文档库 最新最全的文档下载
当前位置:文档库 › 相似三角形

相似三角形

相似三角形
相似三角形

27.1 图形的相似(第1课时)

学习目的:1.通过对事物的观察、思考和分析,认识、理解相似的图形

2.了解相似图形和相似多边形的概念。

学习重点:认识图形的相似,形成图形相似的概念

教学难点:对形状相同的理解

学习过程:一、预习导航

说说你对现实生活中的相似图形有什么认识?

二、自主学习合作探究

问题1:观察这些图形都有什么共同特征?共同特征是:

归纳:1、定义:我们把这种形状相同的图形叫做()

两个图形相似,其中一个图形可以看作由另一个图形 ______或________得到

2、相似图形的判断:A、判断相似图形与图形的大小,摆放的位置,颜色无关

B、图形相似形状相同其中一个图形可以看作由另一个图形放大或缩小得到,而把一个图

形的局部拉长或加宽得到的图形和原图形不相似

问题2:你能举出现实生活中的几个相似图形的例子

课堂巩固:完成金榜学案23页知识点一和跟踪训练的1、2题

问题3:下面是一些两两相似的几何图形,你能尝试着再画几组相似图形吗?

观察图中是人

们从平面镜及哈

哈镜里看到的不

同镜像,它们相

似吗?

归纳:一个图形的局部拉长或加宽得到的图形和原图形不相似

三、精练提升

1、如图,从放大镜里看到的三角尺和原来的三角尺相似吗?

2.如图,图形a ~ f中,哪些是与图形(1)或(2)相似的?

3.正方形网格中有一条简笔画“鱼”,请你将这条“鱼”放大,使新图形与原图形的应

线段的比为2:1.

学习反思:

D

C

B

A

27.1 图形的相似(第2课时)

学习目的:1.经历探索相似多边形特征的过程,掌握相似多边形的特征

2.培养学生的合理推理和数学说理能力

学习重点难点:相似多边形特征

学习过程:一、预习导航:什么叫相似图形?

二、自主学习合作探究

探究一:1、观察下面的两个图形是相似图形吗?

2、由下面的格点图可知,=

'

'B

A

AB

,=

'

'C

B

BC

,这样

B

A

AB

'

'

C

B

BC

'

'

之间有()关系,或与之间有()关系

归纳:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另两条

线段的比(),如 _________(即ad=bc)我们就说这四条是成比例线段,简称比

例线段.

强调:1、两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位

2、线段的比是没有单位的正数

3、成比例线段的表示方法

巩固练习:完成金榜学案23页知识点二和第24跟踪训练的3、4题

方法归纳:1、统一单位2、大小排列(按线段的由长到短或由短到长)3、计算判断(前

两个的比是否等于后两个的比或是前后两个的积是否等于中间两个的积)

探究二 A

1

A

B C B

1

C1

(1)图中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什

么关系?对应边呢?

(2)对于图中两个相似的正六边形,你是否也能得到的结论?

对比图中的△A1B1C1和△ABC,由于正三角形的每个角都等于()°,可得∠A=(),

∠B=(),∠C=()由△ABC和△A1B1C1是正三角形可得:

AB=BC=AC, A

1

B

1

=B

1

C

1

=A

1

C

1

这说明:正三角形都是()的,它们的()相等,对应边的比相等.

图中的两个相似的正六边形,也有类似的结论.

说明相似的正多边形()相等,对应边的()相等.

这个结论对于一般的相似多边形是否成立呢?

探究3:1下图是两个相似的三角形,它们的对应角有什么关系?对应边的比

是否相等?

2.对于图中两个相似的四边形,它们的对应角、对应边是否有同样的结论?

猜想:(对应角相等对应边成比例)

为验证你的猜想,可以用刻度尺和量角器量一量.

多边形相似特征:( )

反过来如果两个多边形满足(),那么这两个多边形相似.(注意

两个条件同时满足)

相似比: 我们把()称为相似比.

若相似比为1时,相似的两个图形有什么关系?( )

试一试:如图,四边形ABCD和EFGH相似,求角α,β的大小和EH的长度x

三、精练提升

1. 在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30cm,求两地的实

际距离?

2. 如图所示的两个五边形相似,求未知边a、b、c、d的长度.

