文档库 最新最全的文档下载
当前位置:文档库 › 无序一维三元光子晶体的能带特性研究

无序一维三元光子晶体的能带特性研究

无序一维三元光子晶体的能带特性研究
无序一维三元光子晶体的能带特性研究

无序一维三元光子晶体的能带特性研究3

张会云13,张玉萍2,3,苏希玉1,郑 义3,姚建铨2

(1.曲阜师范大学物理工程学院,山东曲阜273165;2.天津大学精仪学院激光与光电子研究所,教育部光电信息技术科学重点实验室,南开大学2天津大学联合研究院,天津300072;3.郑州大学激光与光电信息技术重点实验室,河南郑州450052)

摘要:运用光学传输矩阵理论,研究了具有无序结构的一维三元光子晶体的能带特性。结果表明,与周期结构相比,无序结构可以显著地拓宽光子晶体的光子带隙;随取无序膜层数目的增加,带隙逐渐变宽, 3种折射率介质均取无序的情况下,带隙拓宽到550~1800nm的区间范围,是周期结构光子晶体带隙宽度的2倍多。讨论了无序度、不同折射率分布对带隙的影响,随着无序度和高低折射率的差别的增大,带隙变宽。

关键词:光子晶体;无序度;折射率;光子带隙

中图分类号:TB383 文献标识码:A 文章编号:100520086(2005)0120067204

B andgap Properties of Disordered One2dimensional T ernary Photonic Crystals

ZHAN G Hui2yun13,ZHAN G Yu2ping2,3,SU Xi2yu1,ZHEN G Y i3,YAO Jian2quan2 (1.College of Physics and Engineering,Qufu Normal University,Qufu2731652,China;2.K ey Laboratory of Optoelectrics Information Science and Technology,EMC,Institute of Laser and Optoelectronics,College of Pre2 cision Instrument and Optoelectronics Engineering,Tianjin University,Tianjin300072,China;3.Henan K ey Laboratory of Laser and Opto2electric Information Technology of Zhengzhou University,Zhengzhou450052, China)

Abstract:Bandgap prop erties of one2dimensional ternary disordered photonic crystals were investigated by the optical transfer matrix method.The results obtained show that disor2 dered structure can extend photonic bandgap compared with the periodic structure.The bandgap is gradually extended with increasing disorder film numbers.In the case of ternary disordered photonic crystals,it extend to the whole range of550~1800nm and is over2 times larger than that of ordinary photonic crystals.We have also discussed the in fluence of disorder degree and different refractive indexes on the photonic bandgap.With the increas2 ing of the disorder degree and the refractive contrast of high and low coating materials,the bandgap extend.

K ey w ords:photonic crystal;disorder degree;refractive index;photonic bandgap

1 引 言

光子晶体是1987年由John S和Yablonovitch E 等人[1,2]提出的,它是一种具有“光子频率禁带”的特殊材料。由于在控制原子自发辐射,制作光反射镜、零阈值激光器等方面具有广泛的应用前景[3,4]。光子晶体引起众多科学家的研究兴趣。迄今,无论在理论还是实验上[5~7]都取得了很大的进展。

为获得更宽的光子带隙,人们对多种结构进行了尝试[8,9],而一维光子晶体由于其制作简易、易于实现等优点倍受关注。

根据一维光子晶体的光局域理论和实验研究,在

光电子?激光

第16卷第1期 2005年1月 J ournal of Optoelectronics?L aser Vol.16No.1 Jan.2005

收稿日期:2004203217 修订日期:2004206209

 33E2m ail:huiyunz@https://www.wendangku.net/doc/56655664.html,

一维多层膜中引入无序,可能在任何频段导致相干背散射,所以我们期望布拉格反射和由无序导致的光局

域将这些分立的截止带隙扩展成连续的截止带隙,形成较宽的高反射带。已经有报道将无序引入一维二元的1/4波片多层膜得到宽带高反的优良[10,11]。一维多元光子晶体的研究并不多[12],更没有系统的研究。本文选用3种折射率不同的介电材料,引入结构参数a 、b ,构造了一维三元光子晶体结构模型。通过随机选取膜层厚度引入无序,利用光学传输矩阵理论,研究了无序一维三元光子晶体的能带特性。研究发现,与周期结构相比,无序结构可以显著拓宽光子晶体的光子带隙;随取无序膜层数目增加,带隙逐渐变宽。

2 物理模型及理论基础

如图1所示,引入结构参数a 、b ,周期结构一维三元光子晶体膜厚定义为

l 1=(1+a/2+b/2)λ0/4n 1 l 2=(1-a )λ0/8n 2

l 3=(1-b )λ0/8n 3

(1)式中:λ0为中心波长;l 1为具有折射率n 1的介电膜层的厚度;l 2为具有折射率n 2的介电膜层的厚度;l 3为具有折射率n 3的介电膜层的厚度。每个单胞的光学长度l =n 1l 1+n 2l 2+n 3l 3=λ0/2;结构参数a 、b 的取值区间为-1≤a ≤1、-1≤b ≤1,通过选取不同的a 、b 值,得到不同结构的周期光子晶体

