文档库 最新最全的文档下载
当前位置:文档库 › 贝类免疫学研究进展

贝类免疫学研究进展

贝类免疫学研究进展
贝类免疫学研究进展

贝类免疫学研究进展

摘要:综述了贝类免疫在细胞学和分子生物学研究方面取得的新进展,阐述了贝类血细胞中与免疫有关的结构和功能血细胞的培养和凋亡。贝类动物细胞免疫主要通过细胞的吞噬作用完成。溶酶体酶、凝集素、抗茼肽等体波免疫因子以杀茵、促进吞噬等方式参与贝类的免疫防御,阿片样活性肽、细胞因子、细胞激酶等是贝类免疫通信中的化学递质。化学递质通过介导免疫信号传导参与贝类的免疫防御,也是近年贝类的免疫研究的新热点。贝类生活环境中的各种因子能显著改变贝类的免疫机能,贝类对生态因子的敏感性使贝类的生态学研究成为人类等高等动物的生态免疫学研究模式。

关键字:细胞免疫;体液免疫;化学递质;分子生物学

全面阐释贝类的免疫机制和免疫生态学机制,对于贝类自身抗病能力的提高和高等动物的免疫生态学研究都有重要的理论意义和实际意义。贝类的免疫反应系统包括细胞免疫和体液免疫,两者密切相关,在抵御异物侵袭方面相辅相成,贝类通过免疫应答,提高机体的抵抗力。贝类的免疫学研究已有百余年的历史,目前,贝类免疫学研究已经从贝类血细胞结构和功能的研究,体液免疫因子的发现和分离,进入到探索化学递质介导的免疫信号传导和各种免疫因子相互作用的阶段。本文就多年以来国内外对贝类血细胞的分类,血细胞中与免疫有关的细胞结构,血细胞的培养和凋亡,免疫因子及其在抵御病原生物入侵时所起的作用,与贝类免疫相关的基因研究,贝类免疫的细胞和分子生物学机制及免疫调节机理等方面取得的进展做一综述。

l.贝类的细胞免疫

1.1血细胞的分类

对于贝类血细胞的分类,多数学者根据大小和胞内颗粒,将贝类血细胞分为有颗粒细胞和无颗粒细胞,而许多贝类还存在其他的一些亚型。分类方法多采用电镜观察结合一些细胞染色技术以及借助流式细胞仪将大小和粒度存在差异的贝类血细胞区分[1],张朝霞[2],提出细胞核质比和免疫功能特点是贝类血细胞分类的重要依据,结合血细胞的形态结构可以将杂色鲍血细胞分成两大类(颗粒细胞和无颗粒细胞),而无颗粒细胞又可以进一步细分成透明细胞和类淋巴细胞,两者在核质比和细胞免疫功能上明显不同。

1.2血细胞的功能

贝类血细胞参与了机体损伤的修复、贝壳的重建、吞噬异物颗粒和消除有毒物质等过程,是贝类免疫的主要承担者。异物入侵贝类机体直至异物被吞噬和消化的整个过程,需要血细胞内和血淋巴中很多物质的参与,一些学者指出该过程受到温度、盐度和污染物等环境胁迫因素的影响。张朝霞[2]等首次研究了对杂色鲍流行病病原弧菌具有良好抑菌效果的。种抗生素对杂色鲍血细胞的吞噬、趋化和溶酶体膜完整性等免疫功能的影响,发现种抗生素对鲍血细胞的免疫功能均有不同程度的破坏,且促进血细胞吞噬活性的作用并非随抗生素的浓度上升而提高,以此说明贝类养殖中滥用抗生素和盲目加大投放浓度的严重后果,并发现链霉素用于治疗鲍弧菌病,不但可以显著地提高杂色鲍血细胞对病原弧菌的吞噬活性,对鲍血细胞的趋化和产生活性氧等免疫功能的破坏程度也低。

2体液免疫

在贝类的免疫系统中,除了细胞免疫方式外,血淋巴中的溶酶体酶、凝集素、非特异性抗菌肽等体液因子也发挥重要的防御作用。细胞免疫和体液免疫协同作用,共同抵抗外来物质的入侵。

2.1溶酶体酶

溶酶体酶主要有酸性磷酸酶、碱性磷酸酶、p葡萄糖甘酸酶、脂肪酶、氨肽酶、溶菌酶等,

这些酶主要存在于颗粒细胞的溶酶体中,在细胞吞噬作用中,通过脱颗粒作用释放到血清中发挥作用[3]。其中,溶菌酶是溶酶体中一种最重要的酶,通过溶解杀伤细菌的方式起滤食海水细菌,防御病害的作用。其他的酶,如酸性磷酸酶、碱性磷酸酶等既能直接起抗菌作用,又能作为调节因子影响细胞的吞噬。

2.2凝集素

凝集素是一种非特异性免疫的蛋白质或糖蛋白,具有凝集细胞、抑制病原微生物等多种生物活性。在多种贝类的组织中,都发现了凝集素的存在[4]。凝集素的基本功能是通过免疫识别作用实现的,即凝集素表面携带的特异性糖基决定簇的受体能根据不同颗粒表面的糖基来识别异己。凝集素的识别作用能促进吞噬作用而具有调理素的功能。凝集素具有的特异性地识别细胞表面糖残基的功能,能被不同的糖类抑制[5],表明在泥蚶凝集素的活性能被乳糖和半乳糖抑制。凝集素的活性还受到环境因子的影响,因为环境中的pH和离子浓度改变了结合位点的构象,从而影响凝集素与受体的结合。

