文档库 最新最全的文档下载
当前位置:文档库 › 武汉大学《自动控制原理》实验报告

武汉大学《自动控制原理》实验报告

武汉大学《自动控制原理》实验报告
武汉大学《自动控制原理》实验报告

2016~2017学年第一学期《自动控制原理》实验报告

年级:2014级班号:

姓名:He学号:

成绩:教师:

实验设备及编号:

实验同组人名单:

实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月

目录:

实验一典型环节的电路模拟 (3)

一、实验目的 (3)

二、实验内容 (3)

三、实验电路图及参数 (3)

四、实验分析 (10)

五、实验思考题 (11)

实验二二阶系统的瞬态响应 (12)

一、实验目的 (12)

二、实验设备 (12)

三、实验电路图及其传递函数 (12)

四、实验结果及相应参数 (14)

五、实验分析 (16)

六、实验思考题 (16)

实验五典型环节和系统频率特性的测量 (17)

一、实验目的 (17)

二、实验设备 (17)

三、传递函数.模拟电路图及波特图 (17)

四、实验思考题 (22)

实验六线性定常系统的串联校正 (24)

一、实验目的 (24)

二、实验设备 (24)

三、实验电路图及其实验结果 (24)

四、实验分析 (28)

五、实验思考题 (28)

实验七单闭环直流调速系统 (29)

一、实验目的 (29)

二、实验设备 (29)

三、PID参数记录表及其对应图像 (30)

四、PID控制参数对直流电机运行的影响 (37)

实验一典型环节的电路模拟

一、实验目的

1.熟悉THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;

2.熟悉各典型环节的阶跃响应特性及其电路模拟;

3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验内容

1.设计并组建各典型环节的模拟电路;

2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

三、实验电路图及参数

1.比例(P)环节

比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:

图1-1比例环节的模拟电路

图中后一个单元为反相器,其中R0=200k。

当U i(S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2 所示。

若比例系数K=1 时,电路中的参数取:R1=100k,R2=100k。

若比例系数K=2 时,电路中的参数取:R1=100k,R2=200k。

图1-2 比例环节的响应曲线

2.积分(I)环节

积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为:

根据积分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-9 所示。

图1-3积分环节的模拟电路图中后

一个单元为反相器,其中R0=200k。

设U i(S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-4所示。

若积分时间常数T=1s 时,电路中的参数取:R=100k,C=10uF(T=RC=100k×10uF=1s);

若积分时间常数T=0.1s 时,电路中的参数取:R=100k,C=1uF(T=RC=100k×1uF=0.1s);

图1-4积分环节的响应曲线

3.比例积分(PI)环节

比例积分环节的传递函数与方框图分别为:

其中T=R2C,K=R2/R1

根据比例积分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-10 所示。

图1-5比例积分环节的模拟电路图中后一个单元为反相器,其中R0=200k。

注:通过改变R2、R1、C 的值可改变比例积分环节的放大系数K 和积分时间常数T。

设U i(S)为一单位阶跃信号,图1-4 示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。若取比例系数K=1、积分时间常数T=1s 时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R2C=100k×10uF=1s);

若取比例系数K=1、积分时间常数T=0.1s时,电路中的参数取:R1=100k,R2=100k,C=1uF(K=

R2/ R1=1,T=R2C=100k×1uF=0.1s)。

图1-6比例积分环节的响应曲线

4.比例微分(PD)环节

比例微分环节的传递函数与方框图分别为:

根据比例微分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-11 所示。

图1-7比例微分环节的模拟电路图中后一个单元为反相器,其中R0=200k。

若比例系数K=1、微分时间常数T=1s 时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R1C=100k×10uF=1s);

若比例系数K=1、微分时间常数T=0.1s 时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R1C=100k×1uF=0.1s);

图1-8比例微分环节的响应曲线

5.比例积分微分(PID)环节

比例积分微分(PID)环节的传递函数与方框图分别为:

R1C2 R1C2S 设U i(S)为一单位阶跃信号.比例积分微分(PID)环节根据比例积分微分环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-9所示。

