文档库 最新最全的文档下载
当前位置:文档库 › 爆炸性物质的太赫兹_THz_光谱分析

爆炸性物质的太赫兹_THz_光谱分析

爆炸性物质的太赫兹_THz_光谱分析
爆炸性物质的太赫兹_THz_光谱分析

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

理论力学转动惯量实验报告

理论力学转动惯量 实验报告

【实验概述】 转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。 正确测定物体的转动惯量,~对于了解物体转动规律,~机械设计制造有着非常重要的意义。 然 而在实际工作中,大多数物体的几何形状都是不规则的, 难以直接用理论公式算出其转动惯~ 量,只能借助于实验的方法来实现。 因此,在工程技术中,用实验的方法来测定物体的转动 ’ 惯量就有着十分重要的意义。 IM-2刚体转动惯量实验仪,应用霍尔开关传感器结合计数计 ’ 时多功能毫秒仪自动记录刚体在一定转矩作用下, 的角加速度和刚体的转动惯量。 因此本实验提供了一种测量刚体转动惯量的新方法, 实验思 路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新 仪器。 【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1. 转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 即绳子的张力T=m(g-r p 2) 砝码与系统脱离后的运动方程 (2) 由方程(1) (2)可得 J=mr(g-r p 2)/( p 2- p 1) 2. 角加速度的测量 0=3 o t+? p t2 若在t 1 、t 2时刻测得角位移0 1、B 2 则 0 1 = 3 0 t 1+? p t2 0 2=3 0 t 2+? p t2 所以,由方程(5)、(6)可得 p =2 (0 2 t 1- 0 1 t 2) / t 1 t 2 (t 2- t 1) 【实验仪器】 转过n 角位移的时刻,测定刚体转动时 T X 叶M 严J p 2 (1) 由牛顿第二定律可知,砝码下落时的运动方程为: mg-T=ma (5)

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

物质成分的光谱分析

物质成分的光谱分析 孙梅

第章 第一章光谱分析基础知识 1.1 基本概念 11 光学分析法是根据物质发射的电磁辐射或电磁辐射与物质相互作用而建立起来的类分析化学方辐射与物质相互作用而建立起来的一类分析化学方法。 1.电磁辐射 电磁辐射是高速通过空间的光子流,通常简称为光,它具有二象性,即波动性和粒子性。波动性表现在光的折射、衍射和干涉等现象;粒子性表现在光电效应等现象。

)与其频率(ν)、波长每个光子的能量(E L (λ)及波数(σ)之间的关系为: 及波数间的关系为 E L=hν=hc/λ=hcσ 式中:h为普朗克常数(Planck constant),其 式中Planck constant)其值为6.626?10-34J?s; c为光速,其值为3?1010cm?s-1;σ为波数(wave number),其单位为cm1;λ为波长wave number)其单位为-1 (wave length),单位为cm。 由上式可知:电磁辐射的波长越短,其光子的 由上式可知电磁辐射的波长越短其光子的能量越高。

普朗克认为:物质对辐射能的吸收和发射是不连续的,是量子化的。 当物质内的分子或原子发生能级跃迁时,若以 辐射能的形式传递能量,则辐射能一定等于物质的辐射能的形式传递能量则辐射能定等于物质的 能级变化,即 ?E=E L=hν=hc/λ

例]:某电子在能量差为3.375?10-19 J的两能级间跃[337519 迁,其吸收或发射光的波长为多少纳米? 解:根据公式,λ= hc/?E 6.626?10J s?3?10cm s/3.375?10J =6626-34 ?10?-1/3375-19 =5.89?10-5 cm =589 nm 589

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

光谱分析

光谱分析 根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。 由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来. 光谱分析在科学技术中有广泛的应用.检查半导体材料硅和锗是不是达到了高纯度的要求时,帮助人们发现了许多新元素.研究天体的化学组成. 复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。例如,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的彩色光谱。红色到紫色,相应于波长由7,700—3,900埃的区域,是为人眼所能感觉的可见部分。红端之外为波长更长的红外光,紫端之外则为波长更短的紫外光,都不能为肉眼所觉察,但能用仪器记录。 因此,按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱。原理 发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。 吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律: A= -lg I/I o= -lgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。

《用三线摆法测定物体的转动惯量》简明实验报告.

