文档库 最新最全的文档下载
当前位置:文档库 › 条件概率、乘法公式和独立性(doc 10页)

条件概率、乘法公式和独立性(doc 10页)

条件概率、乘法公式和独立性(doc 10页)
条件概率、乘法公式和独立性(doc 10页)

条件概率、乘法公式和独立性(doc 10页)

§3.条件概率、乘法公式、独立性

前面讲到随机事件时,说到随机事件是在一定条件S下,进行随机试验而可能发生或可能不发生的事件.当我们计算事件A的概率P(A)时,如果除了条件S外,不再加上其它条件的限制,我们称此种概率为无条件的概率。但是在许多实际问题中,还存在着要求一个事件B在某一事件A 已经发生的条件下的概率.我们称它条件的概率。

一.【例1】设箱中有100件同型产品。其中70件(50件正品,20件次品)来自甲厂,

30件(25件正品,5件次品)来自乙厂。现从中任取一件产品。

(1)求取得甲厂产品的概率;

(2)求取得次品的概率;

(3)已知取得的是甲厂产品,求取得的是次品的概率。

分析:为了直观,我们将产品情况列成表

上面的问题,可用古典概率计算法求得。

解:

则(1)(2),

,,

(3)在“已知取得的是甲厂产品”这一条件下任取一件产品,实际上是从甲厂70件产品(50件正品,20件次品)中任取一件。这时样本空间只含70个基本事件(是原的样本空间的一部分)。由古典概率知:

为了给出条件概率的数学定义,我们对

{例1}的条件概率问题进行分析:

即有

二。条件概率:设A,B是条件S下的两个随机事件,P(A)>0,则称在事件4发生的条件下事件B发生的概率为条件概率,

【例1】从带有自标号1,2,3,4,5,6的六个球中,任取两个,如果用A表示事件“取出的两球的自标号的和,为6”,用B表示事件“取出的两球的自标号都处偶数”,试求:

【例】

φ

解;(ⅰ)∵ABφ

=,

三.概率的乘法公式:

乘法公式:两个事件A、B之交的概率等于中任一个事件(其概率不为零)的概率乘以另一个事件在已知前一个事件发生下的条件概率。即

【例2】盒中有10件同型产品。其中8件正品,2件次品,现从盒中无放回地连取2

件,求第一次、第二次都取得正品的

概率。

因为在第一次已取得正品下,第二次再取产品时,盒中只剩9件产品,其中正品只有7件。

条件概率与独立性

()()()()()()()()1012+C AB A P AB n P B A P A n P B A B C P B C A P B A P A ?????==????≤≤?????=???定义:对于两个事件A 和B ,在已知事件A 发生 的条件下,事件B 发生的概率。 公式:古典概型条件概率、性质、若事件、互斥,则有 条件概率题型: 题型一:根据公式换算求概率 ()()()()11,,23P B A P A B P A P B ===求(P(B)=1/3) 若P (A )=34,P (B |A )=12 ,则P (AB )等于 ( 3/8 ) 题型二:求条件概率 ()()()P AB P B A P A ?=???? 公式法:条件概率求解基本事件法:确定新的基本事件空间 1、公式法:由条件概率公式 ()()()P AB P B A P A =,分别求出()P AB 和()P A ,代入即可;公式法适用于所有条件概率问题;如例1 2、基本事件法:确定满足已知条件事件A 的基本事件数,确定新的基本事件 空间。基本事件法适用于解决与古典概型或几何概型相关的条件概率问题,比公式法方便,尤其是解决对于有次序的条件概率问题,如例2 用两种方法求解下列问题: 例1、 (公式法)盒中装有形状,大小完全相同的5个球,其中红色球3个, 黄色球2个,若从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为( )