图1-9比例积分微分环节的模拟电路

图中后一个单元为反相器,其中R0=200k。

若比例系数K=2、积分时间常数T I =0.1s、微分时间常数T D =0.1s 时,电路中的参数取:

R1=100k,R2=100k,C1=1uF、C2=1uF (K= (R1 C1+ R2 C2)/ R1 C2=2,T I=R1C2=100k×1uF=0.1s,

T D=R2C1=100k×1uF=0.1s);

若比例系数K=1.1、积分时间常数T I =1s、微分时间常数T D =0.1s 时,电路中的参数取:

R1=100k,R2=100k,C1=1uF、C2=10uF (K= (R1 C1+ R2 C2)/ R1 C2=1.1,T I=R1C2=100k×10uF=1s,T D=R2C1=100k×1uF=0.1s);

图1-10PID 环节的响应曲线

6.惯性环节惯性环节的传递函数与方框图分别为:

惯性环节根据惯性环节的方框图,用CT01实验模块组建相应的模拟电路,如图1-13 所示。

图1-11惯性环节的模拟电路

图中后一个单元为反相器,其中R0=200k。

通过改变R2、R1、C 的值可改变惯性环节的放大系数K 和时间常数T。

若比例系数K=1、时间常数T=1s 时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R2C=100k×10uF=1s)。

若比例系数K=1、时间常数T=0.1s 时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R2C=100k×1uF=0.1s)。

图1-12惯性环节的响应曲线

四、实验分析

一介系统各典型环节电路参数对环节特性有什么影响?

1、比例环节:输出量不失真,无惯性地跟着输入量变化,而且两者成比例关系;

2、惯性环节:由于惯性环节中含有一个储能原件,当输入量突然变化时,输出量不能跟着变化,而是按指数规律变化;

3、积分环节:只要有一个恒定的输入量作用于积分环节,其输出量就与时间成正比地无限增加。(输出量取决于输入量对时间的积累,输入量作用一段时间后,即使输入量变化,输出量仍会保持在已达到的数值);

4、微分环节:理想微分环节的输出与输入量的变化速度成正比,在阶跃输入作用下的输出响应为一理想脉冲(实际上无法实现)。

五、实验思考题

1.用运放模拟典型环节时,其传递函数是在什么假设条件下近似导出的?

(1)假定运放具有理想特性,即满足“虚短”“虚断”特性

(2)运放的静态量为零,个输入量、输出量和反馈量都可以用瞬时值表示其动态变化.

2.积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?而又在什么条件下,惯性环节可以近似地视为比例环节?

答:惯性环节的特点是,当输入x(t)作阶跃变化时,输出y(t)不能立刻达到稳态值,瞬态输出以指数规律变化.而积分环节,当输入为单位阶跃信号时,输出为输入对时间的积分,输出y(t)随时间呈直线增长. 当t趋于无穷大时,惯性环节可以近似地视为积分环节,当t趋于0时,惯性环节可以近似地视为比例环节.

3.在积分环节和惯性环节实验中,如何根据单位阶跃响应曲线的波形,确定积分环节和惯性环节的时间常数?

答:对积分环节,积分时间常数T的数值等于输出信号变化到与输入信号的阶跃变化量相等时所经过的一段时间。在单位阶跃响应曲线上就能确定;对惯性环节,时间常数T就是当输入信号为阶跃函数时,输出信号以起始速度变化到最后平衡值所需的时间。从单位阶跃响应曲线的起始点做切线与最后平衡值相交,则起始点到此交点所经历的时间就是惯性环节的时间常数T。

4.为什么实验中实际曲线与理论曲线有一定误差?

答:选择的电子元器件,输入输出曲线,不可能像理论那样的线性,再加上元器件都有温度特性曲线.器件参数都有误差.综合起来,电路模拟实验中实际曲线和理论曲线有一定的误差是正常的.

5.为什么PD 实验在稳定状态时曲线有小范围的振荡?