图1 由3种介质构成的多元光子晶体结构示意图

Fig.1 Structure of photonic crystals consisted of three kinds of dielectic

无序一维三元光子晶体是通过把无序引入到周

期结构光子晶体得到的。为表征无序的程度,定义无序度D 为 D =

6

m i =1

{n 21[l 1(i )- l 1]2+n 22[l 2(i )- l 2]2+n 23[l 3(i )- l 3]2

}

(n 1l 1+n 2l 2+n 3l 3)m

(2)

其中: l 1、 l 2和 l 3分别为3层介质的平均厚度;l 1

(i )、l 2(i )和l 3(i )分别为第i 个周期中3种折射率介质的厚度。

为描述一维三元无序光子晶体,可定义膜系为 l 1(i )=l 11+l 1(a =0,b =0)(i )-l 1(a =0,b =0)

λ0/4n 1

l 2(i )=l 2

1+

l 2(a =0,b =0)(i )-l 2(a =0,b =0)

λ0/8n 2

(3)

l 3(i )=l 31+

l 3(a =0,b =0)(i )-l 2(a =0,b =0)

λ0/8n 3

式中,l l (a =0,b =0)

(i )、l 2(a =

0,b =0)(i )和l 3(a =0,b =0)

(i )分别为第i 个周期中3层介质膜层的厚度(D ≠0.0,a =0,b =0)。

由光学传输矩阵理论可知,每个单层膜的特征矩阵可表示为

M (z )=

cos (k 0nz cos

θ)-i

p

sin (k 0nz cos θ

)-i p sin (k 0nz cos θ

)cos (k 0nz cos θ

)(4)

其中,p =ε/μcos θ。光子晶体的特征矩阵可表示

M (z N )=M 1(z 1)M 2(z 2-z 1)…… M N (z N -z N -1)=

m 11m 12m 21

m 22

(5)

由此可以得到反射系数及透射系数 r =

m 11p 1+m 12p 1p 1-m 21-m 22p 1

m 11p 1+m 12p 1p 1+m 21+m 22p 1

(6) t =2p 1

(

m 11+m 12p 1)p 1+(m 21+m 22p l )

(7)

式中:p 1=ε1/μ1cos θ1;p l =εl /μ1cos θ1。

反射率和透射率分别为

R =|r |2,T =(p l /p 1)|t |2

(8)3 计算结果和分析

本文研究中,折射率介质分别为G aP (n 1=3.3)、ZrO 2(n 2=2.0)和MgF 2(n 3=1.38)。在400~2000nm 光波段,3种材料的折射率变化不大,可认为是常数。考虑TE 波,取中心波长λ0=976nm ,周期

m =24。计算发现,选取不同参数a 、b ,带隙宽度明

显改变。当a =0.9,b =-0.9,在中心波长处得到较宽的带隙。在以下的计算中,取a =0.9,b =-0.9。3.1 带隙分布随取无序膜层数目的变化情况 图2为正入射时G aP 2ZrO 22MgF 2多层膜的反射光谱随取无序膜层数目的变化情况。曲线a 是周期结构一维三元光子晶体的反射谱,其高反射区域小于570nm 。曲线b 是仅折射率为n 1的介质取无序的情况,其膜层厚度围绕λ0/4n 1=73.94nm 的高斯分

?

86? 光电子?激光 2005年 第16卷 

布选择,选取的序列为32.8529,46.9921,49.9131,55.8681,56.8554,57.0042,61.3888,61.8097,62.0296,63.0099,65.2444,69.0127,69.8656,70.9460,71.5420,72.3528,72.6335,74.6570,83.3271,83.6453,84.6474,84.9971,87.1999,104.6424;折射率为n 2、n 3膜层厚度不变,恒取为0.1λ0/8n 2=6.1nm 和1.9λ0/8n 3=167.97nm ,此

时无序度为0.0221。与曲线a 相比,它的高反射区域明显向短波和长波方向扩展,宽度大约为730nm 。曲线c 是折射率为n 1、n 2的介质取无序,折射率为n 3的介质膜层厚度不变的情况。折射率为n 3的介质膜层厚度恒取为167.97nm ,折射率n 1、n 2膜层厚度则围绕73.94nm 和6.10nm 的高斯分布来选择,此时无序度为0.0331,高反射区宽度约为1070nm 。曲线d 是3种折射率介质均取无序的情况。折射率n 1、n 2和n 3的膜层厚度分别围绕73.94nm 、6.10nm 和167.97nm 的高斯分布来选择,此时无序度为0.0438。从图可以看到,在550~1800nm 的区间范

围内,反射率高于90%;在某些波长范围,反射率达

到99%。比较b ~d 可以看出,随取无序的膜层数的增加,禁带区域逐渐向短、长波方向扩散,截止带隙逐渐扩展并互相连通,形成更宽的高反射区域

图2 无序一维三元光子晶体反射谱

Fig.2 R eflection spectra for disordered one 2dimensional ternary photonic crystals