A. 3 5 B. C. 2 3 D. 2 5 例2、(基本事件法)袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为() A.5 9 B. 4 9 C. 2 9 D. 2 3 例3、(基本事件法)有一匹叫Harry的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry赢了15场.如果明天下雨,Harry参加赛马的赢率是(1/2) 解答:此题所求就是Harry在雨天赛马赢的概率即 151 302 P== 例4、(基本事件法)一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球, 则后两次也摸得白球的概率为___1 5 _____. 例5、(基本事件法)某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第 一题不会答的情况下及格的概率.(25 42 ) 习题: 1.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛 出的也是偶数点的概率为 ( ) A.1 B.1 2 C. 1 3 D. 1 4 2.盒中装有形状,大小完全相同的5个球,其中红色球3个,黄色球2个,若 从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为() A. 3 5 B. C. 2 3 D. 2 5 9 10 9 10

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

事件的独立性与条件概率练习专题

事件的独立性与条件概率专题 1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为 ( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34

C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的 概率为13,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13 ,视力合格的概率为16,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( )

条件概率、乘法公式和独立性

§3.条件概率、乘法公式、独立性 前面讲到随机事件时,讲到随机事件是在一定条件S下,进行随机试验而可能发生或可能不发生的事件.当我们计算事件A的概率P(A)时,假如除了条件S外,不再加上其它条件的限制,我们称此种概率为无条件的概率。然而在许多实际问题中,还存在着要求一个事件B在某一事件A差不多发生的条件下的概率.我们称它条件的概率。 一.【例1】设箱中有100件同型产品。其中70件(50件正品,20件次品)来自甲厂, 30件(25件正品, 5件次品)来自乙厂。现从中任取一件产品。 (1)求取得甲厂产品的概率; (2)求取得次品的概率; (3)已知取得的是甲厂产品,求取得的是次品的概率。 分析:为了直观,我们将产品情况列成表

上面的问题,可用古典概率计算法求得。 解: 则(1)(2), ,, (3)在“已知取得的是甲厂产品”这一条件下任取一件产品,实际上是从甲厂70件产品(50件正品,20件次品)中任取一件。 这时样本空间只含70个差不多事件(是原的样本空间的一部分)。由古典概率知:

为了给出条件概率的数学定义,我们对{例1}的条件概率问题进行分析: 即有 二。条件概率:设A,B是条件S下的两个随机事件,P(A)>0,则 称在事件4发生的条件下事件B发生的概率为条件概率, 且 【例 1】从带有自标号1, 2, 3,4,5,6的六个球中,任取 两个,假如用A表示事件“取出的两球的自标号的和,为6”,用B 表示事件“取出的两球的自标号都处偶数”,试求:

【例】 φ =,解;(ⅰ)∵ABφ 三.概率的乘法公式:

乘法公式:两个事件A、B之交的概率等于中任一个事件(其概率不为零)的概率乘以另一个事件在已知前一个事件发生下的条件概率。即 【例2】盒中有10件同型产品。其中8件正品, 2件次品,现从盒中无放回地连取2件,求第一次、第二次都取得正 品的概率。 因为在第一次已取得正品下,第二次再取产品时,盒中只剩9件产品,其中正品只有7件。

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.34 B.23 C.35 D.12 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( ) A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.1 2 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1 2 ,构造数列{a n },使得a n = ????? 1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面), 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.1 4 D.1 2 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于

条件概率与事件的独立性

条件概率与事件的独立性 1. 条件概率及其性质 (1)条件概率的定义:设A 、B 为两个事件,且P(A)>0,称P(A|B)= 为在 发生的条件下, 发生的概率。 2.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做 . 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 3.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 4.互斥事件与相互独立事件是有区别的: 互斥事件与相互独立事件研究的都是两个事件的关系,但互斥的两个事件是一次实验中的两个事件,相互独立的两个事件是在两次试验中得到的,注意区别。 如果A 、B 相互独立,则P (A +B )=P (A )+P (B )-P (A ?B ) 如:某人射击一次命中的概率是0.9,射击两次,互不影响,至少命中一次的概率是0.9+0.9-0.9×0.9=0.99,(也即1-0.1×0.1=0.99) 5.独立重复试验 (1)独立重复试验的定义: (2)n 次独立重复试验的概率公式: 三、基础再现 1.一学生通过英语听力测试的概率是2 1 ,他连续测试两次,那么其中恰好一次通过的概率是 ( ) A. 41 B. 31 C. 21 D. 4 3 2.已知,53 )(,103)(==A P AB P 则)|(A B P 等于 ( ) A. 50 9 B. 21 C. 109 D. 41 3.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( ) A . 125 81 B . 125 54 C . 125 36 D . 125 27 4.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( ) A. p 1p 2 B.p 1(1-p 2)+p 2(1-p 1) C.1-p 1p 2 D.1-(1-p 1)(1-p 2) 5.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ) (A) 0.216 (B)0.36 (C)0.432 (D)0.648 6.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为3 1 ,丙生解出它的概率为 4 1 ,由甲、乙、丙三人独立解答此题只有一人解出的概率为______.