答:因为积分环节对稳定曲线的外在扰动比较敏感。

实验二二阶系统的瞬态响应

一、实验目的

1.通过实验了解参数(阻尼比)(阻尼自然频率)的变化对二阶系统动态性能的影响;2.掌握二阶系统动态性能的测试方法。

二、实验设备

1.THKKL-B 型模块化自控原理实验系统实验平台,实验模块CT02;

2.PC 机一台(含上位机软件);

3.USB 接口线。

三、实验电路图及其传递函数

1.二阶系统的瞬态响应

用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为

针对不同的值,特征根会出现下列三种情况:

图2-1 二阶系统的动态响应曲线

虽然当 =1 或 >1 时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故

控制工程上常采用欠阻尼的二阶系统,一般取 =0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

2.二阶系统的典型结构典型的二阶系统结构方框图和模拟电路图如2-2、如2-3 所示。

图2-2 二阶系统的方框图

图2-3 二阶系统的模拟电路图

电路参考单元为:通用单元1、通用单元2、通用单元3、反相器单元、电位器组由图2-2 可

得其开环传递函数为:

四、实验结果及相应参数

1.值一定时,图2-3 中取C=1uF,R=100k(此时=10),Rx 阻值可调范围为0~470k。系统输入一单位阶跃信号,在下列几种情况下,用上位机软件观测并记录不同值时的实验曲线。(1) 当可调电位器R X=250k 时,=0.2,系统处于欠阻尼状态,其超调量为53%左右;

(2)若可调电位器R X=70.7k 时,=0.707,系统处于欠阻尼状态,其超调量为4.3%左右;

(3)若可调电位器R X=50k 时,=1,系统处于临界阻尼状态;

(4)若可调电位器R X=25k 时,=2,系统处于过阻尼状态。

2.值一定时,图2-3 中取R=100k,R X=250k(此时=0.2)。系统输入一单位阶跃信号,在下列几种情况下,用上位机软件观测并记录不同值时的实验曲线。

(1)若取C=10uF 时,=1

(2)若取C=1uF 时,=10

五、实验分析

1.根据测得系统的单位阶跃响应曲线,分析系统开环放大系数K和惯性环节时间常数对系统的性能的影响。

答:增加开环增益K可以增加系统阶跃响应的超调量,增加时间常数T可以增加系统阶跃响应的调节时间。

六、实验思考题

1.如果阶跃输入信号的幅值过大,会在实验中产生什么后果?

答:阶跃信号幅值的大小选择应适当考虑,若阶跃输入信号幅值过大,实验测出的各种数据都会发生变化,使其精度降低,增大实验的误差,同时会使系统动态特性的非线性因素增大,使线性系统

变成非线性系统,如果阶跃输入信号幅值过大,也有可能导致实验的失败,最后实验不能趋于稳定,实验结果出错,所以实验过程中,要选择合适的阶跃输入信号幅值。

2.在电路模拟系统中,如何实现负反馈和单位负反馈?

答:首先要将电路设计成负反馈,即把输出的一部分通过电路接回输入端,与输入信号进行叠加(反馈量与输入量是相消的关系),而要实现单位负反馈则需要将反馈电路设计成电压跟随器,即单位比例放大电路.

3.为什么本实验中二阶系统对阶跃输入信号的稳态误差为零?

答:因为二阶欠阻尼系统,单位阶跃响应当t趋向于无穷时,它值趋向于1,即稳态误差为0。

稳定误差:当系统从一个稳态过度到新的稳态,或系统受扰动作用又重新平衡后,系统可能会出现偏差,这种偏差称为稳态误差。

实验五典型环节和系统频率特性的测量

一、实验目的

1.了解典型环节和系统的频率特性曲线的测试方法;

2.根据实验求得的频率特性曲线求取传递函数。

二、实验设备

1.THKKL-B 型模块化自控原理实验系统实验平台,实验模块CT05;

2.PC 机一台(含上位机软件);

3.USB 接口线。

三、传递函数·模拟电路图及波特图

1.惯性环节

传递函数和电路图如下

若图5-4 中取C=0.1uF,R1=200k,R2=200k,R0=200k,则其波特图如下1、幅频特性曲线图:

2、相频特性曲线图:

3、乃奎斯特曲线图:

2.二阶系统

由图5-6(Rx=50k)可得系统的传递函数和方框图为:

图5-6 典型二阶系统的方框图其模拟电路图为

图5-7 典型二阶系统的电路图

在下面两种情况下完成波特图的幅频特性及相频特性图。

当Rx=10K 时。完成实验后,在“奈奎斯特图”界面中查看系统对应的奈奎斯特图。

1、幅频特性曲线图:

2、相频特性曲线图:

3、乃奎斯特曲线图:

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

武汉大学计算机学院 嵌入式实验报告

武汉大学计算机学院 课程实验(设计)报告 课程名称:嵌入式实验 专业、班: 08级 姓名: 学号: 学期:2010-2011第1学期 成绩(教师填写) 实 一二三四五六七八九总评验 分数 分数 (百分制)

实验一80C51单片机P1口演示实验 实验目的: (1)掌握P1口作为I/O口时的使用方法。 (2)理解读引脚和读锁存器的区别。 实验内容: 用P1.3脚的状态来控制P1.2的LED亮灭。 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台 (3)连线若干根 (4)计算机1台 实验步骤: (1)编写程序实现当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)修改程序在执行读P1.3之前,先执行CLR P1.3,观察结果是否正确,分析在第二种情况下程序为什 么不能正确执行,理解读引脚和读锁存器区别。 实验结果: (1)当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)不正确。因为先执行CLR P1.3之后,当读P1.3的时候它的值就一直是0,所以发光管会一直亮而不 会灭。单片机在执行从端口的单个位输入数据的指令(例如MOV C,P1.0)时,它需要读取引脚上的数据。此时,端口锁存器必须置为‘1’,否则,输出场效应管导通,回拉低引脚上的高输出电平。 系统复位时,会把所有锁存器置‘1’,然后可以直接使用端口引脚作为输入而无需再明确设置端口锁存器。但是,如果端口锁存器被清零(如CLR P1.0),就不能再把该端口直接作为输入口使用,除非先把对应的锁存器置为‘1’(如 SETB P1.0)。 (3)而在引脚负载很大的情况(如驱动晶体管)下,在执行“读——改——写”一类的指令(如CPL P1.0) 时,需要从锁存器中读取数据,以免错误地判断引脚电平。 实验二 80C51单片机RAM存储器扩展实验 实验目的: 学习RAM6264的扩展 实验内容: 往RAM中写入一串数据,然后读出,进行比较 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台

自动控制原理实验报告 线性系统串联校正

武汉工程大学实验报告 专业自动化班号 组别指导教师陈艳菲姓名同组者

三、实验结果分析 1.开环传递函数为) 1(4 )(+= s s s G 的系统的分析及其串联超前校正: (1)取K=20,绘制原系统的Bode 图: 源程序代码及Bode 图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; 运行结果: ans = Inf 12.7580 Inf 4.4165 分析: 由结果可知,原系统相角裕度r=12.75800,c ω=4.4165rad/s ,不满足指标要求, 系统的Bode 图如上图所示。考虑采用串联超前校正装置,以增加系统的相角裕度。 确定串联装置所需要增加的超前相位角及求得的校正装置参数。 ),5,,45(0000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ m m ??αsin 1sin 1-+= 将校正装置的最大超前角处的频率 作为校正后系统的剪切频率 。则有: α ωωω1)(0)()(lg 2000=?=c c c c j G j G j G 即原系统幅频特性幅值等于 时的频率,选为c ω。 根据m ω=c ω ,求出校正装置的参数T 。即α ωc T 1 = 。 (2)系统的串联超前校正:

源程序代码及Bode图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; e=5; r=50; r0=pm1; phic=(r-r0+e)*pi/180; alpha=(1+sin(phic))/(1-sin(phic)); [il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:'); printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0']); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)'); title(['校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0']); 运行结果: ans = Inf 12.7580 Inf 4.4165 num/den = 0.31815 s + 1

自动化控制实验报告(DOC 43页)

自动化控制实验报告(DOC 43页)