3.2 带隙分布随膜层周期数的变化情况

取无序度D =0.0221,中心波长λ0=976nm 。为简便计,仅在折射率为n 1的介质中取无序,其膜层厚度围绕73.94nm 的高斯分布来选择,折射率为n 2、n 3膜层厚度不变,恒取6.10nm 和167.97nm 。选取周期数m 分别为8、16和24,计算结果如图3所示。很明显,随m 增大,高反射区域变宽

图3 不同周期的无序一维三元光子晶体反射谱

Fig.3 R eflection spectra for disordered one 2

dimensional ternary photonic crystals

with different periodss m

3.3 入射角对带隙分布的影响

取无序度D =0.0221、中心波长λ0=976nm ,调

节入射角θ,观察入射角对带隙分布的影响。表1给出不同入射角情况下无序光子晶体带隙的相对宽度。入射角为0°时最大带隙相对宽度约为82.0%。随着入射角增大,带隙的相对宽度减小,但在小于等于π/4范围内,带隙的相对宽度始终维持在60.5%以上。

表1 不同入射角下带隙的相对宽度

T ab.1 R elative b and gap width for different incident angle θ0π/16π/8

3π/16

π/45π/163π/87π/16

Δλ/λ0.8200.8040.758

0.681

0.6050.4560.3020.152

3.4 带隙分布随无序度的变化

取周期m =24,中心波长λ0=1.06μ

m ,入射角θ=0不变,计算带隙分布随无序度D 的变化。为简便计,仅在折射率为n 1的介质中取无序,其膜层厚度围绕73.94nm 的高斯分布选择;折射率为n 2、n 3膜层厚度不变,恒取为6.10nm 和167.97nm 。用计算机选取不同序列值,得到不同的D 。在D 分别为

0.0000、0.0075、0.0169、0.0221、0.0367、0.0440、0.0569和0.0677时,得到图4所示的反射光谱图。

由图4看出,随着D 增大,带隙变得越来越宽,高反射区域明显向短波和长波方向扩展。截止带隙逐渐扩展并连通,形成更宽的高反射区域。这可能是无序导致相干背散射,由布拉格反射和无序导致光局域化,将分立的截止带隙扩展成连续的带隙所致。 图5是介质1和介质3折射率发生变化时的反射光谱图。计算中,取D =0.0221,周期m =24,中心波长为976nm 。3层介质的折射率为n 1=3.3,n 2

?

96?第1期 张会云等:无序一维三元光子晶体的能带特性研究

=2.0,n 3=1.38和n 1=4.1,n 2=2.0,n 3=1.3。可

以看出,高反射区域的宽度从650nm (700~1350

nm )展宽到990nm (630~1620nm )。计算中还发现,介质1和介质3折射率的差别取得越大,高反射区域宽度明显增加。因此,为获得更宽更好的截止带隙,应选取折射率差值大的物质构造光子晶体

图4 无序度D 不同的无序一维三元光子晶体反射谱

Fig.4 R eflection spectra for disordered one 2

dimensional ternary photonic crystals

with different disorders

D

图5 介质不同的无序一维三元光子晶体反射谱

Fig.5 R eflection spectra for disordered one 2

dimensional ternary photonic crystals

with different medium

综上所述,与周期结构的光子晶体相比,无序一维三元光子晶体能有效拓宽光子晶体的光子禁带区。这种无序结构的光子晶体有望在宽带反射镜、宽带波导、太阳能利用和热能工程方面获得广泛应用。参考文献:

[1] Y ablonovitch E.Inhibited spontaneous emission in solid 2

state physics and electronics[J ].Phys Rev Lett ,1987,58(20):205922061.

[2] John S.Strong localition of photons in certain disordered

dielectric superlattice s[J ].Phys Rev Lett ,1987,58(23):248622489.

[3] Bayindir M ,Tanriseven S.Ozbay E.Propagation of light

through localized coupled 2cavity mode s in 1D photonic band 2gap structure s [J ].Appl Phys (A ),2001,72(1):1172119.

[4] Labilloy D ,Benity H ,Weisbuch C ,et al.Demonstration of

cavity mode between two 2dimensional photonic 2mirrors [J ].E lectron Lett ,1997,33(23):197821980.

[5] FU Li 2yuan ,OUY ANG Zheng 2biao ,LI Jing 2zhen.Photonic

bandgap propertie s of photonic crystals with a complicat 2ed periodic structure [J ].Journal of Optoelectronics ?La ser (光电子?激光),2002,13(2):1392141.(in Chi 2ne se )

[6] Plihal M ,Maradudin A A.Photonic band structure of two 2

dimensional systems :The triangular lattice [J ].Phys Rev B ,1991.44(16):856528571.

[7] Villeneuve P R ,Piche M.Photonic band gap s in two 2di 2

mensional square and hexagonal lattice s [J ].Phys Rev B ,1992,46(8):496924972.

[8] Anderson C M ,G iapis K https://www.wendangku.net/doc/56655664.html,rger teo 2dimensional pho 2

tonic band gap s[J ].Phys Rev Lett ,1996,77(14):294922952.