3教科书38页练习2、3题

四、小结

五、布置作业:完成金榜学案24页知识点三和跟踪训练的5、6题和课堂达标训练

学习反思:

6厘米

2厘米

3厘米

1厘米

第三节27.2.1 相似三角形的判定(第1课时)

学习目的:1.了解相似三角形的概念及表示法,会准确找出两个相似三角形的对应边,对应角。2、掌握平行线分线段成比例定理及推论3. 培养学生从简单到复杂,从特殊到一般的思想的思想方法

学习重点:理解、掌握平行线分线段成比例定理及应用 学习难点:掌握平行线分线段成比例的应用 学习过程:一、预习导航:

1、相似多边形的主要特征是什么?

2、三角形全等的判定还记得吗?有哪些? 二、自主学习 合作探究

探究1,在相似多边形中,最简单的就是相似三角形.

在△ABC 与△A ′B ′C ′中,

如果∠A=∠A′、∠B =∠B ′∠C =∠C′且

k A

C CA

C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′相似,记作△ABC∽△A ′B ′C ′,k 就是它们的相似比.若

△A ′B ′C ′和△ABC 相似,相似比为( )

反之如果△ABC∽△A ′B ′C ′,

则有∠A=_____, ∠B=_____, ∠C=____, 且

A

C CA

C B BC B A AB ''=

''=''. 强调:(当两个三角形相似时,对应点的顶点写在对应的位置上) 思考:如果k=1,这两个三角形有怎样的关系?

探究2:(1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线

l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条

线段DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?

思考填空:AB ︰AC=DE ︰( ),BC ︰AC=( )︰DF .强调“对应线段的比是否相等” 根据所测数据结合图27.2-1进一步地探究归纳:上比全等于上比全( ),上比下等于上比下( ),下比全等于下比全( ),下比上等于下比上( )等 (3) 归纳总结:

平行线分线段成比例定理 三条_________截两条直线,所得的________线段的比________。

应重点关注:平行线分线段成比例定理中相比线段同线;

巩固练习:完成金榜学案24页课前自主预习一、二和跟踪训练的1和课堂达标第1题

归纳:三线截两线,线段共六段;横可比纵可比,就是不能交叉比 探究二:平行线分线段成比例定理推论

1、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图27.2-2(1),所得的对应线段的比会相等吗?依据是什么?

2、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 4上, 如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?

3、 归纳总结:

平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的_______线段的比_________.

试一试1.在△ABC 中,DE∥BC,AC=4 ,AB=3,EC=1.求AD 和BD.

三、精练提升

1.△ABC ∽△AED, 其中DE ∥BC ,

找出对应角并写出对应边的比例式.

2.如图,△ABC ∽△AED ,其中∠ADE=∠B ,

找出对应角并写出对应边的比例式.

四. 小结巩固

五、布置作业:

学习反思:

相似三角形压轴题专题

中考全国试卷分类汇编 相似三角形 1. 如图,Rt A ABC 中,/ ACB=90°, / ABC=60°, BC=2cm, D 为BC的中点,若动点E以1cm/s 的速度从A 点出发,沿着A T B-A的方向运动,设E点的运动时间为t秒(O WH 6),连接。巳当厶BDE是直角三角形时,t的值为() A. 2 B. 2.5或3.5 C. 3.5或4.5 D. 2或3.5 或4.5 点评:此题考查了含30°角的直角三角形的性质?此题属于动点问题,难度适中,注意掌握 分类讨论思想与数形结合思想的应用. 2. 如图所示,在平行四边形ABCD中,AC与BD相交于点O, E为0D的中点,连接AE并延长交DC于 点F,则DF: FC=() A. 1: 4 B. 1: 3 C. 2: 3 D. 1: 2 点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的 关键是根据平行证明△ DF0A BAE,然后根据对应边成比例求值.

如图,在 △ ABC 中/A=60° BM 丄AC 于点M , CN 丄AB 于点N , P 为BC 边的中点,连接 PM , PN,贝U 下列结论:①PM=PN ;②土—空;③△ PMN 为等边三角形; ④当/ ABC=45时,BN= =PC.其中正确的 AB _AC 个数是( ) A . 1个 B. 2个 C 3个 D . 4个 点评:本题主要考查了直角三角形 30°角所对的直角边等于斜边的一半的性质, 相似三角形、 等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析 图形并熟练掌握性质是解题的关键. 4. 如图,在平面直角坐标系中,四边形 OABC 是边长为2的正方形,顶点 A 、C 分别在x , y 轴的正半轴 上.点Q 在对角线0B 上,且QO=OC,连接CQ 并延长CQ 交边AB 于点P.则点P 的坐标为 __________________________ 点评:本题考查了相似三角形的判定与性质,正方形的对角线等于边长的 及坐标与图形的性质,比较简单,利用相似三角形的对应边成比例求出 题的关键. 5 . 如图,/ BAC=Z DAF=90°, AB=AC, AD=AF ,点 D 、E 为 BC 边上的两点,且/ DAE=45°,连 接 EF 、BF , 则下列结论: cl _______ B 3. 二倍的性质,以 BP 的长是解 B P C