4π 2 H 《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210 型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 gRr J = J - J = [(m + m )T 2 - m T 2 ] 1 0 0 1 0 0 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1) 调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长 度,直至下盘水平。 (2) 测量空盘绕中心轴 OO 转动的运动周期 T 0:设定计时次数,方法为按“置数”键后,再按“下调”或“上 调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运 动时发生晃动。注意扭摆的转角控制在 5o 左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯 闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间 ,从而摆动周期为总时间除以摆动 次数。进行下一次测量时,测试仪先按“返回”键。 (3) 测出待测圆环与下盘共同转动的周期 T 1:将待测圆环置于下盘上,注意使两者中心重合,按同样 的方法测出它们一起运动的周期 T 1。 (4) 测出上下圆盘三悬点之间的距离 a 和 b ,然后算出悬点到中心的距离 r 和 R (等边三角形外接圆半 径) (5) 其它物理量的测量:用米尺测出两圆盘之间的垂直距离 H 0 和放置两小圆柱体小孔间距 2x ;用游标 卡尺测出待测圆环的内、外直径 2R 1、2R 2。 (6) 用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录 r = 3 a = 3.870 ± 0.002 cm , R = 3 b = 7.150 ± 0.002 cm 3 3 H 0 = 54.60 ± 0.05 cm , 下盘质量 m 0 =499.68 ± 0.10 g 待测圆环质量 m =192.260 ± 0.020 g 累积法测周期数据记录参考表格 下盘 下盘加圆环 摆动 50 次 所需 时间 50T (s ) 1 2 3 4 5 平均 71.68 72.06 71.88 71.65 71.62 71.78 1 2 3 4 5 平均 74.28 74.16 74.15 74.22 74.13 74.19 周 期 T 0=1.44 ± 0.01 s T 1= 1.48±0.01 s

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

转动惯量实验报告

大学物理实验报告测量刚体的转动惯量 测量刚体的转动惯量 实验目的: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二. 实验原理: 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: m = iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动

惯量。 2.应用转动定律求转动惯量 图片已关闭显示,点此查看 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg –t=ma,在t 时间内下落的高度为h=at/2。刚体受到张力的力矩为tr 和轴摩擦力力矩mf 。由转动定律可得到刚体的转动运动方程:tr - mf = iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: 22m(g - a)r - mf = 2hi/rt (2) mf与张力矩相比可以忽略,砝码质量m 比刚体的质量小的多时有a<

式中r 、h 、t 可直接测量到,m 是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量i 。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: 2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下 落高度h ,(3)式变为: 2m = k1/ t (4) 2式中k1 = 2hi/ gr为常量。上式表明:所用砝码的质量与下落时间t 的平方成反比。实验 中选用一系列的砝码质量,可测得一组m 与1/t的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。 222从m – 1/t图中测得斜率k1,并用已知的h 、r 、g 值,由k1 =

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

GBW07101超基性岩成分分析标准物质

超基性岩成分分析标准物质 【产品ID号】2348 【产品编号】GBW07101 【英文名称】Ultrabasic Rocks 【产品规格】150g 【特征形态】固态 【介质基体】岩石 【定值日期】 【产品类别】国家标准物质 >> 地质矿产成分分析标准物质 【主要用途】校准仪器和装置;评价方法;工作标准;质量保证/质量控制;其他 【保存条件】阴凉干燥处 【注意事项】防止沾污,最小取样量为:铂族元素10克;H2O、S、CO2和痕量元素0.5克;其余组份0.1克 【分析方法】原子荧光法、比色法、极谱法等多种方法