[9] ZH U J un ,OUY ANG Zheng 2biao ,LI Jing 2zhen.Photonic

bandgap s in a special kind of period 2varying photonic crystal[J ].Journal of Optoelectronics ?La ser (光电子?激

光),2002,13(2):1362138.(in Chine se )

[10]ZH ANG Dao 2zhong ,LI Zhao 2lin ,H U Wei ,et al.Broadband

optical reflector —ani application of light localization in

one dimension[J ].Appl Phys Lett ,1995,67(17):243122432.

[11]LI H ong 2qiang ,CHE N H ong ,QI U X in 2jie ,et al.Band 2gap

extention of disordered 12D binary photonic crystals[J ].Phys B ,2000,279:1642167.

[12]WANG Xu 2dong ,LI U Fang ,Y AN K e 2zhu ,et al.Studie s on

the optical transmission characteristics of polybasic pho 2tonic crystals[J ].Journal of Optoelectronics ?La ser (光电

子?激光),2004,15(1):1042107.(in Chine se )

作者简介:

张会云 (1974-),男,研究生,研究方向为光子晶体及其理论1

?

07? 光电子?激光 2005年 第16卷 

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

一维光子晶体带隙结构研究_张玲

第37卷第9期2008年9月 光 子 学 报 ACTA P HO TON ICA SIN ICA Vol.37No.9 September 2008 Tel :02928220149828313 Email :warltszhang @https://www.wendangku.net/doc/56655664.html, 收稿日期:2007204228 一维光子晶体带隙结构研究 张玲,梁良,张琳丽,周超 (西安建筑科技大学物理系,西安710055) 摘 要:在考虑介质色散的基础上,研究了介质层厚度对光子晶体带隙结构的影响.利用传输矩阵法,计算了以Li F 和Si 两种材料组成的一维光子晶体带隙结构.结果表明,介质层厚度的增加会引起禁带的红移,厚度减小会引起蓝移.分析了含空气缺陷层、金属缺陷层的光子晶体结构,发现空气缺陷层对带隙结构的高反射区域变化不大,而在低反射区域,反射系数为零的波带之间出现了两边反射系数增加,中间反射系数减小的情况.在金属缺陷层的带隙结构中,金属对整个波长范围光的吸收作用不同,金属对低反射区1.6μm 、1.85μm 处透射率较大的透射光吸收作用明显,而在1.28~1.38μm 处透射率波长区间,几乎无吸收. 关键词:光子晶体;色散;带隙结构;空气缺陷层;金属缺陷层中图分类号:O734 文献标识码:A 文章编号:100424213(2008)092181524 0 引言 微加工技术的进步,使得光子晶体[1]在理论和实验研究上取得了重大进展,利用光子晶体可以制造出光通信中的许多器件,如光纤、微谐振腔,品质优良的光子晶体滤波器、集成光路等等[223].实验室一般采用不同折射率介质在空间的周期性排列形成光子晶体,Ward 等人提出一种增强块状金属反射能力的方法,他们预测含有Al/玻璃层的一维金属/电介质光子晶体比块状Al 的反射能力更强[4].对Au/MgF 2光子晶体透射性质的研究发现,周期性结构产生的透射共振使得光通过金属层的透射率大大增强,并有效抑制了吸收.通过控制金属层和电介质的厚度以及周期数,可以调节透射区域的波长范围、宽度和陡度[5].如果在光子晶体中引入缺陷,可使光子局域化[6],在有缺陷层的一维光子晶体(AB )n D m (BA )n 的带隙结构发现随着缺陷层厚度的增加,在禁带中出现的缺陷模向低频方向移动[7].还有一些金属/电介质光子晶体可以对某些晶体的闪烁光谱进行修饰,使得其对慢衰减成分的相对抑制比大大提升等等[8].本文在考虑色散关系的基础上对于LiF 与Si 构成的2元一维光子晶体的带隙结构进行了研究,通过改变介质层的厚度,分析了其带隙结构的变化,另外当该结构的光子晶体中有空气缺陷层、金属缺陷层时,其带隙结构的变化[2],并对计算结果做了分析. 1 理论模型 典型的光子晶体是由两种不同介电常量(εa ,εb ),厚度为(d a ,d b )的材料交替排列的其结构如图1,根据光在介质薄膜传播的传输矩阵方法,在第一 介质中的传输矩阵为 M a = cos δa isin δa /ηa i ηa sin δa cos δa (1) 图1 一维光子晶体模型 Fig.1 The structure of 12D photonic crystal 在第二介质中的传输矩阵为 M b = cos δb isin δb /ηb i ηb sin δb co s δb (2) 式(1)、(2)中δj =2πn j d j cos θ/λ,n j 、d j 、θj ,分别为第 j 层(j =(a ,b ))的折射率,介质层厚度,入射角, λ为真空中的波长,对于TE 波:ηj =n j cos θj ,对于TM 波ηj =n j /co s θj , 对于整个光子晶体的传输矩阵,若取层的对数为n ,则 M =(M a ,M b )n = M 11M 12M 21 M 22 (3) 设光子晶体周围材料的折射率为n 0,对于TE 波η0=n 0co s θ0,光在光子晶体传播时的反射系数和透射系数分别为 r = (M 11+M 12η0)η0-(M 21+M 22η0)(M 11+M 12η0)η0+(M 21+M 22η0) (4)