完整版相似三角形与圆综合题

AB 于点D,交AC 于点E ,求证:(1)AD=AE ; C 在O O 上,/ BAC= 60°, P 是OB 上一点,过 P 作AB 的垂线与 AC 的延长线交于点 Q 连结OC 过点C 作CD L OC 交PQ 于点D. (1)求证:△ CDQi 等腰三角形; (2) 如果△ CDQ^A COB 求BP : PO 的值. 第一部分:例题分析 相似三角形与圆综合 △ ABC 内接于圆O, / BAC 勺平分线交O O 于D 点,交O O 的切线BE 于F ,连结 BD CD 求证:(1) BD 平分/ 例4、 例3、 O O 内两弦 E E AB CD 的延长线相交于圆外一点 E ,由E 引AD 的平行线与直线 BC 交于F ,作切线FG G 为切点, 求证: EF = FG 例3、AB 是O O 的直径,点 (2)AB ? AE=AC ? DB. BE. 例1、已知:如图,BC 为半圆O 的直径,ADI BC,垂足为D,过点B 作弦BF 交AD 于点E ,交半圆O 于点F ,弦AC

第二部分:当堂练习 1.如图,AB是O O直径,ED丄AB于D,交O O于G , EA交O O于C, CB交ED于F,求证:DG2= DE?DF

(1)若 PC=PF ,求证:AB 丄 ED ; ⑵点D 在劣弧AC 的什么位置时,才能使 AD 2 =DE DF ,为什么? 2 . 3. 如图,AB 、AC 分别是O O 的直径和弦,点 D 为劣弧AC 上一点, 弦ED 分别交O O 于点 E ,交AB 于点H ,交 AC 于点F ,过点C 的切线交ED 的延长线于点 P . 如图,弦EF 丄直径

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A C与BF交于点H,且AE=BE.求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A E;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习 1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE?DF 2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA?MC=MB?MD

D C B A O M N E H 3.如图,AB 、AC 分别是⊙O的直径和弦,点D为劣弧AC 上一点,弦E D分别交⊙O于点E ,交A B于点H,交AC 于点F ,过点C的切线交ED 的延长线于点P. (1)若PC =P F,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2 =D E·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,AD 是△A BC的角平分线,延长AD 交△A BC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△A EF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠B AP. (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且P C=20,求PA 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,OB ⊥A D于点E,交⊙O 于点C ,OE =1,BE =8,A E:A B=1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是A CD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿AB C内接于⊙O ,且BC 是⊙O 的直径,AD ⊥B C于D ,F是弧BC 中点,且AF 交BC 于E ,A B=6,AC =8,求CD ,DE ,及EF 的长. 9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F. A C P E D H F O

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

(完整版)相似三角形专题

【一】知识梳理 【1】比例 ①定义:四个量a,b,c,d中,其中两个量的比等于另两个量的比,那么这四个量成比例 ②形式:a:b=c:d, ③ 性质:基本性质: d c b a = ac=bd 4,比例中项: b c c a =ab c= 2 【2】黄金分割 定义:如图点C是AB上一点,若BC AB AC? = 2,则点C是AB的黄金分割点,一条线段的黄金分割点有两个 AC AC BC AB AB BC AB AB AC 618 .0 2 1 5 382 .0 2 5 3 618 .0 2 1 5 ≈ - = ≈ - = ≈ - = 注意:如图△ABC,∠A=36°,AB=AC,这是一个黄金三角 形, 【3】平行线推比例 AB AB BC618 .0 2 1 5 ≈ - = d c b a = 注:比例式有顺序性的,比例线段没有负的,比例数有正有负 1、可以把比例式与等积式互化。 2、可以验证四个量是否成比例 上比全=上比全,下比全=下比全,上比下=上比下,左比右=左比右 全比上=全比上,全比下=全比下下比上=下比上

