文档库 最新最全的文档下载
当前位置:文档库 › 2016年东南大学自控实验报告-实验三闭环电压控制系统设计研究

2016年东南大学自控实验报告-实验三闭环电压控制系统设计研究

2016年东南大学自控实验报告-实验三闭环电压控制系统设计研究
2016年东南大学自控实验报告-实验三闭环电压控制系统设计研究

东南大学

《自动控制原理》

实验报告

实验名称:实验三闭环电压控制系统研究

院(系):专业:

姓名:学号:

实验室: 416 实验组别:

同组人员:实验时间: 2015 年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究

一、实验目的:

(1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。(2)会正确实现闭环负反馈。

(3)通过开、闭环实验数据说明闭环控制效果。

二、实验原理:

(1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

(2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。(3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。

三、实验设备:

THBDC-1实验平台

四、实验线路图:

五、实验步骤:

(1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。先开环,即比较器一端的反馈电阻100KΩ接地。将可变电阻47KΩ(必须接可变电阻47K上面两个插孔)左旋到底时,电阻值为零。再右旋1圈,阻值为4.7KΩ。经仔细检查后上电。打开15伏的直流电源开关,必须弹起“不锁零”红色按键。

(2)按下“阶跃按键”键,调“负输出”端电位器RP2,使“交/直流数字电压表”的电压为2.00V。如果调不到,则对开环系统进行逐级检查,找出故障原因,并记下。(3)先按表格先调好可变电阻47KΩ的规定圈数,再调给定电位器RP2,在确保空载输出为2.00V的前提下,再加上1KΩ的扰动负载。分别右旋调2圈、4圈、8圈后依次测试,填表。注意:加1 KΩ负载前必须保证此时的电压是2.00V。

(4)正确判断并实现反馈!(课堂提问)再闭环,即反馈端电阻100KΩ接系统输出。(5)先按表格调好可变电阻47KΩ的圈数,再调给定电位器RP2,在确保空载输出为2.00V 的前提下,再加上1KΩ的扰动负载,分别右旋调2圈、4圈、8圈依次测试,填表要注意在可变电阻为8圈时数字表的现象。并用理论证明。

(6)将比例环节换成积分调节器:即第二运放的10KΩ改为100KΩ;47KΩ可变电阻改为10μF电容,调电位器RP2,确保空载输出为2.00V时再加载,测输出电压值。

表格:

六、报告要求:

(1)用文字叙说正确实现闭环负反馈的方法。

答:闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈。实现的方法是:将信号的正向通道与反馈通路构成闭合回路,如果输入信号增加,测量反馈信号,若增加,就将输入信号与反馈信号构成减法电路实现。

反之构成加法电路实现。

(2)说明实验步骤(1)至(6)的意义。

步骤(1):接线,首先是按照设计好的系统图将各个原件连接成模块,然后将各个模块连接起来。第一步连接之后,将线路接成开环形式,即第一个环节的比较器接反馈的100KΩ电阻接地,为下一步的开环实验作出准备。在第一步接线中,接入的是可变电阻470KΩ是用来调整开环增益的,为后面步骤中测量不同增益下稳态误差的变化。打开15伏的直流电源开关,用于系统供电。弹起“不锁零”红色按键,这是因为实验中需要使用电容,“锁零”使得电容不起作用,因此应该放到“不锁零”

上。

步骤(2):按下“阶跃按键”键,这一动作是给系统一个阶跃输入,本实验主要考察电压控制,即系统在直流阶跃输入作用下的输出。调“负输出”端电位器RP2,使“交/直流数字电压表”的电压为2.00V,这是作为系统的空载输出。

当无法调节到2.00V时,应仔细检查系统连接。主要可能出错的原因大致如下:运放前后的电阻阻值接入错误,使得前级输出电压放大倍数过高,直接导致后面环节运放饱和。接入的电容出现错误,或者是电容损坏,导致电路没有放大能力。除此,还有可能是元器件本身就已经被损坏。

步骤(3):按表格调好可变电阻47KΩ的圈数,再调给定电位器RP2,在确保空载输出为2.00V的前提下,再加上1KΩ的扰动负载,2圈、4圈、8圈依次检测,这一步主要是测量开环状态下,添加负载扰动前后的输出变化,观察系统对扰动的调整情况。从测量数据看,输出电压随扰动变化很大,一个好的系统应该具有良好的扰动能力,即在扰动情况下的输出变化很小,理想的系统在扰动下输出不发生变化,通过这一步骤,也能说明开环系统不是一个好的系统。

