K k K K c ??=?????==------

(2)???

? ??-?=121212)()(ln T T T T R

U T K T K m r c c , ??

?

????-?=??K K K R

U m r 600645)600645(10902.710602.1ln 44 解得 Δr U m = -114.1kJ 〃mol -1

Δr H m =Δr U m +

RT i

∑ν= -114.1 kJ 〃mol -1

+(-1)×(600K)R

= -119.1 kJ 〃mol -1。

25、设有一反应2A(g)+B(g)→G(g)+H(s)在某恒温密闭容器中进行,开始时A 和B 的物质的量之比为2:1,起始总压为3.0kPa ,在400K 时,60s 后容器中的总压力为2.0kPa ,设该反应的速率方程为

1.50.5B p A B dp k p p dt

-=

实验活化能为100k J 〃mol -1

(1)求400K 时,150s 后容器中B 的分压为若干?

(2)求500K 时,重复上述实验,求50s 后容器中B 的分压为若干? 解 (1)因为T 、V 恒定,所以n A :n B =

00

A B :2:1p p =,即00A B 2p p =和A B 2p p =,则

1.50.5 1.50.52

1(2)B p A B p B B B dp k p p k p p k p dt

-

=== 反应过程中总压力与B 的分压间的关系

2A(g)+B(g) → G(g)+H(s) t = 0 0B 2p 0

B p 0 00B 3p p =总 t = t

B 2p B p 0B p -B p 0B B 2p p p =+总

二级反应的积分方程为

10B B

11

k t p p -=,当t =60s 时 0

0B B 11111()[][23]kPa=0.5kPa 22323

p p p p p =-=-=-?总总总

111

60s 0.5kPa 1.0kPa

k -=?

110.0167(kPa s)k -=?

当t =150s 时,

1B 110.0167(kPa s)150s 1.0kPa

p --=?? 求得p B =0.285kPa 。

(2)设500K 时反应的速率常数为k 2。

2

12111ln a E k k R T T ??=-- ???,值得注意的是,这里的

k 是c k ,而本题中的k 是

p k ,对二级反应

c p k k RT =?,则22

1211

11ln ln

a E k T k R T T T ??=--- ???

312-1-11

10010J mol 11500K

ln ln 0.0167(kPa s)8.314J K mol 500K 400K 400K k --????=-?-- ??????

12 5.466(kPa s)k -=?

50s 后

1B 11

5.466(kPa s)50s 1.0kPa

p --=?? 解得p B =3.646×10-3kPa=3.646Pa

例、乙醛的离解反应CH 3CHO=CH 4+CO 是由下面几个步骤构成的 C H O CH CHO CH k +?→?33

1

CO CH CH CHO CH CH k 34332+?→?+

CO CH CO CH k +?→?33

3 6234

2H C CH k ?→?

试用稳态近似法导出

2

332

14

124][2]

[CHO CH k k k dt CH d ???

? ??= 解

]][[]

[3324CHO CH CH k dt

CH d = (1)

0][2][]][[][]

[23433332313=-+-=CH k CO CH k CHO CH CH k CHO CH k dt

CH d (2)

0][]][[]

[333323=-=CO CH k CHO CH CH k dt

CO CH d (3)

(2)+(3)

23431][2][CH k CHO CH k =

得 2132

141

3][2][CHO CH k

k CH ???

? ??= (4) (4)式代入(1)式得

2

332

14124][2]

[C H O CH k k k dt CH d ???

? ??= 例、光气热分解的总反应为COCl 2=CO+Cl 2,该反应的历程为

(1) Cl 22Cl (2) Cl + COCl 2→CO+Cl 3

(3) Cl 3Cl 2 + Cl

其中反应(2)为速决步,(1) 、(3)是快速对峙反应,试证明反应的速率方程为

2122]][[Cl COCl k dt

dx

= 解 因为反应速率取决于最慢的一步,所以

]][[22COCl Cl k dt

dx

= 由第一步对峙反应得]

[][22Cl Cl K =,则212

])[(][Cl K Cl = 所以

2122122212]][[]][[Cl COCl k Cl COCl K k dt

dx

==。 得证。 26、气相反应合成HBr ,H 2(g)+Br 2(g)=2HBr(g)其反应历程为

(1) Br 2+M 1

k

??