Na 2 O 0.008 0.003 质量分数(10-2) K 2 O 0.010 0.001 质量分数(10-2) H 2 O+14.17 0.20 质量分数(10-2) CO 2 0.58 0.02 质量分数(10-2) S 0.051 0.001 质量分数(10-2) NiO 0.32 0.01 质量分数(10-2) CoO 0.012 0.001 质量分数(10-2) V 2O 5 0.007 0.001 质量分数(10-2) Cl 0.57 0.02 质量分数(10-2) 全铁Fe 2O 3 6.90 0.06 质量分数(10-2) Pt 0.004 0.001 质量分数(10-6) Pd 0.005 0.001 质量分数(10-6) Rh 0.0006 0.0001 质量分数(10-6) Ir 0.003 0.001 质量分数(10-6) Os 0.006 0.001 质量分数(10-6) Ru 0.010 0.001 质量分数(10-6) Ag 0.031 0.012 质量分数(10-2) As 0.82 0.23 质量分数(10-2) Au 0.0014 0.0005 质量分数(10-2) B 5.9 1.2 质量分数(10-2) Ba 6.4 2.8 质量分数(10-2) Cu 5.5 0.8 质量分数(10-2) F 21.4 7.3 质量分数(10-2) Ga 1.2 0.6 质量分数(10-2) Ge 0.66 0.25 质量分数(10-2) Hg 0.046 0.004 质量分数(10-2) Li 1.3 0.5 质量分数(10-6) Pb 2.8 0.3 质量分数(10-6) Sc 4.9 0.2 质量分数(10-6) Sr 2.3 0.6 质量分数(10-6) Zn 45.4 7.3 质量分数(10-6) Br (24.7) 质量分数(10-6) Cd (0.024) 质量分数(10-6) Sb (0.12) 质量分数(10-6) Ce 0.34 +0.04,-0.02 质量分数(10-6) Dy 0.02 +0.011,-0.001 质量分数(10-6) Eu 0.0043 +0.0021,-0.0003 质量分数(10-6) Gd 0.024 +0.004,-0.003 质量分数(10-6) Ho 0.0049 +0.0025,-0.0003 质量分数(10-6) La 0.20 +0.05,-0.01 质量分数(10-6)

转动惯量实验报告

篇一:转动惯量的实验分析报告 转动惯量的测量实验分析报告 一、数据处理 (1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。 (2)计算扭摆弹簧的扭转常数k,计算公式为: i1 k?4?2?0.0411*******n?m 2 t1?t2 2 (3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。 百分比误差= 理论值-实验值 ?100 理论值 以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。 表3-2-1 刚体转动惯量的测定 (4)验证平行轴定理。改变滑块在金属细杆上的位置,测定转动周期,测 量数据记录在表3-2-2中。计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。其中测得m滑块=0.2397kg。 表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。 其中,误差来源主要有以下几点: (1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。(2)没有对仪器进行水平调节。(3)圆盘的固定螺丝没有拧紧。(4)摆上圆台的物体有一定的倾斜角度。三、思考题 (一)预习思考题 1、如何测量扭摆弹簧的扭转系数k? 答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理 21 论值为i1?m1d1,再测量出金属载物盘的转动周期t0及小塑料圆柱的转动周 8 i1 期为t1,利用计算公式k?4?2代入数据即可求出k。 2 t1?t2 2 2.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的i1、t1和t0得到金属载物盘的转动惯量为 i1t1 i0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为t2,再利2 t1?t0 2