步骤(4):将系统改接成为闭环反馈系统,在闭环反馈的情况下,进行后面的实验,观察闭环反馈调节起到的作用。

步骤(5):按表格调好可变电阻47KΩ的圈数,再调给定电位器RP2,在确保空载输出为2.00V的前提下,再加上1KΩ的扰动负载,2圈、4圈、8圈依次检测,通过以上调整和测量,验证了在闭环反馈的作用下,系统的抗扰动能力变强。

步骤(6):将比例环节换成积分调节器:即第二运放的10KΩ改为100KΩ;47K Ω可变电阻改为10μF电容,调电位器RP2,确保空载输出为2.00V时再加载,测输出电压值。这一步是实验观察积分调节器的调节性能,可以通过实验验证积分调

节器的性能明显比比例调节器好,输出更加稳定。

(3)画出本实验自动控制系统的各个组成部分,并指出对应元件。

被控对象:

调节环节:(当换成积分调节器时,调节环节是10μF的电容。)

扰动:扰动是负载R L

反馈:由于本系统中全部是电信号,因此没有用到传感器,反馈是一根导线设定电压:

(4) 你认为本实验最重要的器件是哪个?意义是什么?

我认为最重要的器件是调节环节。

在前面两个小实验中,开环和闭环下的调节环节都是47K 的可变电阻,因此,在前两个小实验中47K 可变电阻是实验中最重要的器件。在第三个小实验中,调节环节变成了积分调节器,因此10μF 的电容式实验中最重要的器件。

调节环节在系统中起到了调节增益的作用,通过调节环节的作用,系统的放大倍数在改变。调节器本身就是控制系统的一个非常重要的环节,如果没有调节器,只有反馈环节,系统将无法达到控制调节的目的,系统在反馈之后主要依赖于调节器对变化量的调节,达到稳定输出的目的,因此调节器这部分是最重要的。而且,调节器也是控制的主要体现方面

(5) 写出系统传递函数,用劳斯判据说明可变电阻为8圈时数字表的现象和原因。

首先,对于惯性环节,传递函数的表达式是:

2

12()11

R R K G s R Cs Ts =-=-++ 所以,每一个模块的传递函数如下:

比例环节:1()G s K =- 惯性环节:22()0.21G s s =-+

31()0.0941G s s =-

+ 4 2.55()0.0511

G s s =-+ 反馈环节:()1H s =

所以,系统的传递函数:

12341234()()()()()1()()()()()

G s G s G s G s G s H s G s G s G s G s =+ 将上面的各个模块的传递函数代入,化简后得到下面的系统传递函数:

325.1()0.00095880.0337940.3451 5.1K

G s s s s k =++++

根据劳斯判据,

S 3 0.0009588 0.345

S 2 0.033794 1+5.1K

S 1 0.345-0.0283719(1+5.1K )

S 0 0.345

如果系统稳定,那么第一列都是正数,因此,求出K 的范围:

2.19K <

所以,求出R 2的取值范围:222R K <Ω

5.15.1 2.1911.17

p p K K

K =

当旋转8圈时,p K 的值超过的稳定的范围,因此系统的传递函数出现了虚轴右半边的极点,因此系统不稳定,但由于运放有饱和电压,因此,输出并不会趋于无穷大,而是在一定的范围内振荡。

(6) 比较表格中的实验数据,说明开环与闭环控制效果。

答:开环控制下,由于不对扰动进行调整,因此控制效果很差,仅仅靠运放稳压调节是不能够达到稳定输出的目的,因此,在空载和负载下输出值有很大的变化。

闭环控制下,系统通过反馈,能够将扰动带来的变化量减小甚至理想情况下消除,达到稳定输出的目的。通过实验数据,可以看出在闭环反馈情况下系统输出有了明显改善,尤其是在积分调节器的作用下,系统输出稳定性很高。但闭环控制也有缺陷,就是开环增益受到限制,开环增益不能够无限大,当开环增益超过一定的限度时,就会产生振荡。

(7) 用表格数据说明开环增益与稳态误差的关系。验正误差公式。

根据表格数据:

我们可以分析,得到如下结论:

开环增益越大,稳态误差越小,但开环增益达到一定大小后,系统就会产生振荡。 从理论上分析,对于本实验的系统, 0型系统,阶跃信号作用下的系统的稳态误差和开环增益的关系如下:

1ss A e K =+

由此可见,对于0型系统,在A 为定制的情况下,开环增益越大,阶跃输入作用下的系统稳态误差就越小。如果要求系统对于阶跃输入作用稳态误差为零,那么就要选用I 型以及I 型以上的系统。但是,对于系统本身来讲,开环增益过高,可能导致系统内部的不稳定,比如运放饱和等,在系统内部已经不稳定,闭环反馈也无法达到稳定。

七、预习与回答:

(1) 在实际控制系统调试时,如何正确实现负反馈闭环?

