文档库 最新最全的文档下载
当前位置:文档库 › 复旦大学精品课程《线性代数》课件,n阶行列式的定义课件复习资料

复旦大学精品课程《线性代数》课件,n阶行列式的定义课件复习资料

1.2 n阶行列式的定义

一、n级排列及奇偶性

二、三阶行列式展开式的规律

三、n阶行列式的定义

一、n级排列及奇偶性

定义1.1

由数1,2,…,n组成的一个有序数组,称为一个

n级排列.

由1,2,…,n所组成的所有不同的n级排列共有n!

个. 1 2 … n是唯一的一个按从小到大次序组

成的排列,称为n级标准排列.

例如,3级排列共有6个不同的排列,即

1 2 3 2 3 1 3 1 2

1 3

2 2 1

3 3 2 1

其中1 2 3是3级标准排列.

定义1.2

逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.

例1例2

定义1.3

将一个排列中某两个数的位置互换而其

余的数不动,就得到另一个排列,这种

对排列的变换方法称为对换.

例如,排列2413经过2与3兑换后,就得

到排列3412;排列32415经过2与1兑换

后,就得到排列31425.

由计算逆序数可知,奇排列2413变成了

偶排列3412;而偶排列32415却变成了

奇排列31425.

证明设排列为

m l b b ab a a 11m

l b b ba a a 11除外,其它元素的逆序数不改变.b ,a a b 的逆序数不变;

经对换后的逆序数增加1 ,

当时,

b a 任一排列经过一次对换后必改变其奇偶性.

定理1.1

当时,

b a 经对换后的逆序数不变,的逆序数减少1.a b 因此对换相邻两个元素,排列改变奇偶性.设排列为n m l

c bc b ab a a 111现来对换与a .

b

次相邻对换

m n

m l c c b b ab a a 111次相邻对换1+m n

m l c

c a b b b a a 111,

111n m l c bc b ab a a ∴次相邻对换12+m ,111n

m l c ac b bb a a 所以一个排列中的任意两个元素对换,排列改变

奇偶性.

n

m l c c b b b a a a 111

三阶行列式

33

323123222113

1211ααααααααα322113312312332211a a a a a a a a a ++=33

2112322311312213a a a a a a a a a ---规律

(1)三阶行列式是行列式中取自不同行、不同列的三个元素乘积的代数和(共有3!=6项)

二、三阶行列式展开式的规律

()

6.2

(2)每项中三个元素的行指标构成一个三级排列,在式(2.6)中,行指标的排列都是标准排列1 2 3,列指标构成的三阶排列各不相同,因此式(2.6)

中每项的一般形式为:

()7.2

例如32

2113a a a 列标排列的逆序数为

(),211312=+=τ32

2311a a a 列标排列的逆序数为

(),

101132=+=τ偶排列奇排列正号

+,

负号-.

)1(321321321)

(33

32

31

232221

13

1211

∑-=∴j j j j j j a a a a a a a a a a a a τ

nn

n n n n nj j j j j j τa a a a a a a a a A a a a n n n n n

21

222211121121)

(2

记作

.

)

1(的代数和

个元素的乘积取自不同行不同列的阶行列式等于所有个数组成的由2121=

-∑三、n 阶行列式的定义

定义1.4

()

8.2

为这个排列的逆序数.

)(的一个排列,,,2,1为自然数其中2121n n j j j τn j j j ()

()

n

n

n nj j j j j j j j j τnn n n n

n

a a a a a a a a a a a a A 212121212122221112111∑-=

=

()

10.2

例3计算上三角行列式

n n nn

a a a a a a 1112122

2

分析

展开式中项的通项是.

2121n nj j j ααα 其中不为零的项只有

.

2211nn ααα ()

()

nn

n a a a 2211121τ-=.