【4】相似三角形 1、相似三角形的判定 ①AA 相似:∵∠A=∠D, ∠B=∠E ∴△ABC ∽△DEF ②‘S A S ’ E B EF BC DE AB ∠=∠=,Θ ∴△ABC ∽△DEF ③‘S S S ’EF BC DF AC DE AB = Θ ∴△ABC ∽△DEF ④平行相似: ∵DE ∥BC ∴△ADE ∽△ABC 2、相似三角形的性质 ①相似三角形的对应角相等,对应边成比例 ②相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比 ③相似三角形的面积比等于相似比的平方 3、相似三角形的常见图形 ‘A 型图’ ‘ X 型图’ ‘K 型图’ ‘母子图’ ‘一般母子图’ AC 2 =AD ?AB 母子图中的射影定理

相似三角形与圆的结合

E D C B A B E D C B A B B B 相似三角形与圆的结合 1、 如图,圆中的弦AB 、CD 相交于E 点, 已知CE=4,BE=5,DB=6;求:弦AC 的长 2、 如图,AB 是⊙O 的直径,CD ⊥AB 于E ,观察图形, 你能得到哪些结论,请将你所得的结论写下来,和同学交流, 看谁写的多写的对。 3、 已知:如图,ABCD 是圆内节四边形,AC 、BD 相交于点E , 求证:AD ?BE=BC ?AE 4、 已知:如图,△AOB 中,∠AOB=90°,OC ⊥AB 于C , OA=3cm ,OB=4cm ,以O 为圆心,以2.4cm 为半径作⊙O 。 求证:⊙O 与AB 相切 5、 已知:如图,AB 是⊙O 的直径,C 是⊙O 外一点, CB 交⊙O 于D ,AD 2=CD ?BD 求证:AC 是⊙O 的切线 6、 已知:如图,AB 是⊙O 的直径,CD 切⊙O 于B , AC 交⊙O 于E ,AD 交⊙O 于F , 求证:AE ?AC=AF ?AD 7、 已知:如图,AB 是⊙O 的直径,CA 与⊙O 相切于点A , CE ∥AB 交⊙O 于D 、E. 求证;BE 2 =CD ?AB 8、 如图,AD 是△ABC 的高,AE 是△ABC 的外接圆的直径; 求证:AB ?AC=AD ?AE

19、如图,4531===∠=∠∠=∠BC DE AB D B ,,, (1)ABC ?∽ADE ?吗?说明理由。 (2)求AD 的长。 20、如图4,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 21、已知:如图,ΔABC 中,AD=DB,∠1=∠2. 求证:A E A C D E A B = 22、如图,在正方形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC (),AE AB >试证明: EF 平分∠AFC. 23、已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD

2018中考专题相似三角形

2018中考数学专题相似形 (共40题) 1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点. (1)求证:BD=CE; (2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长; 2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F. (1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC; ②AG2=AF?AC. 3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; (2)若AD=3,AB=5,求的值.

4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF ⊥DE,垂足为F,BF分别交AC于H,交CD于G. (1)求证:BG=DE; (2)若点G为CD的中点,求的值. 5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF; (2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论. 6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD. (1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.

相似形与相似三角形专题复习(精编题目)精编版

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB = ====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=bc 。如果ad=bc (a ,b ,c ,d 都不等于0),那么d c b a =。 ②合比性质:如果d c b a =,那么d d c b b a ±=±。 ③等比性质:如果d c b a ==???=n m (b+d+???+n ≠0),那么 b a n d b m c a =+???+++???++ ④b 是线段a 、d 的比例中项,则b 2=ad.

圆与相似三角形综合训练题

圆与相似三角形专题训练 例1.如图,PD切⊙O于D,PC = PD,B为⊙O上一点,PB交⊙O于A,连结AC、BC. 求证:AC·PB = PC·BC 证明: 训练1. 如图,⊙O是弦AB∥CD,延长DC到E,EB延长线交⊙O于F,连结DF. 求证:AD·ED = BE·DF 证明:连结CB 2. 如图,CD切⊙O于P,PE⊥AB于E,AC⊥CD,BD⊥CD. 求证:① PE:AC = PB:PA;② PE 2 = AC·BD