答:负反馈闭环,就是要求输入和反馈的误差相抵的情况,并非单纯的加减问题。因此,实现负反馈,我们需要逐步考察系统在输入端和反馈端的变化情况,根据变化量决定是相加还是相减。

(2) 你认为表格中加1K Ω载后,开环的电压值与闭环的电压值,哪个更接近2V ?

答:闭环电压值应当更接近2V 。在本实验中的系统,开环下,当出现扰动时,系统前部分是不会产生变化,即扰动的影响很大部分是加载在后面部分,因此,系统不具有调节能力,对扰动的反应很大,因此,会偏离空载时的2V 很多。闭环下,当系统出现扰动,由于反馈,扰动产生的影响也被反馈到了输入端,因此,系统从输入部分就产生调整,在调整下系统的偏离程度会减小,因此,闭环的电压值更接近2V 。

(3) 学自动控制原理课程,在控制系统设计中主要设计哪一部份?

答:控制系统中,我认为主要设计调节环节,以及系统的整体规划。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。

热工实验报告剖析

目录 常功率平面热源法同时测定绝热 (1) 数据处理: (1) [1]原始数据整理:(原始数据表格见附录) (1) [2]关于高斯误差补函数的方程编写 (2) 高斯误差补函数的一次积分 (2) 高斯误差补函数的一次积分的反函数 (2) [3]数据处理脚本 (2) [4]结果表格 (3) 曲线绘制 (3) [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系 (3) [2]导热系数lamda随时间的变化 (4) [3]导热系数a随时间的变化 (4) 理解分析 (5) [1]改变导热系数lamda对温升曲线的影响 (5) [2]改变导温系数a对温升曲线的影响 (6) 空气横掠单圆管时强迫对流换热实验 (6) 数据处理 (6) [1]原始数据整理:(原始数据表格见附录) (6) [2]结果表格 (7) [3]曲线拟合 (7) 总结讨论 (9) [1]实验偏差讨论 (9) [2]为什么忽略Pr (9) [3]截面小的地方流速大,测量相对误差值小。 (9) 常功率平面热源法同时测定绝热 材料的导热系数λ和导温系数a 数据处理:

高斯误差补函数的一次积分 高斯误差补函数的一次积分的反函数 [3]数据处理脚本

[4] [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系

[2]导热系数lamda随时间的变化 [3]导热系数a随时间的变化

可以看出λ和a均随时间先降低后升高。因为导热初期,温差小,恒定热流,所以传热快,随着时间的增加,导热变慢。当温度增加到一定 程度,温差缩小,导热又逐渐变快。 理解分析 [1]改变导热系数lamda对温升曲线的影响

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

东南大学微机第四次实验报告

东南大学 《微机实验及课程设计》 实验报告 实验四双列点阵发光二极管显示实验 姓名:董元学号:22011207 专业:测控技术与仪器实验室:计算机硬件技术实验时间:2013年05月15 日报告时间:2013年05月18日评定成绩:审阅教师:

一. 实验目的与内容(概述) 实验目的: 1)进一步掌握TPC实验装置的基本原理和组成结构; 2)了解双色点阵LED显示器的基本原理 3)掌握PC机控制双色点阵LED显示程序的设计方法 实验内容: 4-1、在双色点阵发光二极管上显示一个黄色或红色的“年”字。 4-2、在双色点阵发光二极管上显示你的姓的汉字或拼音的第一个字母。要求该字符红色和黄色相间。 要求: 1、正确设置退出条件:可以按任意键退出,或者显示一定的次数退出 2、注意尽量清晰地显示字符,消除重影问题 4-3、利用双色点阵发光二极管任意设计一款霓虹灯动态图案,要求二极管阵列可以间或发两种颜色的光,并能看清动态变换的效果。 二. 基本实验原理(或基本原理) 点阵LED显示器是将许多LED类似矩阵一样排列在一起组成的显示器件,双色点阵LED是在每一个点阵的位置上有红绿或红黄或红白两种不同颜色的发光二极管。当微机输出的控制信号使得点阵中有些LED 发光,有些不发光,即可显示出特定的信息,包括汉字、图形等。车站广场由微机控制的点阵LED大屏幕广告宣传牌随处可见。 实验仪上设有一个共阳极8×8点阵的红黄两色LED显示器,其点阵结构如图所示。该点阵对外引出24条线,其中8条行线,8条红色列线,8条黄色列线。若使某一种颜色、某一个LED发光,只要将与其相连的行线加高电平,列线加低电平即可。 1、硬件连接: (1)行代码、红色列代码、黄色列代码各用一片74LS273锁存。 (2)行代码输出的数据通过行驱动器7407加至点阵的8条行线上, (3)红和黄列代码的输出数据通过驱动器DS75452反相后分别加至红和黄的列线上。 (4)行锁存器片选信号为CS1,红色列锁存器片选信号为CS2,黄色列锁存器片选信号为CS3。 2、流程图:

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

(整理)东南大学建筑快题设计总结.