条件概率、乘法公式和独立性(doc 10页)

条件概率、乘法公式和独立性(doc 10页)

§3.条件概率、乘法公式、独立性 前面讲到随机事件时,说到随机事件是在一定条件S下,进行随机试验而可能发生或可能不发生的事件.当我们计算事件A的概率P(A)时,如果除了条件S外,不再加上其它条件的限制,我们称此种概率为无条件的概率。但是在许多实际问题中,还存在着要求一个事件B在某一事件A 已经发生的条件下的概率.我们称它条件的概率。 一.【例1】设箱中有100件同型产品。其中70件(50件正品,20件次品)来自甲厂, 30件(25件正品,5件次品)来自乙厂。现从中任取一件产品。 (1)求取得甲厂产品的概率; (2)求取得次品的概率; (3)已知取得的是甲厂产品,求取得的是次品的概率。 分析:为了直观,我们将产品情况列成表 上面的问题,可用古典概率计算法求得。

解: 则(1)(2), ,, (3)在“已知取得的是甲厂产品”这一条件下任取一件产品,实际上是从甲厂70件产品(50件正品,20件次品)中任取一件。这时样本空间只含70个基本事件(是原的样本空间的一部分)。由古典概率知: 为了给出条件概率的数学定义,我们对

{例1}的条件概率问题进行分析: 即有 二。条件概率:设A,B是条件S下的两个随机事件,P(A)>0,则称在事件4发生的条件下事件B发生的概率为条件概率, 且 【例1】从带有自标号1,2,3,4,5,6的六个球中,任取两个,如果用A表示事件“取出的两球的自标号的和,为6”,用B表示事件“取出的两球的自标号都处偶数”,试求:

【例】

φ 解;(ⅰ)∵ABφ =, 三.概率的乘法公式: 乘法公式:两个事件A、B之交的概率等于中任一个事件(其概率不为零)的概率乘以另一个事件在已知前一个事件发生下的条件概率。即

2.2.1条件概率与事件的相互独立性(学、教案)

2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率. 2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自 动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则1 12()A A A A =表示不超过2次就按对 密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095 P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则 112(|)(|)(|)P A B P A B P A A B =+ 14125545 ?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩, 问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为 P ( AB )=P (A )P (B )=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为 48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

条件概率与事件的独立性练习题

条件概率与事件的独立性练习题 1.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12 ,且 是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12 D.116 2、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率 为( ) A.81125 B.54125 C.36125 D.27125 3、一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率 是() A. 41 B. 31 C.21 D.4 3 4.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为() A .12581 B .1255 4 C .12536 D .125 27 5、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ) (A) 0.216 (B)0.36 (C)0.432 (D)0.648 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.

7.2009年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34 . (1)求该考生首次做错一道题时,已正确做出了两道题的概率; (2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.