例2.如图,△ABC内接于⊙O,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF 交BC于G. 求证:AB 2 = BG·BC 证明:连结AD 训练1. 如图,AB是⊙O的直径,弦CD垂直AB于M,P是CD延长线上一点,PE 切⊙O于E,BE交CD于F. 求证:PF 2 = PD·PC 证明:连结AE 2. 如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C作CD⊥BA,垂足为D. 求证:①∠DAC = 2∠B;② CA 2 = CD·CO

例3.如图,⊙O 1和⊙O 2 相交于点A和点B,且O 1 在⊙O 2 上;过点A的直线 CD分别与⊙O 1、⊙O 2 交于点C、D,过点B的直线EF分别与⊙O 1 、⊙O 2 交于 点E、F,⊙O 2的弦O 1 D 交AB于P. 求证:① CE∥DF;② O 1 A 2 = O 1 P·O 1 D 证明: 训练1. 如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E. 求证:①AE∥BD;②AD 2 = DF·AE 证明: 2. 已知:,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点. 求证:ET = ED 证明:

与相似三角形有关的各类专题

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD. 例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45° (1)求证:△ABD ∽△DCE ; (2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B : 1)求证:△ADF ∽△DEC ; 2)若AB=4,33 AD ,AE=3,求AF 的长。

考点二:射影定理: 例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。 例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=14 AD ,EG ⊥CF 于点G , (1)求证:△AEF ∽△BCE ; (2)试说明:EG 2 =CG ·FG. 例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形; (2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长; (3)在线段AC 上是否存在一点P ,使得2AE 2 =AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.

相似三角形综合试相似与圆(难)

相似三角形综合试相似与圆(难)

————————————————————————————————作者:————————————————————————————————日期: 2

D C B A O M N E H A B C P E D H F O 相似三角形与圆 1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE ?DF 2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA ?MC =MB ?MD 3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · AD 成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?

D C B A O E F 5.如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过点C、D、E三点的⊙O1与AC的延长线交于点F,连结EF、DF. (1)求证:△AEF∽△FED; (2)若AD=8,DE=4,求EF的长. 6.如图,PC与⊙O交于B,点A在⊙O上,且∠PCA=∠BAP. (1)求证:P A是⊙O的切线. (2)△ABP和△CAP相似吗?为什么? (3)若PB:BC=2:3,且PC=20,求P A的长. 7.已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3. (1)求证:AB是⊙O的切线; (2)点F是ACD上的一点,当∠AOF=2∠B时,求AF的长. 8.如图,⊿ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,AB=6,AC=8,求CD,DE,及EF的长.

相似与相似三角形

相似与相似三角形 一、选择题 1.若a:b:c=3:5:7,且3a+2b-4c=9,则a+b+c的值等于() A.-3 B.-5 C.-7 D.-15 2.下列说法中正确的是() A.两个平行四边形一定相似 B.两个菱形一定相似 C.两个矩形一定相似 D.两个等腰直角三角形一定相似 3.如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于() A. B. C.5 D.6 4.下列说法中正确的是() A.两个直角三角形相似 B.两个等腰三角形相似 C.两个等边三角形相似 D.两个锐角三角形相似 5.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF. 下列结论:①∠BAE=30°;②△ABE∽△AEF;③3CF=CD;④S△ABE=4S△ECF. 正确结论的个数为() A.1 B.2 C.3 D.4 A.①和② B.②和③ C.①和③ D.②和④

6.下列条件不能判定△ADB∽△ABC的是() A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD?AC D. = 7.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为() A.2.5 B.1.6 C.1.5 D.1 8.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,则位似中心的坐标为() A.(0,0) B.(1,1) C.(2,2) D.(3,3) 9.如图,在?ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4. 则下列结论:①AF:FD=1:2;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是() A.①②③④ B.①④ C.②③④ D.①②③ 二、填空题 10.如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC= .

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

(完整版)圆与相似三角形的综合常见题型

圆与相似三角形专题训练 27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。【2005成都】 ⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE = 24 5 ,求BD 和BC 的长。 27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。【2006成都】 (1)求证:△ACG ∽△DBG ;(2)求证:2 AC AG AB =? ; (3)若⊙A 、⊙O 的直径分别为15,且CG :CD =1:4,求AB 和BD 的长。 E