快题作业 设计的主要要求: 1,环境设计(总图) 2,功能设计(主要功能不能有错) 3,形式设计(形式不要太怪,但也不能象工民建那样一个房间一个窗户) 4,技术设计(要有些结构构造支持,例如室内外要有高差,屋顶有女儿墙)是画剖面的时候要注意的地方 快题班三周共分三个阶段,每周一个. 第一阶段:基本功训练(透视图画法,线描,淡彩,色纸) 第二阶段:五个设计题目,由小到大. 第三阶段:测试阶段,三到四个模拟考试,教师不再改图,按考试的六小时交图. 今天没有作业,主要是准备工具.明天开始第一次作业. 本次快题辅导班为期三周,由黎志涛,龚恺等老师授课,来自各地的考生200余人将中山院114围的水泄不通。黎老师第一次讲课,主要从准备工作,答题技巧,表达重点等方面作了详细解说 第二天讲课内容 今天讲的是怎样求透视,主要是几何制图加感觉,要求的快.黎老师举例他要求做两点透视, 不要画鸟瞰图(规划除外),因为两点透视是天空做背景,鸟瞰是地面做背景比较麻烦,透视求出来以后要加配景, 配景主要是自己找书抄例子,人不要画太大,主要画在入口处,汽车不要画因为透视不好求,透视图要画阴影, 阴影是两面受光比较方便,今天的作业不用交,明天在今天的稿子上继续画钢笔淡彩,明天上午继续讲课发任务书. ————————————————————————————————————————————————————————————————这次课有两个作业,主要是根据平立剖求透视,六小时完成。今天的作业不用交,明天在今天的稿子上继续画钢笔淡彩,明天上午继续讲课发任务书.

透视图选择视角很重要,同样的建筑,不同的角度有时看上去就很不一样。 另外,快图要体现“快”,我们经常要求学生计算时间,因为在教室里比较从容,但考场上就是另一回事了。 透视图不一定要徒手,看各人的喜欢,教师评图时并没有这种取向。———————————————————————————————————————————————————————————————— 今天是第三天,主要讲钢笔淡彩和配景。 用钢笔有一些要求,画线用一根,不要重复描;图面要放松,不要紧;一般小幅图用徒手,大幅图用器;阴影可用灰色马克笔,不要把钢笔线条盖住;天花板不要涂黑可以打点。 配景主要注意两点, 第一是构图,要做到天大地小,正面大侧面小。 第二是空间层次,要有近中远三景,如果建筑较长可以画点树遮挡,画人不要太逼真,头画在视平线上,人的位置一般放在图的区位中心,表示出建筑的尺度。 明天讲色纸表现,准备A3大小的纸,不要太深色彩不要太鲜艳。 今天第四天。 首先徐敦源老师点评昨天作业。他说,作业分ABCD四等。 A:透视正确,表现较好,明暗层次、素描效果好,配景较好,突出了建筑。 B和C:总体效果可以,缺点是建筑轮廓、比例,屋顶坡度太陡,线条潦草,层次不分明,配景喧宾夺主。 D:图面潦草,轮廓不对,配景乱画,明暗关系不对。 接着黎志涛老师开始讲今天的内容——色纸表现。

工热热力学实验报告1

工程热力学实验报告 学院 年级专业 学生姓名 学号 2016年12月21日

实验一:气体定压比热的测定 一、实验目的和要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中的测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验内容 通过测定空气的温度、压力流量,掌握计算热量的方法,从而求得比热值和求得比热公式的方法。 三、数据记录 四、实验方法、步骤及测试数据处理 1.接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 2.摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附 近。测出流量计出口空气的干球温度(t0)。 3.将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电热 器功率,使出口温度升高至预计温度。 可以根据下式预先估计所需电功率: τt W ?≈12 式中:W为电热器输入电功率(瓦);