2211nn a a a =解n n nn

a a a a a a 1112122

2

行列式的不同表示方法()

n

i i i i i i τn n αααA 21)

(21211∑-=

()

∑+-=

n

n

n n n j j j j i j i j i j j j τi i i ταααA 2122112121)

()(1()14.2()

16.2设是取定的某一固定排列

n i i i 2

1()

∑+-=

n

n

n n n i i i j i j i j i j j j τi i i ταααA 2122112121)

()(1()

15.2设是取定的某一固定排列

n j j j 2

1特别

取定标准排列

n

j j j 21

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

n阶行列式的求法

计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算 方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-=

则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,

n阶行列式的计算方法

n 阶行列式的计算方法 1.利用对角线法则 “对角线法则”: (1)二、三阶行列式适用“对角线法则”;(2)二阶行列式每项含 2 项,三阶行列式每项含 3 项,每项均为不同行、不同列的元素 的乘积;(3)平行于主对角线的项为正号,平行于副对角线的项为负号。 例 1 计算二阶行列式 D = 1 3 。 2 4 解: D = 1 3 = 1? 4 ? 3 ? 2 = ?2 2 4 例 2 计算三阶行列式 D = 1 2 0 4 ? 3 8 。 0 ?1 2 解: D = 1 2 0 4 ? 3 8 = 1? (?3) ? 2 + 2 ? 8 ? 0 + 0 ? 4 ? (?1) ? 0 ? (?3) ? 0 ? 2 ? 4 ? 2 ?1? 8 ? (?1) 0 ?1 2 = ?14 2.利用 n 阶行列式的定义 a 11 a 12 ? a 1 n n 阶行列式 D = a 21 a 22 ? a 2 n =∑ (?1) τ a 1 p 1 a 2 p 2 ? a np n ? ? ? ( p 1 p 2 ? p n ) a n 1 a n 2 ?a nn 其中 τ = τ( p 1 p 2 ? p n ) , 求和式中共有 n ! 项。 显然有 a 11 a 12 ? a 1 n 上三角形行列式 D = a 22 ?a 2 n = a 11 a 22 ? a nn ? ? a nn a 11 下三角形行列式 D = a 21 a 22 ? = a 11 a 22 ? a nn ? ? a n 1 a n 2 ?a nn

n阶行列式的定义

第二节 n 阶行列式的定义 介绍线性代数的思想方法及其要点,关于行列式定义的说明以及学习中要特别注意之处 内容要点: 从三阶行列式讲起,应如何定义行列式,对于更高阶行列式定义的启发于思考。 一、排列与逆序 定义1 由自然数1,2,…,n 组成的不重复的每一种有确定次序的排列,称为一个n 级排列(简称为排列)。 例如,1234和4312都是4级排列,而24315是一个5级排列. 规定自然数的排列由小到大的次序为标准次序。 定义2 在一个n 级排列)(21n s t i i i i i 中, 若数,s t i i > 则称数t i 与s i 构成一个逆序.一个n 级排列中逆序的总数称为该排列的逆序数, 记为).(21n i i i N 根据上述定义,可按如下方法计算排列的逆序数: 设在一个n 级排列n i i i 21中,比),,2,1(n k i k =大的且排在k i 前面的数由共有k t 个, 则 k i 的逆序的个数为k t , 而该排列中所有自然数的逆序的个数之和就是这个排列的逆序数. 即 .)(1 2121∑== +++=n k k n n t t t t i i i N 定义3 逆序数为奇数的排列称为奇排列, 逆序数为偶数的排列称为偶排列. 二、n 阶行列式的定义 定义4 由2n 个元素),,2,1,(n j i a ij =组成的记号 nn n n n n a a a a a a a a a 2 1 22221 11211 称为n 阶行列式, 其中横排称为行, 竖排称为列, 它表示所有取自不同行、不同列的n 个元素乘积n nj j j a a a 2121的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号. 即 ∑ -=n n n j j j nj j j j j j N nn n n n n a a a a a a a a a a a a 21212121)(212222111211)1( 其中∑ n j j j 21表示对所有n 级排列n j j j 21求和. 行列式有时也简记为det )(ij a 或||ij a ,这里 数ij a 称为 元素,称 n n nj j j j j j N a a a 212121) () 1(- 为行列式的一般项. 注: (1) n 阶行列式是!n 项的代数和, 且冠以正号的项和冠以负号的项(不算元素本身所带的符号)各占一半; (2) n nj j j a a a 2121的符号为) (21) 1(n j j j N -(不算元素本身所带的符号); (3) 一阶行列式 ,||a a =不要与绝对值记号相混淆.

n阶行列式的若干计算方法

n 阶行列式的若干计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例计算行列式00100200 1000000n D n n =-L L M M M M L L 解D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例:一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称行列式,证明:奇 数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=, 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式

相关文档