条件概率与独立事件

条件概率与独立事件 【要点梳理】 要点一:条件概率 1.概念 设A 、B 为两个事件,求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为()|P A B ,读作:事件B 发生的条件下A 发生的概率。 要点诠释: 我们用韦恩图能更好的理解条件概率,如图,我们将封闭图形的面积理解为相应事件的概率,那么由条件概率的概率,我们仅局限于B 事件这个范围来考察A 事件发生的概率,几何直观上,()|P A B 相当于B 在A 内的那部分(即事件AB )在A 中所占的比例。 2.公式 . 要点诠释: (1)对于古典(几何)概型的题目,可采用缩减样本空间的办法计算条件概率: 古典概型:(|)AB P A B B = 包含的基本事件数 包含的基本事件数,即()() card (|)card AB P AB B =; 几何概型:(|)AB P A B B = 的测度 的测度 . (2)公式() (|)() P AB P A B P B = 揭示了()P B 、()|P AB 、()P AB 的关系,常常用于知二求一,即要熟练应用它的变形公式如,若()P B >0,则()()()=|P AB P A P B A ,该式称为概率的乘法公式. (3)类似地,当()0P A >时,A 发生时B 发生的条件概率为:()()() |=P AB P B A P A . 3. 性质 (1)非负性:()|0P A B ≥; (2)规范性:()|=1P B Ω(其中Ω为样本空间); (3)可列可加性:若两个事件A 、B 互斥,则()()()+||+|P A B C P A C P B C =. 4.概率()P A |B 与()P AB 的联系与区别: 当()0P B >时,()()() |= P A B P A B P B I .

条件概率与独立性

§4 条件概率与事件的独立性 一、条件概率 二、全概率公式,贝叶斯(Bayes)公式 三、事件独立性 四、贝努里概型 补充和注记 习 题 一、条件概率 任一个随机试验都是在某些基本条件下进行的,在这些基本条件下某个事件A 的发生具有某种概率. 但如果除了这些基本条件外还有附加条件,所得概率就可能不同.这些附加条件可以看成是另外某个事件B 发生. 条件概率这一概念是概率论中的基本工具之一. 给定一个概率空间 (,,)P ΩF ,并希望知道某一事件A 发生的可能性大小. 尽管我们不可能完全知道试验结果,但往往会掌握一些与事件A 相关的信息,这对我们的判断有一定的影响. 例如,投掷一均匀骰子,并且已知出现的是偶数点,那么对试验结果的判断与没有这一已知条件的情形有所不同. 一般地,在已知另一事件B 发生的前提下,事件A 发生的可能性大小不一定再是()P A . 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率(conditional probability),记作(|)P A B . 在某种情况下,条件的附加意味着对样本空间进行压缩,相应的概率可在压缩的样本空间内直接计算. 例1 盒中有球如右表1-2. 任取一球,记A ={取得蓝球},B ={取得玻璃球}, 显然这是古典概型. Ω包含的样本点总数为16,A 包含的样本点总数为11,故 11 ()16P A =. 表1-2

如果已知取得为玻球,这就B 是发生条件璃下A 发生的条件概率,记作(|)P A B . 在B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,也即把样本空间压缩到玻璃球全体. 而在B 发生条件下A 包含的样本点数为蓝玻璃球数,故 42(|)63P A B ==. 一般说来,在古典概型下,都可以这样做.但若回到原来的样本空间,则当()0P B ≠,有 (|) B A P A B B AB B 在发生的条件下包含的样本点数 = 在发生的条件下样本点数 包含的样本点数=包含的样本点数 AB P AB B P B 包含的样本点数/总数()==包含的样本点数/总数(). 这式子对几何概率也成立. 由此得出如下的一般定义. 定义1 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为 (|)P AB P A B P B () =(). (1) 反过来可以用条件概率表示A 、B 的乘积概率,即有乘法公式 若()0P B ≠,则()()(|)P AB P B P A B =, (2) 同样有 若()0P A ≠,则()()(|)P AB P A P B A =. (2)' 从上面定义可见,条件概率有着与一般概率相同的性质,即非负性,规范性和可列可加性. 由此它也可与一般概率同样运算,只要每次都加上“在某事件发生的条件下”即成. 两个事件的乘法公式还可推广到n 个事件,即 312121(|)(|) n n P A A A P A A A A -? (3)