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇(以下简称< Bandgap >)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2. 关于 Floquet (弗洛盖) 波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p 由此我判断Floquet 波矢就是Bloch (布 洛赫)波矢,但“帮助”文档中有: )sin a n cos a (sin k k 21211F ,以正格子基矢21a ,a 表示 (其文没有任何几何插图和物理说明),使我决定必须在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,

a 是晶格方向的单位 1b , a a a 32 a i ) a a (a a a x 02223213 2 ) a a (a a a 3211 32

里渊区六方结构光子晶体的布图2. 4.二维光子晶体主方程 COMSOL 在< Bandgap > “模型开发器” [电磁波,频域] 写出方程形式如下: 0)()(0 2 01 E j k E r r , 在< Bandgap >中,下面目录 [波方程,电] 中直接简化为, 020 E k )E (r 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 )(D 1 )(B 30 )(t B E 2 )(t D J H 4 E D ,H B ,E J 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。 本文档不考虑磁性质,0 ,0 J ,1 r 传播模态电场函数 COMSOL 表达为: )(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5 , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。

半导体能带理论(精)

一. 前言 光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。 二.晶体知识. 晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以 上的电压下电流可急剧移动,反向则无! 三.能带理论能级(Enegy Level) 在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中 自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。 四.其它知识原理.

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

一维光子晶体的能带结构研究开题报告

科研文献调研报告 题目:一维光子晶体的能带结构研究 学院:__理学院_ 专业:__光信息科学与技术__ 班级:_2008级 学号:_ 080701110083 学生姓名:__李辉_____指导教师:__徐渟_____ 2012年3月14日

一维光子晶体的能带结构研究 摘要: “光子晶体"的概念是1987年S.John和E.Yabloncvitch分别提出来的。而在当今世界,科学家们在不断研究电子控制的同时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子。与此同时随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光的控制。因此近年来光子晶体得到深入广泛的研究与应用。 关键字:光子晶体能带结构半导体器件 The Investigation on the Band Structures of one-dimensional photonic crystal Abstract: The concept of"Photonic crystals" was put forward byS.John and E.Yabloncvitch in 1987.But nowScientists constantly study electronic control and find that the integration of semiconductor devices has been the limit because of the characteristics of the electronic.And the photon has the advantage of high speed,no interaction, which electron does not have.So scientists want to get

光子晶体发展及种类

光子晶体及光子晶体光纤的研究现状与发展趋势 摘要:光子晶体光纤(PCF)由于具有传统光纤无法比拟的奇异特性,吸引了学术界和产业界的广泛关注,在短短的十年内PCF的研究取得了很大的进展。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 关键词:光子晶体光子晶体光纤光子晶体光纤激光器 1、前言 光子晶体光纤(photoniccrystalfiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 2、光子晶体光纤的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 2.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF 中的小孔尺寸比传导光的波长还小的缘故[3]。 2.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光

光子晶体

光子晶体的制备及应用 王文瀚12S011029 1 引言 光子晶体(Photonic Crystals, PCs)是一种人工周期介质结构,由不同折射率材料周期性地交替排列而成,这种周期介质结构最早由Bykov于1972年提出。1987年,Yablonovitch和John分别在研究抑制原子的自发辐射和光子的局域化问题中也各自独立地提出了这种结构,并在后来的研究中将其命名为光子晶体。 实际上,在自然界中就存在着光子晶体结构,如蛋白石、孔雀羽毛、蝴蝶翅膀上的鳞状覆盖物、以及澳洲海老鼠的毛发。蝴蝶翅膀上的鳞状覆盖物是一种周期性结构。这种周期性结构可以限制光在其中的传输,让某些波长的光通过,而让另一些波长的光完全被反射。正因为如此,才形成了蝴蝶翅膀表面绚烂的花纹和色彩。这种周期性结构与Yablonovitch和John提出的光子晶体概念是相吻合的。 当然,自然界中这样的例子只是少数,目前更多的光子晶体是由人工加工制作而成。1990 年,Ho和Chan等人第一次从理论上论证了三维金刚石结构具有完全光子禁带。1991 年,Yablonovitch团队通过从一定角度对半导体介质进行钻孔,首次成功制作了具有完全禁带的三维金刚石结构光子晶体,禁带频率范围为13GHz~15GHz。[1] 2 光子晶体原理 最简单的的光子晶体是由A、B两种材料在一个方向上周期交替排列形成,这种结构叫一维光子晶体,如图1(a)所示。A、B交替的空间周期a叫做光子晶体的晶格常数,这与由原子构成的普通晶体中的晶格常数相对应。普通晶体的晶格常数通常都在埃的数量级,而光子晶体的晶格常数则通常与工作波段的电磁波波长在同一个数量级。比如,在可见光波段,一般为1μm量级或更小,而在微波段,则一般为1cm 左右。根据光子晶体中介质周期分布的维数,可以把光子晶体分为一维、二维和三维光子晶体,分别如图 1 (a)、(b)、(c)所示。 (a) 一维光子晶体结构(b) 二维光子晶体结构(c) 三维光子晶体结构 图1 光子晶体结构示意图