本科生实验报告 实验课程自动控制原理 学院名称 专业名称电气工程及其自动化 学生姓名 学生学号2013 指导教师 实验地点6C901 实验成绩 二〇一五年四月——二〇一五年五月

线性系统的时域分析 实验一(3.1.1)典型环节的模拟研究 一. 实验目的 1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响 二.典型环节的结构图及传递函数 方 框 图 传递函数 比例 (P ) K (S) U (S) U (S)G i O == 积分 (I ) TS 1 (S)U (S)U (S)G i O == 比例积分 (PI ) )TS 1 1(K (S)U (S)U (S)G i O +== 比例微分 (PD ) )TS 1(K (S) U (S) U (S)G i O +== 惯性 TS 1K (S)U (S)U (S)G i O += =

环节 (T) 比例 积分 微分 (PI D) S T K S T K K (S) U (S) U (S) G d p i p p i O + + = = 三.实验内容及步骤 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。 改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 传递函数: 1 (S) (S) (S) R R K K U U G i O= = = ;单位阶跃响应:

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

仪表自动控制实验报告

一、实验目的 1、通过实验对自控仪表和控制元器件有一具体认识。 2、了解自控原理,锻炼动手能力。学习并安装不同的温度自控电路。 3、通过对不同电路的调试和数据测量,初步掌握仪表自控技术。 4、要求按流程组装实验电路,并测量加热反应釜温度随加热时间的变化。 5、要求待反应釜加热腔温度稳定后测量加热釜轴向温度分布规律。 二、实验原理 仪表自动控制在现代化工业生产中是极其重要的,它减少大量手工操作,使操作人员避免恶劣、危险环境,自动快速完成重复工作,提高测量精度,完成远程传输数据。本实验就是仪表自动控制在化工生产和实验中非常重要的一个分支——温度的仪表自动控制。 图-1所示是本实验整套装置图。按图由导线连接好装置,首先设置“人工智能控制仪”的最终温度,输出端输出直流电压用于控制“SSR”(固态继电器),则当加热釜温度未达到最终温度时“SSR”是通的状态,电路导通,给加热釜持续加热;当加热釜温度达到最终温度后“SSR”是不通的状态,电路断开,加热釜加热停止。本实验研究的数据对象有两个:其一,测量仪表在加热釜开始加热后测量的升温过程,即温度随时间变化;其二,当温度达到最终温度并且稳定后,测量温度沿加热釜轴向的分布,即稳定温度随空间分布。 图-1 实验装置图

1、控温仪表,2测温仪表,3和4、测温元件(热电偶),5电加热釜式反应器, 6、保险 7、电流表,8固态调压器,9、滑动电阻,10、固态继电器(SSR),11、中间继电器,12、开关 实验装置中部分仪器的工作原理: 1,控温仪表:输出端输出直流电压控制SSR,当加热釜温度未达到预设温度时SSR使电路导通,持续加热;当达到最终温度后SSR使电路断开,加热停止。 2,测温仪表:与测温的热电偶相连,实时反馈加热釜内温度的测量值。 3、4,热电偶:分别测量加热腔和反应芯内的温度。工作原理:热电阻是利用金属的电阻值随温度变化而变化的特性来进行温度测量。它是由两种不同材料的导体焊接而成。焊接的一端插入被测介质中,感受被测温度,称为热电偶的工作端或热端。另一端与导线连接,称为自由端或冷端。若将其两端焊接在一起,且两段存在温度差,则在这个闭路回路中有热电势产生。如在回路中加一直流毫伏计,可见到毫伏计中有电势指示,电势的大小与两种不同金属的材料和温度有关,与导线的长短无关。 图2 热电偶工作原理 8,RSA固态调压器原理:通过电位器手动调节以改变阻性负载上的电压,来达到调节输出功率的目的(相当于一个滑动变阻器)。输出端接加热回路,输入端接控温仪表。 10,SSR 固态继电器工作原理:固态继电器是一种无触点通断电子开关,为四端有源器件。其中两个端子为输入控制端,另外两端为输出受控端。在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。可实现相当于常用的机械式电磁继电器一样的功能

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

分析化学实验报告(武汉大学第五版)