Δt 为进出口温度差(℃); τ为每流过10升空气所需的时间(秒)。 估算过程:W=m ×Cp ×(T2-T1)=ρ×V ×Cp ×(T2-T1) =ρ×(10/1000τ) ×Cp ×Δt=1.169×(10/1000τ) ×1.004×Δt =11.7/1000×Δt/τ(kW)=11.7Δt/τ(w) 式中ρ—kg/m3; Cp—kJ/kg ·k; 4. 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据,每10升空气通过流量计所需时间(τ,秒);比热仪进口温度——即流量计的出口温度(t 1,℃)和出口温度(t 2℃);当时相应的大气压力(B ,毫米汞柱)和流量计出口处的表压(Δh ,毫米水柱);电热器的输入功率(W ,瓦)。 5. 根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d,克/公斤干空气),并根据下式计算出水蒸气的容积成分: 622 /1622 /d d r w += 推导:对于理想气体混合物,摩尔比等于体积比,由分压力定律可知,理想气体摩尔比等于压力比,因此体积比等于压力比。根据含湿量定义d=m v /m a =n v M v /n a M a =0.622 (v v /v a )。因此:r w =v a /v=v v /(v v +v a )=1/(1+0.622/d)=d/0.622/(1+ d/0.622) 6. 根据电热器消耗的电功率,可算出电热器单位时间放出的热量: 3 10 1868.4?=W Q & (kcal/s )[1w=1J/s=1/1000kJ/s=1/4186.6kcal/s] 7. 干空气流量(质量流量)为: ) 15.273(2871000/103.133)6.13/)(1(00+???+-== t h B r T R V P G w g g g τ&& ) 15.273()6.13/)(1(106447.403+?+-?= -t h B t w τ (kg/s ) 8. 水蒸气流量为: ) 15.273(5.4611000/103.133)6.13/(00+???+== t h B r T R V P G w w w w τ&&

东南大学信息学院微机实验报告九

实验九 一、实验目的 1.熟悉系统功能调用INT 21H的有关功能 2.编写时钟程序 二、实验任务 1.执行时钟程序时,屏幕上显示提示符“:”,由键盘输入当前时、分、秒值,即XX:XX:XX,随即显示时间并不停地计时。 2.当有键盘按下时,立即停止计时,返回DOS。 三、源程序 DATA SEGMENT BUFFER DB 11 DB ? DB 10 DUP(?) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA OUTCLK: MOV AX,DATA MOV DS,AX MOV DL,':' MOV AH,2 INT 21H MOV DX,OFFSET BUFFER MOV AH,0AH ;输入字符串 INT 21H MOV BX,OFFSET BUFFER+2 MOV AL,[BX] ; 时针,ASCII码转非压缩BCD CMP AL, 03AH JAE ERROR1 CMP AL, 02FH JBE ERROR1 AND AL,0FH MOV [BX],AL INC BX MOV AL,[BX] AND AL,0FH MOV [BX],AL INC BX INC BX MOV AL,[BX] ; 分针

AND AL,0FH MOV [BX],AL INC BX MOV AL,[BX] AND AL,0FH MOV [BX],AL INC BX INC BX MOV AL,[BX] ;秒针 AND AL,0FH MOV [BX],AL INC BX MOV AL,[BX] AND AL,0FH MOV [BX],AL MOV BX,OFFSET BUFFER+2 CALL TOBCD ; 时针,两位非压缩BCD转换成两位压缩BCD MOV CH, AL ADD BX,3 CALL TOBCD MOV DH, AL ; 分针,两位非压缩BCD转换成两位压缩BCD MOV DH,AL ADD BX,3 CALL TOBCD ; 秒针,两位非压缩BCD转换成两位压缩BCD MOV DL,AL CMP CH, 24H JAE ERROR CMP DH, 60H JA ERROR CMP DL, 60H JA ERROR ERROR1: MOV AH,4CH INT 21H AGAIN: CALL DELAY MOV AL,DL ; 秒针加1 ADD AL,1 DAA MOV DL,AL CMP AL,60H JA ERROR JNE DISPY