一维光子晶体的禁带宽度分析

闽江学院 本科毕业论文(设计) 题目一维光子晶体的禁带宽度分析 学生姓名 学号 系别电子系 年级03 专业电子科学与技术 指导教师 职称副教授 完成日期2007.05.16

目录 摘要 (2) ABSTRACT (3) 第一章绪论 (4) 1.1什么是光子晶体? (4) 1.2光子晶体理论计算方法 (5) 1.3光子晶体的应用 (8) 第二章一维光子晶体基本理论 (9) 2.1光子禁带的产生 (9) 2.2一维光子晶体的特征矩阵 (11) 第三章一维光子晶体带隙变化规律的研究 (13) 3.1带隙随厚度比的变化 (13) 3.2带隙随折射率差的变化 (16) 3.3带隙随角度的变化 (19) 3.4厚度比与折射率差同时变化下的最大带隙 (22) 总结 (24) 参考文献 (25)

摘要 光子晶体的研究领域非常广泛,涉及到光学的方方面面。由于它所具有的特殊的性质,故被称为光的半导体,足见它对光学领域的影响力。虽然这个领域的工作也才刚开始10年多一点,但是进展非常地快。通过对这个领域的深入研究.不仅对光子晶体研究本身有意义,而且对光学领域的理论发展也具有重要的价值。使得人们对光的理解更加深入。 介绍了一维光子晶体的基本概念和原理系统综述了对一维光子晶体的研究进展和应用前景。 作为一维光子晶体的应用基础,一维光子晶体的禁带是研究的重点。一维光子晶体的带隙决定了工作频率范围,因此研究其带隙变化规律是其应用的关键,通过改变各种参数确定带隙的依赖因素及其定量关系。 通过传输矩阵的方法分析了一维光子晶体禁带的特性,讨论了影响带宽的因素,说明了相对带宽对光子晶体设计的重要性。在这个基础上讨论了扩展一维光子晶体带宽的方法,:1、使各层介质的厚度d微微变化,形成规则递增,达到展宽禁带的目的。2、角度 逐渐变化,使晶体在角度域化互相叠加,达到扩展带宽的目的。3、使晶体的折射率n1逐渐变化(n2=4.6),达到扩展带宽的目的。通过画出改变各种参数的情况下的带隙曲线图,得到带隙随各参数变化的规律,从而达到对一维光子晶体带隙变化规律的分析。 关键词:光子晶体;光子禁带;相对带宽;展宽。

以平面波展开法分析光子晶体能带结构.

以平面波展開法分析光子晶體能帶結構 廖淑慧講師 中州技術學院電子工程系 黃坤賢學生 黃照智學生 中州技術學院電子工程系 摘要 光子晶體的主要特色在於所謂的光子能隙—電磁波無法在能隙中傳播。雖然三維的光子晶體被認為是最具應用潛力的,但是二維光子晶體的結構在製程上卻佔有較易製作的優勢,所以在光電元件裝置及相關研究領域上亦廣為使用。我們使用平面波展開法,分別計算一維和二維光子晶體的能帶結構。根據理論分析的結果,我們發現一維光子晶體無論介電常數差異如何,總是存在著光子能隙。對於二維正方晶格的結構計算,我們發現正方晶格對TM波有能隙,對TE波則無。 關鍵詞: 光子晶體,光子能隙,平面波展開法 壹﹑前言 當半導體中的電子受到晶格的週期性位勢(periodic potential)散射時,部份波段會因破壞性干涉而形成能隙(energy gap),導致電子的色散關係(dispersion relation)呈帶狀分佈,此即所謂的電子能帶結構(electronic band structure)。西元1987年,E. Yablonovitch 與S. John不約而同地提出相關見解[1][2],說明類似的現象亦存在於所謂的光子系統中。根據他們提出的研究報告顯示,在介電係數呈週期性排列的三維介電材料中,電磁波被散射後,某些波段的電磁波強度將會因破壞性干涉而呈指數衰減,無法在該材料內傳遞,這樣的現象相當於在對應的頻譜上形成能隙,因此,色散關係也具有帶狀結構,此即所謂的光子能帶結構(photonic band structure)。這種具有光子能帶結構的介電物質,就稱為光子晶體(photonic crystal)。 事實上,在三維光子能帶結構的概念尚未被提出之前,科學家們對於一維的光子晶體(層狀介電材料) 的研究早已行之多年。電磁波在一維的光子晶體中的干涉現象早已應用在各種光學實驗以及相關的應用產品之中,例如作為波段選擇器、濾波器、繞射光柵元件或反射鏡等。因為科學界一直未能以「晶格」的角度來看待週期性光學材料,所以遲遲未能將固態物理上已發展成熟的能帶理論運用在這方面。直到1989年,Yablonovitch與Gmitter首次嘗試在實驗上證明三維光子能帶結構的存在[3],終於引起相關研究領域的注意,並且開始大舉投入這方面的研究。