O D G C A E F B P 27.如图,A 是以BC 为直径的O e 上一点,AD BC ⊥于点D ,过点B 作O e 的切线,与CA 的延长线相交于点 E G ,是AD 的中点,连结CG 并延长与BE 相交于点 F ,延长AF 与CB 的延长线相交于点P .【2007成都】 (1)求证:BF EF =;(2)求证:PA 是O e 的切线; (3)若FG BF =,且O e 的半径长为32,求BD 和FG 的长度. 27. 如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧? AB 上的一个动点(不与点A 、点B 重合).连结AC 、BC ,分别与⊙M 相交于点D 、点E ,连结DE.若AB=23.【2008成都】 (1)求∠C 的度数;(2)求DE 的长; (3)如果记tan ∠ABC=y ,AD DC =x (0

相似三角形及黄金分割

相似三角形知识点 一、☆内容提要 1、比例的有关性质: ()b a n d b m c a n d b n m d c b a =++++++?≠+++===ΛΛΛΛ等比性质:0 的比例中项是c a b c a b c b b a ,2??=?= 应用变形: 已知 d c c b a a d c b a +=+=:,求证,d kd c b kb a ±= ±。 证明:(1)∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴d c c b a a += + (2)d c b a =Θ k d c k b a ±=±∴ d kd c b kb a ±= ±∴ 2、黄金分割的定义: 在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果 AC BC AB AC = (整段大线段 大线段 小线段=),那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中 2 1 5-=AB AC ≈0.618. A B C 推导黄金比:设AB=1,AC=x ,则BC=1-x ,所以 x x x -= 11,即x x -=12,用配方法解得x=215-≈0.618 特别提示:1、一条线段有2个黄金分割点,它们关于原点对称。 2、黄金比并不为黄金分割所专有,只要任两条线段的比值满足这一常数,就称这两条线段的比为黄金比。黄金比没有单位。 例:若矩形的两邻边长度的比值约为0.618,这个矩形称为黄金矩形;若在黄金矩形中截取一个正方形,那么剩余的矩形仍是黄金矩形。 3、必须满足位置和数量两个条件,才能判断一个点是一条线段的黄金分割点。 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。 c d a b = d b c a a c b d ==或 合比性质:d d c b b a ±= ± ?=?=bc ad d c b a (比例基本定理)

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

相似三角形与圆综合

(一)知识复习巩固 圆的基本性质:圆周角性质,垂径定理逆定理,切线长定理 相似三角形四种判定,及性质 (二)例题精讲: 例1、已知:如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交⊙O的切线BF于点F,B为切点。求证:(1)BD平分∠CBF;(2)AB?BF=AF?CD. 考点: 相似三角形的判定与性质,角平分线的性质,圆周角定理,弦切角定理分析: (1)由于AF是∠BAC的角平分线,那么∠1=∠2,利用弦切角定理可得 ∠1=∠3,利用同弧所对的圆周角相等,可得∠2=∠4,那么,可证∠3=∠4,即 BD平分∠CBF; (2)由于∠3=∠1,∠F=∠F,那么可证△DBF∽△BAF,再利用相似三角形 的性质,可得相关比例线段AB:AF=BD:BF,又由于∠1=∠2,同圆里 相等的圆周角所对的弧相等,而同圆里相等的弧所对的弦相等,从而BD=CD, 等量代换,可得AB:AF=CD:BF,即AB?BF=AF?CD. 解答:

证明:(1)∵AD平分∠BAC, ∴∠1=∠2,(2分) ∵BF切⊙O于点B,∴∠3=∠2, ∴∠3=∠1,(4分) 又∵∠2=∠4, ∴∠3=∠4,即BD平分∠CBF;(6分) (2)在△DBF和△BAF中, ∵∠3=∠1,∠F=∠F, ∴△DBF∽△BAF,(8分) ∴BDAB=BFAF即AB?BF=AF?BD(10分) ∵∠1=∠2, ∴BD=CD,(11分) ∴AB?BF=AF?CD.(12分) 例2、已知:如图,△ABC内接于圆,AB=AC,D为延长线上一点,AD交圆于E. 求证:AB2=AD?AE. 考点:相似三角形的判定与性质,圆周角定理 分析: 如图,作辅助线;证明△ABE∽△ADB,列出比例式,即可解决问题.解答:

相似三角形和三角函数

1. 相似三角形的判定定理: 推论一一直角三角形相似: (1) 直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 2. 性质定理: (1) 对应角相等。 (2) 对应边成比例。 (3) 对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4) 周长比等于相似比。 (5) 面积比等于相似比的平方。 3. 相似三角形的传递性 如果△ABC S ^I B I C I ,M I B I C I s 公2B 2C 2,那么△ ABC "A 2B 2C 2 精选文档 相似三角形考点 4、 比例的性质 a c (1) 比例的基本性质: =— b d a c a b (2) 合比性质: =- b d b (3) 等比性质:a =- = L =m b d n ad 二be (bd H 0) e d d a e L m a 八 b d L (b d L n u) n b