→2Br ·+M (2) Br ·+H 22k ??→HBr+H ·

(3) H ·+Br 2

3k ??→HBr+Br ·

(4) H ·+ HBr

4k ??→H 2+Br · (5) Br ·+Br ·+M

5

k ??→Br 2+M

①试推导HBr 生成反应的速率方程;

第十一章 动力学(一)习题解答

22324d[Br ·]/dt=2k 1[Br 2][M]-k 2[Br ·][H 2]+k 3[H ·][Br 2]+k 4[H ·][HBr]

-2k 5[Br ·]2[M]=0 (2)

d[H ·]/dt=k 2[Br ·][H 2]-k 3[H ·][Br 2]-k 4[H ·][HBr]=0 (3) (3)代入(2)得 2k 1[Br 2][M]=2k 5[Br ·]2[M],[Br ·]={k 1[Br 2]/k 5}1/2 (4)

由(3)得 [H ·]= k 2[Br ·][H 2]/{ k 3[Br 2]+ k 4[HBr]} (5) (4)代入(5) [H ·]= k 2{k 1[Br 2]/k 5}1/2[H 2]/{ k 3[Br 2]+ k 4[HBr]} (6) (3)、(6)代入(1)

d[HBr]/dt=2 k 3[H ·][Br 2]

= 2 k 3 k 2{k 1[Br 2]/k 5}1/2[H 2] [Br 2]/{ k 3[Br 2]+ k 4[HBr]}

=2 k 3 k 2{k 1/k 5}1/2[H 2] [Br 2]3/2/{ k 3[Br 2]+ k 4[HBr]} (7)

(7)式即为所求速率方程。 ② 各基元反应活化能为

(1) Br 2+M 1

k

??→2Br ·+M , E a1=192 kJ·mol -1

(2) Br ·+H 22k ??→HBr+H ·, E a2=435 kJ·mol -1×0.055=23.9 kJ·mol -1

(3) H ·+Br 2

3

k ??→HBr+Br ·, E a3=192 kJ·

mol -1×0.055=10.6 kJ·mol -1 (4) H ·+ HBr 4

k ??→H 2+Br ·, E a4=364 kJ·mol -1×0.055=20.0 kJ·mol -1

(5) Br ·+Br ·+M

5

k ??→Br 2+M , E a5=0

32、实验测得气相反应I 2(g)+H 2(g)k

??→2HI(g)是二级反应,在

673.2K 时,其反应的速率常数为

k=9.869×10-9(kPa·s)-1。现在一反应器中加入50.663kPa 的H 2(g),反应器中已含有过量的固体碘,固体碘在673.2K

时的蒸汽压为121.59kPa (假定固体碘和它的蒸汽很快达成平衡),且没有逆向反应。

(1)计算所加入的H 2(g)反应掉一半所需要的时间; (2)证明下面反应机理是否正确。

1

1

2I ()2I()k

k

g g - 快速平衡,K=k 1/k -1 H 2(g) + 2I(g)

2

k ??→2HI(g) 慢步骤

解 (1)因含有过量的固体碘,且与其蒸汽很快达成平衡,可视为I 2(g)的量不变,所以

222[I ()][H ()]'[H ()]r k g g k g == 反应由二级成为准一级反应

91612'[I ()]9.86910(kPa s)121.59kPa=1.210s k k g ----==????

615122

(H )ln 2/'ln 2/(1.210s ) 5.77610s t k --==?=?