光子晶体的制备与应用研究_李会玲

光子晶体的制备与应用研究* 李会玲① 王京霞② 宋延林③ ①助理研究员,②副研究员,③研究员,中国科学院化学研究所,北京100190 *国家自然科学基金(50625312,U0634004,20421101) 关键词 光子晶体 胶体晶体 自组装 光学器件 光子晶体以其特殊的周期结构和可以对光子传播进行调控的特性被称为“光半导体”,被认为是未来光子工业的材料基础。光子晶体的制备和光学特性研究受到高度关注,并在各类光学器件、光导纤维通讯和光子计算等领域呈现广阔的应用前景。本文综述了光子晶体制备和应用研究方面近年来的主要进展。 1光子晶体简介 1987年,美国贝尔通讯研究所的Yablonovitch[1]在研究抑制自发辐射时提出“光子晶体”的概念。几乎同时,美国普林斯顿大学的John[2]在讨论光子局域时也独立地提出了这个概念。这一新的概念是与电子晶体相比较而提出的。在光子晶体中,不同介电常数的介电材料构成周期结构,介电常数在空间上的周期性将会对光子产生类似半导体的影响。由于布拉格散射,电磁波在其中传播时将会受到调制而形成能带结构,出现“光子带隙”(photonic band gap,PBG)。在光子带隙的频率范围的电磁波不能在结构中传播。这种具有光子带隙的周期性介电结构就是光子晶体(photonic crystals),或叫做光子带隙材料(photonic band gap mat erials),也有人称之为电磁晶体(electromagnetic cryst als)。随着研究的深入,人们发现了一系列光子晶体的光学性能如慢光效应[3]、超校准效应[4]、负折射现象[5]等等,这些独特的现象大大激发了科研工作者的研究热情。 2光子晶体制备 自然界中存在的光子晶体结构较少。目前,文献报道[6]自然界中存在的光子晶体结构主要有蛋白石、蝴蝶翅膀、孔雀羽毛和海鼠毛等。绝大多数光子晶体的周期性电介质结构还需要通过人为加工制备。光子晶体是在一维、二维或三维周期上高度有序排列的材料,一般所谓的光学多层膜即是一维结构的光子晶体,已被广泛地应用在光学镜片上。二维或三维的高度有序结构在光子晶体研究领域中受到广泛重视。本文主要针对二维和三维光子晶体的制备和应用进行综述。目前,光子晶体的制备方法主要包括微加工(钻孔和堆积方法)、激光全息和自组装方法等。 2.1微加工方法 微加工方法是最早报道的人工制备光子晶体的方法,具体是通过在基体材料上机械钻孔[7]、刻蚀[8,9]等方法,利用空气与基体材料的折射率差获得光子晶体。微加工方法通常采用半导体离子刻蚀技术如电子束刻蚀、激光刻蚀和化学刻蚀等制备光子晶体。这种方法由于工艺复杂,目前主要在有成熟工艺的硅(Si)和砷化镓(GaAs)基底上加工,成本昂贵,而且所制得结构层数少,质脆、性能易受环境影响,极大限制其应用。 2.2全息光刻 全息光刻技术是利用激光束干涉产生三维全息图案照射在感光树脂上,感光树脂因此产生聚合,随后通过显影除去未聚合感光树脂,留下由聚合物和空气构成的三维周期结构。Berger[10]最先证明全息光刻制备光子晶体非常简单快捷。2000年,Campbell等人[11]采用4束紫外激光进行全息干涉,在30μm厚的感光树脂上产生全息图案,这是激光全息技术在光子晶体研究中的一大进步。对于全息结构还有一些需要解决的问题,如通过全息技术得到的三维光子晶体的光学特性还不够理想,可以用于这些结构制备的光学反应还不多。这些问题在干涉光束数量增加以形成复杂结构(如金刚石结构或手性格子结构)时变得更为重要。最近有报道用高折光指数材料复型制备反相结构可以提高光学特性[12], · 153 ·  自然杂志 31卷3期科技进展