电机实验报告东南大学自动化

东南大学 电机实验报告 姓名:学号: 专业:自动化 组员: 时间:2014年6月

实验一、二电器控制(一、二) 一、实验目的 1、了解接触器、按扭等元件的功能特点,掌握其工作原理及接线方法; 2、学会使用接触器、按钮组合控制风扇开关。 二、实验原理 1. 接触器型号划分 在电工学上。接触器是一种用来接通或断开带负载的交直流主电路或大容量控制电路的自动化切换器,主要控制对象是电动机,此外也用于其他电力负载,如电热器,电焊机,照明设备,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用/。接触器控制容量大。适用于频繁操作和远距离控制。是自动控制系统 中的重要元件之一。通用接触器可大致分以下两类。 (1)交流接触器。主要由电磁机构、触头系统、灭弧装置等组成。常用的是CJ10、CJ12、CJ12B等系列。 (2)直流接触器。一般用于控制直流电器设备,线圈中通以直流电,直流接触器的动作原理和结构基本上与交流接触器是相同的。 但现在接触器的型号都重新划分了。都是AC系列的了。 AC-1类接触器是用来控制无感或微感电路的。 AC--2类接触器是用来控制绕线式异步电动机的启动和分断的。 AC-3和AC--4接触器可用于频繁控制异步电动机的启动和分断。 2. 交流接触器(CJX1-12) 实验室所用的是交流接触器(CJX1-12)如下图所示

铭牌如下 工作原理 当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失, 动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 使用接法 1、一般三相接触器一共有8个点,三路输入,三路输出,还有是控制点两个。输出和输入是对应的,很容易能看出来。如果要加自锁的话,则还需要从输出点的一个端子将线接到控制点上面。 2、首先应该知道交流接触器的原理。他是用外界电源来加在线圈上,产生电磁场。加电吸合,断电后接触点就断开。知道原理后,外加电源的接点,也就是线圈的两个接点,一般在接触器的下部,并且各在一边。其他的几路输入和输出一般在上部。还要注意外加电源的电压是多少(220V或380V),一般都标得有。并且注意接触点是常闭还是常开。

热工学实践实验报告

2016年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

散热器热工性能实验报告 (1)

实验二 散热器性能实验 班级: 姓名: 学号: 一、实验目的 1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。 2、测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T 的关系。 二、 实验装置 1.水位指示管 2.左散热器 3. 左转子流量计 4. 水泵开关及加热开关组 5. 温度压差巡检仪 6.温度控制仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4 图1散热器性能实验装置示意图 三、实验原理 本实验的实验原理是在稳定的条件下测定出散热器的散热量: Q=GC P (t g -t h ) [kJ/h] 式中:G ——热媒流量, kg/h ; C P ——水的比热, kJ/Kg.℃; t g 、t h ——供回水温度, ℃。 散热片共两组:一组散热面积为:1m 2 二组散热面积为:0.975 m 2 上式计算所得散热量除以3.6即可换算成[W]。 低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。流量计计量出流经每个散热器在温度为t g 时的体积流量。循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。

四、实验步骤 1、测量散热器面积。 2、系统充水,注意充水的同时要排除系统内的空气。 3、打开总开关,启动循环水泵,使水正常循环。 4、将温控器调到所需温度(热媒温度)。打开电加热器开关,加热系统循环水。 5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。 6、系统稳定后进行记录并开始测定: 当确认散热器供、回水温度和流量基本稳定后,即可进行测定。散热器供回水温度 t g 与t h 及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量, 流量用转子流量计测量。温度和流量均为每10分钟测读一次。 G t =L/1000=L·10-3 m3/h 式中:L——转子流量计读值; l/h; G t ——温度为t g 时水的体积流量;m3/h G=G t ·ρ t (kg/h) 式中:G——热媒流量,(kg/h); ρt——温度为t g时的水的密度,(kg/ m3)。 7、改变工况进行实验: a、改变供回水温度,保持水量不变。 b、改变流量,保持散热器平均温度不变。 即保持 2h g p t t t + =恒定8、求散热器的传热系数K 根据Q=KA(t p -t ) 其中:Q——为散热器的散热量,W K——散热器的传热系数,W/m2.℃ A ——散热器的面积,一种为0.975 m2,另一种为1 m2 t p ——供回水平均温度,℃ t ——室内温度,℃ 9、实验测定完毕: a、关闭电加热器; b、停止运行循环水泵; c、检查水、电等有无异常现象,整理测试仪器。 五、注意事项 1、测温点应加入少量机油,以保持温度稳定; 2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

自动检测技术实验一

东南大学自动化学院 实验报告课程名称:检测技术 第1 次实验

实验名称:实验一、三、五、八、九 院(系):自动化专业:自动化 :学号: 实验室:实验组别: 同组人员:实验时间:2013 年11月16日 评定成绩:审阅教师: 实验一金属箔式应变片——单臂电桥性能实验一、基本原理 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。 描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压Uo1= EKε/4。 二、实验器材及连线 主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理图 三、实验步骤 1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。 2、放大器输出调零 将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。 3、电桥调零