(2)由慢步骤2

221d[HI][H ][I]2d r k t

=

=,由快平衡2

2112211[I][I][I ][I ]k k k k --=?=? 代入速率方程得

1

2222

21

[H ()][I ()]

[H ()][I ()]

k r k g g k g g k -== 与实验结果相符,证明反应机理是正确的。

34、有正、逆反应均为一级的对峙反应1

1

A B k

k

- ,已知其速率常数和平衡常数与温度的关系分别为:

112000

lg(/s ) 4.0/K

k T -=-

+

2000lg 4.0/K

K T =- K=k 1/k -1

反应开始时,[A]0=0.5mol·dm -3, [B]0=0.05mol·dm -3。试计算:

(1)逆反应的活化能;

(2)400K 时,反应10s 后,A 和B 的浓度; (3) 400K 时,反应达平衡时,A 和B 的浓度。

解 (1)由1

12000lg(/s ) 4.0/K k T -=-

+得1

1 2.3032000ln(/s ) 2.303 4.0/K

k T -?=-+? 比较阿累尼乌斯方程,E a1=2.303×2000R

由2000lg 4.0/K K T =

-得 2.3032000ln 2.303 4.0/K

K T ?=-?,进一步得

r m r m 2.3032000H R U ?=-?=?

则E a,-1=E a,1-Δr U m =2.303×2000R-(-2.303×2000R)=2×2.303×2000R =76.59kJ·mol -1

(2)令[A]0=a ,[B]0=b ,t 时刻A 的消耗量为x ,则

1

1

A B k

k

- t=0 a b t=t a-x b+x

11()()dx

r k a x k b x dt

-=

=--+ 令k 1a-k -1b=A ,k 1+ k -1=B ,则A B dx

x dt

=-,定积分 0

001(A B )1A B ln A B B A B B A

x

x t dx d x x

dt t x x --=-=-==--?

??

112000

lg(/s ) 4.0/K

k T -=-

+得k 1=0.1s -1

2000lg 4.0/K

K T =-得K=10,k -1= k 1/K=0.01 s -1

于是 A=k 1a-k -1b=0.1s -1×0.5mol·dm -3-0.01s -1×0.05mol·dm -3

=0.0495 s -1·mol·dm -3

B= k 1+ k -1=0.1s -1+0.01 s -1=0.11 s -1

将A 、B 值代入定积分式得

B 0.111033A 0.0495(1)(1)mol dm 0.3mol dm B 0.11

t

x e e --?--=-=-?=?

反应10s 后,A 的浓度为 a-x=(0.5-0.3) mol·dm -3=0.2 mol·dm -3

B 的浓度为 b+x=(0.05+0.3) mol·dm -3=0.35 mol·dm -3

(3)反应达平衡时

11()()e e k a x k b x --=+

110.1

100.01

e e b x k a x k -+===-

解得x e =0.45 mol·dm -3,A 的浓度为a-x e =(0.5-0.45) mol·dm -3=0.05 mol·dm -3, B 的浓度为b+x e =(0.05+0.45) mol·dm -3=0.5 mol·dm -3。

35、已知组成蛋白质的卵白朊的热变作用为一级反应,其活化能约为E a =85kJ 〃mol -1。在与海平面同高度处的沸水中,“煮熟”一个蛋需10分钟,试求在海拔2213米高的山顶上的沸水中,“煮熟”一个蛋需多长时间?设空气组成的体积分数为N 2(g)为0.8,O 2(g)为0.2,空气按高度分布服从公式p=p 0e -Mgh/RT ,假设气体从海平面到山顶的温度都保持为293K ,已知水的正常汽化热为2.278 kJ·g -1。 解 求出空气的平均摩尔质量

2222111N N O O (280.8320.2)g mol 28.8g mol 0.0288kg mol M M x M x ---=+=?+??=?=?

水的摩尔汽化热Δvap H m =2.278 kJ·g -1×18g·mol -1=41.004 kJ·mol -1 首先应求出山顶上空气的压力以及山顶上沸水的“温度”,由气压分布公式变形得

0ln p Mgh

p RT =- (1)

由克—克方程可求出山顶上水的“沸点”T b

011ln 373vap m b H p p R T ???=-- ???

(2) (1)(2)两式联立解得T b =365.9K ,由阿累尼乌斯方程可求出365.9K 和373K 时分别煮蛋的速率常数之比 ??

? ??--=37319.3651

)373()

9.365(ln

R

E K k K k a

将E a =85000J·mol -1代入,得

59.0)

373()

9.365(=K k K k ,其它条件相同时

k(365.9K)·t(365.9K)= k(373K)·t(373K)

∴ t(365.9K)= t(373K)·k(373K)/ k(365.9K)=10min/0.59=17min