条件概率

条件概率、乘法公式、独立性 前面讲到随机事件时,讲到随机事件是在一定条件S下,进行随机试验而可能发生或可能不发生的事件.当我们计算事件A的概率P(A)时,假如除了条件S外,不再加上其它条件的限制,我们称此种概率为无条件的概率。然而在许多实际问题中,还存在着要求一个事件B在某一事件A差不多发生的条件下的概率.我们称它条件的概率。 一.【例1】设箱中有100件同型产品。其中70件(50件正品,20件次品)来自甲厂, 30件(25件正品, 5件次品)来自乙厂。现从中任取一件产品。 (1)求取得甲厂产品的概率; (2)求取得次品的概率; (3)已知取得的是甲厂产品,求取得的是次品的概率。 分析:为了直观,我们将产品情况列成表

上面的问题,可用古典概率计算法求得。 解: 则(1)(2), ,, (3)在“已知取得的是甲厂产品”这一条件下任取一件产品,实际上是从甲厂70件产品(50件正品,20件次

品)中任取一件。这时样本空间只含70个差不多事件(是 原的样本空间的一部分)。由古典概率知: 为了给出条件概率的数学定义,我们对{例1}的条件概率问题进行分析: 即有 二。条件概率:设A,B是条件S下的两个随机事件,P(A)> 0,则称在事件4发生的条件下事件B发生的概率为条件概率, 且

【例 1】从带有自标号1, 2, 3,4,5,6的六个球中,任取两个,假如用A表示事件“取出的两球的自标号的和,为6”,用B表示事件“取出的两球的自标号都处偶数”,试求:

【例】 φ =,解;(ⅰ)∵ABφ 三.概率的乘法公式:

乘法公式:两个事件A、B之交的概率等于中任一个事件(其概率不为零)的概率乘以另一个事件在已知前一个事件发生下的条件概率。即 【例2】盒中有10件同型产品。其中8件正品, 2件次品,现从盒中无放回地连取2件,求第一次、第 二次都取得正品的概率。

条件概率与事件的独立性练习

条件概率与事件的独立性练习: 一、条件概率 1.已知P(B|A)=10 3,P(A)=5 1,则P(AB)=( ) A .2 1 B.2 3 C .32 D.50 3 2、一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) A.5 2 B.5 1 C.2 1 D. 7 3 3、在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率. 一、 事件的独立性 实质:P(B|A)=P(B) 。因此) () ()(A P AB P B P ,所以 P(AB)=P(A)·P(B). 注意两点:(1)当A 与B 相互独立时,A 与B 、A 与B 、A 与B 之间也是相互独立的; (2)公式可推广到多个相互独立事件。 1、典型的串并联电路问题: (1) 如图1,当元件A 和B 都正常工作时,系统正常工作。

如果元件A和B正常工作的概率依次为0.9和0.8,当系统正常工作的概率是多少?

(2) 如图2,当元件A 和B 至少有一个正常工作时,系统 正常工作。如果元件A 和B 正常工作的概率依次为0.9和0.8,当系统正常工作的概率是多少? 图1 B A 图2 B A (3)(2011湖北)如图,用K 、1A 、2A 三类不同的元件连接成一个系统。当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作,已知K 、1A 、2A 正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 A .0.960 B .0.864 C .0.720 D .0.576 2、甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A .1 2 B .35 C .23 D .3 4