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

土壤成分分析标准物质标准值

土壤成分分析标准物质标准值 成分GBW07401 (GSS-1) GBW07402 (GSS-2) GBW0740 3 (GSS-3) GBW0740 4 (GSS-4) GBW0740 5 (GSS-5) GBW074 06 (GSS-6 ) GBW0740 7 (GSS-7) GBW0740 8 (GSS-8) μg/ g Ag0.35±0.0 5 0.054±0. 007 0.091±0. 007 0.070±0. 011 4.4±0.40.20±0. 02 0.057±0. 011 0.060±0. 009 As34±413.7±1.2 4.4±0.658±6412±16220±14 4.8±1.312.7±1.1 Au(0.00055 )(0.0017)(0.0055)0.260±0. 007 (0.009)(0.0008)(0.0014) B50±336±323±397±953±657±5(10)54±4 Ba590±32930±521210±65213±20296±26118±14180±27480±23 Be 2.5±0.3 1.8±0.2 1.4±0.2 1.85±0.3 4 2.0±0.4 4.4±0.7 2.8±0.6 1.9±0.2 Bi 1.2±0.10.38±0. 04 0.17±0.0 3 1.04±0.1 3 41±449±50.20±0.0 4 0.30±0. 04 Br 2.9±0.6 4.5±0.7 4.3±0.8 4.0±0.7(1.5)8.0±0.7 5.1±0.5 2.5±0.5 Cd 4.3±0.40.071±0. 014 0.060±0. 009 0.35±0.0 6 0.45±0.0 6 0.13±0. 03 0.08±0.0 2 0.13±0.0 2 Ce70±4402±1639±4136±1191±1066±698±1166±7 C170±962±1057±11(39)(76)95±7100±668±12 Co14.2±1.08.7±0.9 5.5±0.722±212±27.6±1.197±612.7±1.1 Cr62±447±432±4370±16118±775±6410±2368±6 Cs9.0±0.7 4.9±0.5 3.2±0.421.4±1.015±110.8±0. 6 2.7±0.87.5±0.7 Cu2l±216.3±0.911.4±1.140±3144±6390±1497±624.3±1.2 Dy 4.6±0.3 4.4±0.3 2.6±0.2 6.6±0.6 3.7±0.5 3.3±0. 3 6.6±0.6 4.8±0.4 Er 2.6±0.2 2.1±0.4 1.5±0.3 4.5±0.7 2.4±0.3 2.2±0.3 2.7±0.5 2.8±0.2 Eu 1.0±0.1 3.0±0.20.72±0.0 4 0.85±0.0 7 0.82±0.0 4 0.66±0. 04 3.4±0.2 1.2±0.1 F506±322240±112246±26540±25603±28906±45321±29577±24 Ga19.3±1.112±113.7±0.931±332±430±339±514.8±1.1 Gd 4.6±0.37.8±0.6 2.9±0.4 4.7±0.5 3.5±0.3 3.4±0.39.6±0.9 5.4±0.5 Ge 1.34±0.2 01.2±0.2 1.16±0.13 1.9±0.3 2.6±0.4 3.2±0.4 1.6±0.3 1.27±0.2 Hf 6.8±0.8 5.8±0.9 6.8±0.814±28.1±1.77.5±0.87.7±0.57.0±0.8 Hg0.032±0 .004 0.015±0. 003 0.060±0. 004 0.59±0.0 5 0.29±0.0 3 0.072±0 .007 0.061±0. 006 0.017±0. 003 Ho0.87±0.0 7 0.93±0.1 2 0.53±0.0 6 1.46±0.1 2 0.77±0.0 8 0.69±0. 05 1.1±0.20.97±0.0 8 I 1.8±0.3 1.8±0.2 1.3±0.29.4±1.1 3.8±0.519.4±0.19±2 1.7±0.2

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小 和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组 砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB=

总误差:,ux= m ,u rx==% R=± urx=% 计算转动惯量的结果表示: ,总误差:uJ=,相对不确定=uJ/J 圆环:,同上. (2)实验测量计算的误差: 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