拆去放大器输入端口的短接线,将暂时脱开的引线复原。调节实验模板上的桥路平衡电位器RW1,使电压表显示为零。 4、应变片单臂电桥实验 在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。实验结果填入表2-1,画出实验曲线。 表2-1 重量(g) 20 40 60 80 100 120 140 160 180 200 电压(mv) 15.2 30.5 45.9 61.5 77.0 92.4 108.0 132.8 148.3 163.9 拟合方程为:0.834 4.1933 U W =?- 重量20 40 60 80 100 120 140 160 180 200

2016热工过程控制实验报告——姜栽沙

热工过程控制工程 实验报告 专业班级:新能源1402班 学生姓名:姜栽沙 学号:1004140220 中南大学能源学院 2017年1月

实验一热工过程控制系统认识与MCGS应用 组号______ 同组成员李博、许克伟、成绩__________ 实验时间__________ 指导教师(签名)___________ 一、实验目的 通过实验了解几种控制系统(基于智能仪表、基于计算机)的组成、工作原理、控制过程特点;了解计算机与智能仪表的通讯方式。了解组态软件的功能和特点,熟悉MCGS组态软件实现自动控制系统的整个过程。掌握MCGS组态软件提供的一些基本功能,如基本画面图素的绘制、动画连接的使用、控制程序的编写、构造实时数据库。 二、实验装置 1、计算机一台 2、MCGS组态软件一套 3、对象:SK-1-9型管状电阻炉一台;测温热电偶一支(K型)。 4、AI818/宇电519/LU-906K智能调节仪组成的温控器一台。 5、THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀)一套 6、CST4001-6H电阻炉检定炉(含电阻炉、温度控制器、测温元件、接口)一套 7、电阻炉温度控制系统接线图和方框图如图1-1、1-2所示。 三、实验内容 1、电阻炉温度控制系统(液位、流量、压力) 被控过程: 电阻炉被控变量: 电阻炉温度 操纵变量: 电阻炉的功率主要扰动:环境温度变化,电压值,电流值2、带检测控制点的流程图 3、控制系统方框图

4、控制系统中所用的仪表名称、型号(检测仪表、控制器、执行器、显示仪表)。 检测仪表:CST4001-6H电阻炉检定炉 控制器:AI818/宇电519/LU-906K智能调节仪组成的温控器 执行器:THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀) 显示仪表:计算机 5、智能仪表与计算机是怎样进行通讯?有哪几种方式? 智能仪表与计算机通讯一般有三种方式,分别为USB接口,485接口,232接口,通过这些接口进行信号传输,计算机得以对仪表进行温控。 6、什么是组态软件? 组态软件是指对系统的各种资源进行配置,达到系统按照预定设置,自动执行特定任务,满足使用者要求的目的的应用软件。 四、MCGS组态界面 提供电阻炉温度控制系统一套完整组态界面图(共6个图),包括主界面、运行界面、设备工况、存盘数据、实时曲线、历史数据。

东南大学微机实验报告一

微机实验报告 实验一指令与汇编语言基础 姓名:学号: 专业:测控技术与仪器实验室: 时间:2013年04月23号报告时间:2013年04 月23号评定成绩:审阅教师:

一、实验目的 1)了解命令行操作基本方式和基本命令,掌握PC环境下命令行方式的特点; 2)掌握汇编语言程序指令编辑、宏汇编、连接、运行基本概念;3)熟练掌握动态调试程序TD的常用命令和窗口功能,学会用TD调试程序,修改环境; 4)学会利用DEBUG或TD检查认识指令功能的正确方法。 二、实验内容 (一)必做实验 1-1、要求计算两个多字节十六进制数之差: 3B74AC60F8-20D59E36C1=? 式中被减数和减数为5个字节,存放在DATA1和DATA2的内存区,低位在前,高位在后。试编写减法的程序段,要求相减的结果存放在首址为DATA3的内存区。 1-2、以BUFFER为首地址的内存区存放了10个十六位带符号数,编写程序比较它们的大小,找出其中最小的带符号数,存入MIN和MIN+1单元。 三实验源程序和流程图 1、十六进制相减 A、实验要求: 计算两个多字节十六进制数之差:

3B74AC60F8-20D59E36C1=? 式中被减数和减数为5个字节,存放在DATA1和DATA2的内存区,低位在前,高位在后。试编写减法的程序段,要求相减的结果存放在首址为DATA3的内存区。 B、实验源代码和流程图 DATA SEGMENT DATA1 DB 0F8H,60H,0ACH,74H,3BH DATA2 DB 0C1H,36H,9EH,0D5H,20H DATA3 DB 5 DUP(?) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV CX,5 MOV DI,0 CLD LOOPER: MOV AL,DATA1[DI] SBB AL,DATA2[DI] MOV DATA3[DI],AL INC DI DEC CX JNZ LOOPER MOV AH,4CH INT 21H CODE ENDS END START C、实验过程及实验结果