精选文档 如果两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形 叫做位似图形,这个点叫做位似中心。对应边的比叫做位似比,位似比等于相似比。 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边 c 的平方。 a 2 b 2 c 2 2、如下图,在 Rt △ AB (中,/ C 为直角,则/ A 的锐角三角函数为(ZA 可换成/B ): 3、特殊角的三角函数值(重要) 三角函数 30 ° 45 ° 60 ° \ 疋 义 表达式 正 弦 sin A - A 的对边 斜边 a sin A — c 余 弦 cosA - A 的邻边 斜边 .b cos A - c 正 切 tan A - A 的对边 A 的邻边 tan A — b

相似三角形专题 8字形

相似基本形———————— 8 字形 一、基本形说明 条件:D E ∥BC 结论:(1)ΔAED ∽ ΔABC (2) BC DE AB AE AC AD == (3)等积式:AD ·AB=AE ·AC (4)对应比例式(上:下=上:下,上:全=…) 说明:不能直接用 过程:∵D E ∥BC ∴∠B=∠E ,∠D=∠C ∴ΔAED ∽ ΔABC ∴BC DE AB AE AC AD == 二、基本形练习; 1.已知:如图,D E ∥BC ,AC AD =1 2 ,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cm 答案:A 2. 将一副三角板按如图叠放,则△AOB 与△DOC 的面积之比等于( ) 答案:C 3.在平行四边形ABCD 中,E 是AB 的中点,F 在直线AD 上,EF 交AC 与G,且AF=2DF ,则AG :GC= 。 答案: 23或25 4.如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H. (1)求直线AC 的解析式; (2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S(S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值. A B C D .. .. 13121314

圆与相似三角形复习知识点

圆中的基本图形和常见数学思想圆一直是初中阶段数学学习的一个难点,因为圆中知识点很多,综合性也很强。而且中考中圆常常和四边形,三角形,甚至代数中的二次函数结合起来考察学生的能力。 把圆中涵盖的知识点融入到几个基本图形中,并教会学生在复杂的图形中提炼出基本图形。另外一定要帮助学生进行解题方法的训练和总结。让他们熟悉圆中常用的数学方法。归纳了以下几个方面的内容,概述如下。 1 圆中基本图形主要有 这个图形中涵盖了: 1、垂径定理及其推论; 2、同弧所对的圆心角是圆周角的两倍; 3、半径、弦心距、弓形高、弦长四者的关系; 4、直径所对的圆周角是直角 这个图形中涵盖了: 1、圆的内接四边形的对角互补,外角等于内对角, 2、相似关系; 3、割线定理 这个图形中涵盖了: 1、弦切角等于所夹弧所对的圆周角, 2、相似关系;

3、切割线定理 这个图形中涵盖了: 1、三角形的外心是三角形三条垂直平分线的交点,并且到三角形三个顶点的距离相等2、同弧所对的圆心角是圆周角的两倍 这个图形中涵盖了: 1、从圆外引圆的两条切线,切线长相等。 2、三角形的内心是三角形三条角平分线的交点,并且到三角形三条边的距离相等3、三角形的面积和周长、内切圆半径三者的关系, 4、三角形两条内角角平分线组成的夹角与第三个内角的关系 这个图形中涵盖了: 1、同弧所对的圆周角相等, 2、相似关系, 3、相交弦定理 这个图形中涵盖了: 1、直径所对的圆周角是直角,90度的圆周角所对的弦是直径 2、相似关系,射影定理,

3、直角三角形的外心在斜边的中点 4、直角三角形的外接圆的半径等于斜边的一半 这个图形中涵盖了: 1、切线长定理 2、连心线垂直平分公共弦 3、圆的对称性 这个图形中涵盖了: 等边三角形的内切圆半径、外接圆半径、等边三角形的边长三者的比例关系。 这个图形中涵盖了: 正方形的内切圆半径、外接圆半径、正方形的边长三者的比例关系。 这个图形中涵盖了: 正六边形的内切圆半径、外接圆半径、正六边形的边长三者的比例关系。

相关文档
相关文档 最新文档