概率的乘法公式

1.5 概率的乘法公式 1.5.1 条件概率 【问题1】 3张奖券中只有一张能抽奖,现分别由3名同学无放回的抽取,问最后一名同学抽到奖券的概率是否比其他同学小? 若抽到中奖券的概率用“Y ”表示,没有抽到的用“Y ”表示,用n A ()表示事件A 中基本事件的个数,那么所有可能抽取情况为Ω=YYY YYY YYY {,,},用B 表示最后一名同学抽到中奖奖券的事件,则=B YYY {},由古典概型可知,最后一名同学抽到中奖奖券的概率为 1 3 = =Ωn B p B n ()().() 【问题2】 如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率 又是多少? 因为已经知道第一名同学没有抽到中奖奖券,那么所有可能的抽取情况变为 =A YYY YYY {,},由古典概型可知,最后一名同学抽到中奖奖券的概率为1 2 =n B n A ()(),不妨记为P B A (|). 显然,知道第一名同学的抽取结果,即知道了事件A 的发生,会影响事件B 发生的概率, 从而导致了≠P B P B A ()(|). 【问题3】 对于上面的事件A 和B ,计算P B A (|)的一般想法是什么? 既然已经知道了事件A 的必然发生,所以只需局限在A 发生的范围内考虑问题,在事 件A 发生的情况下事件B 发生,等价于事件A 和事件B 同时发生,即AB 发生,对于古典概型,由于组成事件A 的各个基本事件发生的概率相等,因此其条件概率为 = n AB P B A n A () (|)() . ① 为了把条件概率推广到一般情形,我们对上述公式作如下变形:

Ω= ==Ωn AB m AB n P AB P B A n A m A n P A ()()/()() (|).()()/()() 因此有 = P AB P B A P A () (|).() 这一式子已经不涉及古典概型,可以将它作为条件概率的推广定义. 一般地,设A ,B 为两个事件,且0>p A (),称 = P AB P B A P A () (|)() ② 为在事件A 发生的条件下,事件B 发生的条件概率(conditional probability). 一般地,把P B A (|)读作A 发生的条件下B 的概率。 条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即 01≤≤P B A (|). 如果B 和C 是两个互斥事件,则 ?=+P B C A P B A P C A (|)(|)(|). 例1.在5道题中有3道理课题和2道文科题,如果不放回的依次抽取2道题,求: (1) 第1次抽到理科题的概率; (2) 第1次和第2次都抽到理科题的概率; (3) 在第1次抽到理科题的条件下,第2次抽到理科题的概率。 【答案】设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第 2次都抽到理科题为事件AB. (1) 从5道题中不放回的依次抽取2道的事件数为 2 520Ω==n A (). 根据分步乘法计数原理,11 3412=?=n A A A (),于是 123 205 = ==Ωn A P A n ()().() (2) 因为236==n AB A (),所以

条件概率与独立事件教案

2.1条件概率与独立事件(一) 丹凤县竹林关中学兰栋霞 ●学情分析 高二学生在高一阶段已经学习了古典概型、几何概型,对于概率知识有了一定的认识,为条件概率与独立事件的学习,奠定了一定的理论基础。 ●三维目标 1.知识与技能 (1)通过具体情境了解条件概率的概念,能利用条件概率分析和解决简单的实际问题. (2)掌握求条件概率的两种方法. 2.过程与方法 在对条件概率的学习过程中,进一步培养学生准确把握随机事件,掌握利用概率的知识,分析解决实际问题的方法.3.情感、态度与价值观 通过利用概率知识解决简单的实际问题,进一步体会和感受数学知识在生活中的应用,培养随机意识. ●重点难点 重点:求条件概率的方法,利用条件概率分析和解决简单的实际问题. 难点:对条件概率的概念的理解. ●教学方法 主要采取教师启发、讲授和学生探究、练习相结合的方法

●教学过程: 一、知识回顾 1.古典概型的概念: 1)试验的所有可能结果(即基本事件)只有有限个,每次试验只出现其中的一个结果;2)每一个结果出现的可能性相同。 2.古典概型的概率计算公式: 二、实例探究 100个产品中有93个产品的长度合格,90个产品的质量合格,85个产品的长度、质量都合格。现在任取一个产品,若已知它的质量合格,那么它的长度合格的概率是多少? 分析:令A={产品的长度合格} ,B={产品的质量合格},那么A ∩B={产品的长度、质量都合格} 现任取一个产品,已知它的质量合格(即B 发生),则它的 长度合格(即A 发生)的概率是9085 思考:这个概率与事件A 、B 发生的概率有什么关系么? 三、精讲点拨 求B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为 。 n m A A P ==试验的所有可能结果数包含的可能结果数事件)(当 时 ,其中 可记为 0 )(>B P )()()(B P B A P B A P ?=B A I AB )(B A P 类似地,当 时, ,此即为A 发生时B 发生的条件概率。 0)(>A P )()()(A B P AB P A P =