光子晶体理论与器件课程背景

光子晶体理论与器件课程背景 关键词:光子晶体,禁带,晶体,材料,光子学 Key words : photonic crystals, band gap, crystals, materials, photonics 1 光子晶体概念的历史由来 光子晶体的概念首先由光子晶体的概念是在1987年分别由S. John [1] 和E. Yablonovitch [2] 各自独立提出。20多年来,光子晶体的理论和应用研究在全世界掀起了一股热潮,取得了一系列重要进展,已经发展成为一个世人瞩目的学科。光子晶体作为一种新型的光子器件材料,能够控制光子的运动,在提高发光二极管的发光效率,改善太阳能电池的光电转换效率,制作体积仅为光波波长的立方的数量级的微型激光器,实现无阈值激光振荡,控制原子的自发辐射,制造高增益、低损耗的天线,高增益光子频率滤波器,光子晶体空间波滤波器,光子晶体功率分配器/合成器,光子晶体相位补偿器、相移器,光子晶体偏振分离集成光路,光子晶体传感器,光子晶体负折射率器件,光子晶体自准直器件,光子晶体光束成形,光子晶体微透镜,光子晶体光脉冲压缩器件,光子晶体平板波导,光子晶体定向耦合器,光子晶体光纤,光子晶体非线性器件,光子晶体超连续谱产生,光子晶体混频器,光子晶体倍频器,光子晶体光开关,波分复用集成光路器件,光调制/解调集成光路,光二极管集成光路,光隔离器集成光路,光环行器集成光路,光子逻辑集成光路,光子存储、光子频率变换,光子信息处理,光子晶体光声器件,光子晶体光力器件、光子晶体太赫兹器件等方面均有着广泛的应用,因此引起了国际上广泛的注意。[1-77] 光子晶体的概念是根据传统的晶体概念类比而来的。在固体物理研究中发现,晶体中的周期性排列的原子所产生的周期性电势场结构对电子会产生一个特殊的约束作用。在这样的空间周期性电势场中的电子的运动所遵守的规律是由如下的薛定谔方程决定的: 0),())]((2[22=ψ-+?t r r V E m (1) 其中)(r V 是电子的势能函数,它具有空间周期性。求解以上方程式(1)可以发现,电子的能量E 只能取某些特殊值,在某些能量区间内该方程无解,也就是说电子的能量不可能落在在这样的能量区间,通常称之为能量禁带。研究发现,电子在这种周期性结构中的德布罗意波长与晶体的晶格常数具有大致相同的数量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电磁场所服从的规律是如下所示的Maxell 方程: 0),(]))(([022 2=???-++?t C εεω (2) 其中,0ε为平均相对介电常数,)(r ε为相对介电常数的调制部分,它随空间位置做周期性变化,C 为真空中的光速,ω为电磁波的频率,),(t r E 是电磁波的电场矢量。可以看到方程式(1)和(2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区间该方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常称这些被禁止的频率区间为“光子频率禁带”(Photonic Band Gap ),而将具有“光子频率禁带”的材料称作为光子晶体。

晶体的能带理论

晶体的能带理论 一、能带理论(Energy band theory )概述 能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它首先由 F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。 即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。 二、能带的形成 图1 1.电子共有化 对于只有一个价电子的简单情况:电子在离子实 电场中运动,单个原子的势能曲线表示如图1。 图2 当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。

当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示) 即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。实际的晶体是三维点阵,势场也具有三维周期性。 图3 分析: 1.能量为E1的电子,由于E1小,势能曲线是一种势阱。因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动; 2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动; 3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。 这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。价电子受母原子束缚最弱,共有化最为显著!

光子晶体简介论文

光子晶体简述 吉林师范大学欧天吉 0908211 摘要:光子晶体是指具有光子带隙的周期性介电结构材料,按其空间分布分为一维、二维、 三维光子晶体,一维光于晶体已得到实际应用,三维光于晶体仍处于实验室实验阶段,由于其优良的性能,未来光子晶体材料必将得到大力开发,应用前景更广泛。本文简要的论述了光子晶体的原理,理论研究,材料制备以及相关的应用。光子晶体材料是本世纪最具潜力的材料之一,至从上世间八十年代后期提出这一概念后。光于材料的研究和应用得到了很太的发展,目前在光纤和半导体激光器中已得到应用,本文就光子材料的基本概念和研究现状综合评述并对其未来发展趋势作出相应预测。 关键字:光子晶体材料制备前景应用 光子晶体的原理 1、什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。因其具有光子局域、抑制自发辐射等特性,故光子晶体也被认为是控制光子的光半导体。 1987年,E.Yallonovitch和S.John在研究抑制自发辐射和光子局域时分别,提出了光子晶体这一新概念1990年,Ho.K.M,等人从理论上计算了一种三维金刚石结构光子晶体的色散关系。 光子晶体即光子禁带材料,从材料结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体。与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。光子晶体和半导体在基本模型和研究思路上有许多相似之处,原则上人们可以通过设计和制造光子晶体及其器件,达到控制光子运动的目的。光子晶体(又称光子禁带材料)的出现,使人们操纵和控制光子的梦想成为可能。 2、光子晶体的性质 光子晶体的最根本性质是具有光子禁带,落在禁带中的光是被禁止传播的。Yablonovitch指出:光子晶体可以抑制自发辐射。因自发辐射的几率与光子所在频率的态的数目成正比,当原子被放在一个光子晶体里面,而它的自发辐射光的频率正好 落在光子禁带中时,由于该频率光子的态的数目为零,因此自发辐射几率为零,自发辐射被抑制。反之,光子晶体也可以增强自发辐射,只要增加该频率光子的态的数目便可以实现,如光子晶体中混有杂质时,光子禁带中会出现品质因子很高的杂质态,具有很大的态密度,这样就可以实现辐射增强。

相关文档