分析化学实验报告 陈峻 (贵州大学矿业学院贵州花溪 550025) 摘要:熟悉电子天平得原理与使用规则,同时可以学习电子天平得基本操作与常用称量方法;学习利用HCl与NaOH相互滴定,便分别以甲基橙与酚酞为指示剂得 滴定终点;通过KHC 8H 4 O 4 标定NaOH溶液,以学习有机酸摩尔质量得测定方法、熟 悉常量法滴定操作并了解基准物质KHC 8H 4 O 4 得性质及应用;通过对食用醋总浓度 得测定,以了解强碱滴定弱酸过程中溶液pH得变化以及指示剂得选择。 关键词:定量分析;电子天平;滴定分析;摩尔质量;滴定;酸度,配制与标定 前言 实验就是联系理论与实际得桥梁,学好了各种实验,不仅能使学生掌握基本操作技能,提高动手能力,而且能培养学生实事求就是得科学态度与良好得实验习惯,促其形成严格得量得观念。天平就是大多数实验都必须用到得器材,学好天平得使用就是前提,滴定就是分析得基础方法,学好配制与滴定就是根本。 (一)、分析天平称量练习 一、实验目得: 1、熟悉电子分析天平得使用原理与使用规则。 2、学习分析天平得基本操作与常用称量法。 二、主要试剂与仪器 石英砂电子分析天平称量瓶烧杯小钥匙 三、实验步骤 1、国定质量称量(称取0、5000g 石英砂试样3份) 打开电子天平,待其显示数字后将洁净、干燥得小烧杯放在秤盘上,关好天平门。然后按自动清零键,等待天平显示0、0000 g。若显示其她数字,可再次按清零键,使其显示0、0000

g。 打开天平门,用小钥匙将试样慢慢加到小烧杯中央,直到天平显示0、5000 g。然后关好 天平门,瞧读数就是否仍然为0、5000g。若所称量小于该值,可继续加试样;若显示得量超过 该值,则需重新称量。每次称量数据应及时记录。 2、递减称量(称取 0、30~0、32 g石英砂试样 3 份) 按电子天平清零键,使其显示0、0000 g,然后打开天平门,将1个洁净、干燥得小烧杯 放在秤盘上,关好天平门,读取并记录其质量。 另取一只洁净、干燥得称量瓶,向其中加入约五分之一体积得石英砂,盖好盖。然后将 其置于天平秤盘上,关好天平门,按清零键,使其显示0、0000 g。取出称量瓶,将部分石英 砂轻敲至小烧杯中,再称量,瞧天平读数就是否在-0、30~-0、32 g 范围内。若敲出量不够, 则继续敲出,直至与从称量瓶中敲出得石英砂量,瞧其差别就是否合乎要求(一般应小于 0、4 mg)。若敲出量超过0、32 g,则需重新称量。重复上述操作,称取第二份与第三份试样。 四、实验数据记录表格 表1 固定质量称量 编号 1 2 3 m/g 0、504 0、500 0、503 表2 递减法称量 编号 1 2 3 m(空烧杯)/g 36、678 36、990 37、296 称量瓶倒出试样m1 -0、313 -0、303 -0、313 M(烧杯+试样)/g 36、990 37、296 37、607

武汉大学计算机学院教学实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年11 月15 日 实验名称电路仿真实验实验台号实验时数3小时 姓名秦贤康学号2013301500100年级2013 班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 实验目的: 熟悉multisim仿真软件的使用 用multisim进行电路仿真,并验证书上的理论知识的正确性 内容:用仿真软件进行实验 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 一台微机 实验步骤: 用multisim先进行电路仿真,再记录下相关数据 三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等)