建筑物理实验报告

建筑物理实验报告 班级:建筑112 姓名:刘伟 学号: 01111218 指导教师:周洪涛 建筑物理实验室 2014年10月15日 小组成员:张思俣;郭祉良;李照南;刘伟;王可为;

第三篇建筑热工实验 一、实验一建筑热工参数测定实验 二、实验目的 1、了解热工参数测试仪器的工作原理; 2、掌握温度、湿度、风速的测试方法,达到独立操作水平; 3、利用仪器测量建筑墙体内外表面温度场分布,检验保温设计效果; 4、测定建筑室内外地面温度场分布; 5、可通过对室外环境的观测,针对住宅小区或校园内地形、地貌、生物生活对气候 的影响,进而研究在这个区域内的建筑如何应用有力的气候因素和避免不利的气 候影响。 三、实验仪器概述 I.WNY —150 数字温度仪 ●用途:用于对各种气体、液体和固体的温度测量。 ●特点:采用先进的半导体材料为感温元件,体积小,灵敏度高,稳定性好。温度值 数字显示,清晰易读,测温范围:-50℃~150℃,分辨力:0.1℃。 ●测试方法及注意事项: 1.取下电池盖将6F22,9V叠层电池装入电池仓。 2.按ON键接通电源,显示屏应有数字显示。 3.插上传感器,显示屏应显示被测温度的数值。 4.显示屏左上方显示LOBAT时,应更换电池。 5.仪器长期不用时,应将电池取出,以免损坏仪表。 II.EY3-2A型电子微风仪 ●用途:本产品是集成电子化的精密仪器,适用于工厂企业通风空调,环境污染监测, 空气动力学试验,土木建筑,农林气象观测及其它科研等部门的风速测量,用途十分广泛。 ●特点: 1.测量范围宽,微风速灵敏度高,最小分度值为0.01m/s。 2.高精度,高稳定度,使用时可连续测量,不须频繁校准 3.仪器热敏感部件,最高工作温度低于200℃,使用安全可靠,在环境温度为 -10℃~40℃内可自动温度补偿。 4.电源电压适用范围宽:4.5V~10V功耗低。 ●主要技术参数: 1.测量范围:0.05~1m/s 1~30m/s(A型) 2.准确度:≤±2﹪F.S。 3.工作环境条件:温度-10℃~+40℃相对湿度≤85%RH。 4.电源:R14型(2#)电池4节 ●工作原理:本仪器根据加热物体在气流中被冷却,其工作温度为风速函数这一原理设 计。仪器由风速探头及测量指示仪表两部分组成。 ●测试方法及注意事项:

东南大学系统实验报告

实验八:抽样定理实验(PAM ) 一. 实验目的: 1. 掌握抽样定理的概念 2. 掌握模拟信号抽样与还原的原理和实现方法。 3. 了解模拟信号抽样过程的频谱 二. 实验内容: 1. 采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。 2. 采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱 三. 实验步骤: 1. 将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。 2. 插上电源线,打开主机箱右侧的交流开关,在分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。 3. 信号源模块调节“2K 调幅”旋转电位器,是“2K 正弦基波”输出幅度为3V 左右。 4. 实验连线 5. 不同频率方波抽样 6. 同频率但不同占空比方波抽样 7. 模拟语音信号抽样与还原 四. 实验现象及结果分析: 1. 固定占空比为50%的、不同频率的方波抽样的输出时域波形和频谱: (1) 抽样方波频率为4KHz 的“PAM 输出点”时域波形: 抽样方波频率为4KHz 时的频谱: 50K …… …… PAM 输出波形 输入波形

分析: 理想抽样时,此处的抽样方波为抽样脉冲,则理想抽样下的抽样信号的频谱应该是无穷多个原信号频谱的叠加,周期为抽样频率;但是由于实际中难以实现理想抽样,即抽样方波存在占空比(其频谱是一个Sa()函数),对抽样频谱存在影响,所以实际中的抽样信号频谱随着频率的增大幅度上整体呈现减小的趋势,如上面实验频谱所示。仔细观察上图可发现,某些高频分量大于低频分量,这是由于采样频率为4KHz ,正好等于奈奎斯特采样频率,频谱会在某些地方产生混叠。 (2) 抽样方波频率为8KHz 时的“PAM 输出点”时域波形: 2KHz 6K 10K 14K 输入波形 PAM 输出波形

相关文档
相关文档 最新文档