5知识讲解 条件概率与独立事件 提高

条件概率与独立事件 【学习目标】 1.了解条件概率和两个事件相互独立的概念. 2.通过实例探究条件概率计算公式的推导过程和事件独立性的概念,学会判断事件独立性的方法. 3.通过本节的学习,体会数学来源于实践又服务于实践,发展数学的应用意识. 【要点梳理】 要点一:条件概率 1.概念 设A 、B 为两个事件,求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为()|P A B ,读作:事件B 发生的条件下A 发生的概率。 要点诠释: 我们用韦恩图能更好的理解条件概率,如图,我们将封闭图形的面积理解为相应事件的概率,那么由条件概率的概率,我们仅局限于B 事件这个范围来考察A 事件发生的概率,几何直观上,()|P A B 相当于B 在A 内的那部分(即事件AB )在A 中所占的比例。 2.公式 . 要点诠释: (1)对于古典(几何)概型的题目,可采用缩减样本空间的办法计算条件概率: 古典概型:(|)AB P A B B = 包含的基本事件数 包含的基本事件数,即()() card (|)card AB P AB B =; 几何概型:(|)AB P A B B = 的测度 的测度 . (2)公式() (|)() P AB P A B P B = 揭示了()P B 、()|P AB 、()P AB 的关系,常常用于知二求一,即要熟练应用它的变形公式如,若()P B >0,则()()()=|P AB P A P B A ,该式称为概率的乘法公式. (3)类似地,当()0P A >时,A 发生时B 发生的条件概率为:()()() |=P AB P B A P A . 3. 性质 (1)非负性:()|0P A B ≥; (2)规范性:()|=1P B Ω(其中Ω为样本空间); 当()0P B >时,()()() |= P A B P A B P B .

§12.7 条件概率与相互独立事件的概率

§12.7 条件概率与相互独立事件的概率(教案) 知识点: 1.掌握条件概率的定义和公式,会运用条件概率解决问题; 2.了解事件的独立性的意义,会求相互独立事件同时发生的概率。 (一)课标解读及教学要求: 了解互斥事件、对立事件的概念,能判断某两个事件是否是互斥事件、是否是对立事件;了解两个互斥事件概率的加法公式,了解对立事件概率之和为1的结论,会用相关公式进行简单的概率计算。 考点: 1.互斥事件 不能同时发生的两个事件称为互斥事件. 一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 2.互斥事件的概率求法 如果事件A ,B 互斥,那么事件B A +发生的概率,等于事件A ,B 分别发生的概率的和,即)()()(B P A P B A P +=+. 一般地,如果事件n A A A ,,,21 两两互斥,则 )()()()(2121n n A P A P A P A A A P +++=+++ . 3.对立事件 对立事件的概念说明: 从盒中任意摸出一个球,若摸出的球不是红的,即事件A没发生,记作A . 由于事件A和事件A 不可能同时发生,它们是互斥事件.又由于摸出的一个球要么是红球,要么不是红球,即事件A和事件A 必有一个发生象这种其中必有一个发生的互斥事件叫做对立事件. 两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A 的对立事件记为A . 对立事件A 和A 必有一个发生,故A A +是必然事件,从而1)()()(=+=+A P A P A A P . 因此,我们可以得到一个重要公式)(1)(A P A P -=. 思考:对立事件和互斥事件有何异同? 对立事件必然是互斥事件,但是互斥事件不一定是对立事件。 4.条件概率 在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率. 如在事件A 发生的条件下,求事件B 发生的条件概率,记作)|(A B P . 定义1 设B A ,是两个事件, 且0)(>A P , 则称 ) ()()|(A P AB P A B P = (1) 为在事件A 发生的条件下,事件B 的条件概率.相应地,把)(B P 称为无条件概率。一般地,)|(A B P )(B P ≠.

相关文档