土壤成分分析标准物质标准值

精品文档 土壤成分分析标准物质标准值 成分GBW07401 (GSS-1) GBW07402 (GSS-2) GBW07403 (GSS-3) GBW07404 (GSS-4) GBW07405 (GSS-5) GBW0740 6 (GSS-6) GBW07407 (GSS-7) GBW07408 (GSS-8) ⑷/g Ag 0.35 ±).05 0.054 ±0.007 0.091 ±).007 0.070 ±).011 4.4 ±).4 0.20 ±).02 0.057 ±).011 0.060 ±).009 As 34 ±4 13.7 ±1.2 4.4 ±).6 58 ±5 412±16 220 ±4 4.8 ±1.3 12.7 ±1.1 Au (0.00055) (0.0017) (0.0055) 0.260 ±).007 ( ).009) (0.0008) (0.0014) B 50 ±3 36 43 23 ±3 97 53戈57 i5(10) 54 ±4 Ba 590 出2 930 ±52 1210+65 213i20 296+26 118±14 180 ±!7 480+23 Be 2.5 ±).3 1.8 ±).2 1.4 ±).2 1.85 ±).34 2.0 ±).4 4.4 ±).7 2.8 ±).6 1.9 ±).2 Bi 1.2 ±).1 0.38 ±).04 0.17 ±).03 1.04 ±).13 41 ±49 i50.20 ±).04 0.30 ±).04 Br 2.9 ±).6 4.5 ±).7 4.3 ±).8 4.0 ±).7 (1.5) 8.0 ±).7 5.1 ±).5 2.5 ±).5 Cd 4.3 ±).4 0.071 ±0.014 0.060 ±).009 0.35 ±).06 0.45 ±).06 0.13 ±).03 0.08 ±).02 0.13 ±).02 Ce 70 ±4 402 ±16 39 ±4 136 ±11 91 ±10 66 ±5 98 ±11 66 ± C1 70 ±9 62 ±10 57 ±11 (39) (76) 95幻100戈68 ±12 Co 14.2 ±1.0 3.7 ±).9 5.5 ±).7 22 i212 ±7.6 ±1.1 97 ±12.7 ±1.1 Cr 62 ±4 47 ±4 32 ±4 370 ±16 118±7 75 ±5 410 ±!3 68 ± Cs 9.0 ±).7 4.9 ±).5 3.2 ±).4 21.4 ±1.0 15 ±1 10.8 ±).6 2.7 ±).8 7.5 ±).7 Cu 2l ±2 16.3 ±).9 11.4 ±1.1 40 ±3 144+6 390 ±14 97 ±24.3 ±1.2 Dy 4.6 ±).3 4.4 ±).3 2.6 ±).2 6.6 ±).6 3.7 ±).5 3.3 ±).3 6.6 ±).6 4.8 ±).4 Er 2.6 ±).2 2.1 ±).4 1.5 ±).3 4.5 ±).7 2.4 ±).3 2.2 ±).3 2.7 ±).5 2.8 ±).2 Eu 1.0 ±).1 3.0 ±).2 0.72 ±).04 0.85 ±).07 0.82 ±).04 0.66 ±).04 3.4 ±).2 1.2 ±).1 F 506 出2 2240 ±112 246 ±!6 540 i25 603+28 906+45 321 ±!9 577 ±24 Ga 19.3 ±1.1 12±1 13.7 ±).9 31 ±3 32 ±30+3 39 ±14.8 ±1.1 Gd 4.6 ±).3 7.8 ±).6 2.9 ±).4 4.7 ±).5 3.5 ±).3 3.4 ±).3 9.6 ±).9 5.4 ±).5 Ge 1.34 ±).20 1.2 ±).2 1.16 ±).13 1.9 ±).3 2.6 ±).4 3.2 ±).4 1.6 ±).3 1.27 ±).20 Hf 6.8 ±).8 5.8 ±).9 6.8 ±).8 14 ±8.1 ±1.7 7.5 ±).8 7.7 ±).5 7.0 ±).8 Hg 0.032 ±).004 0.015 ±0.003 0.060 ±).004 0.59 ±).05 0.29 ±).03 0.072 ±).00 7 0.69 ±).05 0.061 ±).006 0.017 ±).003 Ho 0.87 ±).07 0.93 ±).12 0.53 ±).06 1.46 ±).12 0.77 ±).08 1.1 ±).2 0.97 ±).08 I 1.8 ±).3 1.8 ±).2 1.3 ±).2 9.4 ±1.1 3.8 ±).5 19.4 ±).9 19± 1.7 ±).2 In 0.08 ±).02 0.09 ±).03 0.031 ±).010 0.12 ±).03 4.1 ±).6 0.84 ±).18 0.10 ±).03 0.044 ±).013 La 34 ±2 164 ±11 21 i253 ±4 36 ±4 30 i246 i536 43 Li 35 ±1 22 ±1 18.4 ±).8 55 i256 ±>36 ±119.5 ±).9 35 ± Lu 0.41 ±).04 0.32 ±).05 0.29 ±).02 0.75 ±).06 0.42 ±).05 0.42 ±).05 0.35 ±).06 0.43 ±).04 Mn 1760 ±33 510±16 304 ±14 1420^5 1360 方1 1450^82 1780 ±113 650+23 Mo 1.4 ±).1 0.98 ±).11 0.31 ±).06 2.6 ±).3 4.6 ±).4 18± 2.9 ±).3 1.16 ±).10 N 1870 ±37 630 i59 640 ±50 1000^62 610±31 740 i59 660 戈2 370 i54 Nb 16.6 ±1.4 27^2 9.3 ±1.5 38 ±3 23 ±27i2 64+7 15± Nd 28 ±2 210±14 18.4 ±1.7 27 i224 ±>2l i2 45 ±2 32 ± Ni 20.4 ±1.8 19.4 ±1.3 12 ±64 i540 ±4 53 ±4 276 ±15 31.5 ±1.8 P 735 ±!8 446 i25 320 ±18 695 i28 390 ±34 303+30 1150 ±39 775 ±25 Pb 98 ±5 20 43 26 ±3 58 i5552+29 314±13 14+3 21 ±

相关文档
相关文档 最新文档