实验内容及数据记录 1、简单直流电路 简单直流电路在有载状态下电源的电阻、电压和电路 简单直流电路在短路状态下电源的电阻、电压和电路 简单直流电 路在 开路状 态下电源的电阻、电压和电路 2、复杂直 流电路 复杂直流电路中各元件上的电压 复杂直流电路中各元件上的电流 复杂直流电路在E1作用下负载上的电压和电流 复杂直流电路在E2作用下的电压和电流 复杂直流电路在E1与E2作用下的电压和电流 复杂直 流电路 中的等效电阻 R (k Ω) 1 2 3 4 5 I (mA ) 24000 24000 24000 24000 24000 U (V ) 0.000024 0.000024 0.000024 0.000024 0.000024 R (k Ω) 1 2 3 4 5 I (mA ) 12 6.09 4.011 3.011 2.412 U (V ) 11.94 11.997 11.99 8 11.998 11.999 R (k Ω) 1 2 3 4 5 I (mA ) 0.000176 0.000176 0.000176 0.000176 0.000176 U (V ) 12 12 12 12 12 RL (k Ω) 1 2 3 4 5 URL (V ) 6.799 8.497 9.269 9.710 9.995 UR1(V ) 5.198 3.501 2.730 2.289 2.004 UR2(V ) -3.200 -1.502 -0.731 -0.290 -0.005286 UE1(V ) 11.997 11.998 11.999 11.999 11.999 UE2(V ) 9.999 10.000 10.000 10.000 10.000 RL (k Ω) 1 2 3 4 5 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 IR1(mA ) 5.198 3.505 2.733 2.292 2.006 IR2(mA ) -1.603 2.499 --1.999 -1.666 -1.428 IE1(mA ) 5.198 3.505 2.733 2.292 2.006 IE2(mA ) -1.603 -2.501 -2.000 -1.666 -1.428 RL (k Ω) 1 2 3 4 5 UE1(V ) 4.798 5.996 6.540 6.851 7.053 IE1(mA ) 4.803 3.004 2.187 1.720 1.418 RL (k Ω) 1 2 3 4 5 UE2(V ) 2.002 2.501 2.729 2.858 2.942 IE2(mA ) 2.002 1.252 0.911 0.718 0.592 RL (k Ω) 1 2 3 4 5 URL (V ) 6.802 8.497 9.269 9.710 9.995 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 R3(k Ω) 1 2 3 4 5 R6(k Ω) 2 3 4 5 6 R7(k Ω) 3 4 5 6 7 RL (k Ω) -1.603 2.499 --1.999 -1.666 -1.428 URL (V ) 5.198 3.505 2.733 2.292 2.006 IRL (A ) -1.603 -2.501 -2.000 -1.666 -1.428 R3(k Ω) 1 2 3 4 5

自动控制实验报告.

计算机控制原理实验报告 姓名:房甜甜 学号:130104010072 班级:计算机三班 指导教师:胡玉琦 完成时间:2015年10月11日

实验一 二阶系统闭环参数n ω和ξ对时域响应的影响 一、实验目的 1.研究二阶系统闭环参数 n ω和ξ对时域响应的影响 2.研究二阶系统不同阻尼比下的响应曲线及系统的稳定性。 二、实验要求 1. 从help 菜单或其它方式,理解程序的每个语句和函数的含义; 2.分析ξ对时域响应的影响,观察典型二阶系统阻尼系数ξ在一般工程系统中的选择范围; 三、实验内容 1、如图1所示的典型二阶系统,其开环传递函数为) 2s(s G(S)2n n ξωω+=,其中,无阻尼自 然震荡角频率n ω=1,ξ为阻尼比,试绘制ξ分别为0, 0.2, 0.4, 0.6, 0.9, 1.2, 1.5时,其单位负反馈系统的单位阶跃响应曲线(绘制在同一张图上)。 图1 典型二阶系统方框图 2、程序代码 wn=1; sigma=[0,0.2,0.4,0.6,0.9,1.2,1.5];(1) num=wn*wn; t=linspace(0,20,200)';(2) for j=1:7(3) den=conv([1,0],[1,2*wn*sigma(j)]);(4) s1=tf(num,den);(5) sys=feedback(s1,1)(6); y(:,j)=step(sys,t);(7) end plot(t,y(:,1:7));(8) grid;(9) gtext('sigma=0');(10) gtext('sigma=0.2'); gtext('sigma=0.4'); ) 2s(s 2 n n ξωω+ R(s) C(s)

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

相关文档
相关文档 最新文档