2.3抗茵肤

抗菌肽是动物体内一类具有广谱抗菌活性的肽的总称。在贝类中,抗菌肽的研究主要集中在贻贝,在病原刺激时,抗菌肽的迅速表达和全身分布使抗菌肽成为贝类体液防御中第一道重要防线。根据其化学性质的不同,mitta G[6]等把从贻贝中分离纯化的抗菌肽分为防御素、贻贝素、贻贝肽和贻贝霉素。抗菌肽主要以活跃的形式存在于颗粒细胞中,当受到病原微生物入侵时,分泌到细胞表面,直接起抗菌作用。防御素是当前抗菌肽中研究最多的一种,具有杀伤微生物细胞和生长旺盛的癌细胞的功能。已经分离纯化的防御素是一类具有小分子质量、阳子、富含半胱氨酸,同时又有特定抗菌活性的一类抗菌肽。

3.贝类免疫细胞和分子生物学机制

3.1贝类的免疫应答

贝类的免疫过程大致分为!异物识别:异物激活细胞和体液免疫"细胞吞噬异物并释放各种免疫物质以及血浆中的免疫因子共同对靶细胞进行消化。研究表明,不同种牡蛎对派金虫具有不同免疫应答,大部分美洲牡蛎对派金虫很敏感,而少部分的美洲牡蛎和太平洋牡蛎却对派金虫具有抗性,其机制如下:

(1)抗性牡蛎:当派金虫入侵时,其细胞膜表面的受体被牡蛎识别,牡蛎血细胞总数增多并开始吞噬派金虫,同时牡蛎血淋巴中产生派金虫丝氨酸蛋白酶抑

制剂,对派金虫起到抑制和消灭的作用[6]。

(2)敏感牡蛎:派金虫入侵后大量分泌丝氨酸蛋白酶,敏感牡蛎血淋巴中没有丝氨酸蛋白酶抑制剂,而且血清中还存在派金虫丝氨酸蛋白酶的受体,同时派金虫还分泌一些因子阻止牡蛎产生活性氧,从而逃避敏感牡蛎的免疫机制。[7]

除牡蛎外,也有不少学者探讨螺类对血吸虫的不同抵抗力Mahmoud等[8]在研究中发现,对血吸虫具有抗性的扁卷螺和敏感扁卷螺相比,二者血淋巴中与活性氧产生和消除有关的各种酶如CAT和SOD等在含量上存在显著差异.SOD等因子通过影响螺产生活性氧可能在螺对血吸虫的免疫反应中起着重要的调节作用.对于血吸虫的孢子如何在敏感螺中存活的机制目前还不太清楚,Carton等推测这些孢子可能是通过分子修饰的被动机制来逃脱宿主的免疫,而血吸虫产生的一些分泌物对螺血细胞的运动、粘附和吞噬活性产生明显抑制。

4.免疫调节和免疫信号的传递

(1)阿片样肽的免疫信号传递作用

阿片样肽(如吗啡和啡呔)是哺乳动物细胞中常见的信号传递重要因子,Leung]最初从贻贝的足部神经节分离到结构、功能、对金属离子的依赖性都和哺乳动物脑啡呔非常相似的物质,

意味着贝类有可能存在着神经免疫调节系统,强啡呔原是脑啡呔的一个前体,Stefano等[9]的研究结果表明贻贝中确实存在强啡呔原,在贻贝血细胞的表面存在着类似哺乳动物的阿片样肽受体和将免疫信号因子前体强啡呔原分解成类似哺乳动物啡呔的蛋白酶,证实了强啡呔原在贻贝免疫系统中免疫因子的传递和免疫细胞间相互作用中的重要地位。

(2)调节的信号传导途径

丝裂原活化蛋白激酶是一族含有丝氨酸(苏氨酸残基的蛋白激酶,该系统是将细胞外刺激信号传递到细胞核,引起细胞生物学反应的重要信号传导系统.P38 MAPK是该家族的一员.学者们研究发现,通过抗体技术在经E.coli感染的地中海贻贝血淋巴中可以检测到它,用它激活途径的酶类抑制剂来处理血细胞,贻贝血细胞的杀菌活性大大下降。进一步证实它是细菌感染地中海贻贝后的免疫信号传

导途径之一,说明贝类血细胞杀菌活力受控于MAPKs的信号传递途径[10].

5. 展望

在体液免疫和细胞免疫两个大的方面,贝类的免疫研究已经做过很多工作,并有了比较全面的了解。但体液免疫和细胞免疫之间的协同关系和在这种相互作用中不同细胞的协作机制还不十分明确。化学递质在贝类免疫细胞之间、免疫系统和其他系统之间的桥梁作用对于理解贝类各种免疫因子的关系和它们之间的协作机制提供了新的视角。贝类的生态学免疫的简单模式对于了解人的免疫疾病的产

生机理有着重要意义。利用分子生物学分离、重组、转移各种贝类抗病、抗逆基因,或者直接注射基因疫苗来提高贝的免疫力将是这方面研究的一个新的方向。

参考文献:

[1]周永灿.海洋贝类病害及其研究进展[J].海南大学学报:自然科学版,2000,18(2):207-212

[2]张朝霞.杂色鲍血细胞和体液免疫因子研究[D]厦门:厦门大学,2006

[3]陈皓文.魏玉西.郭道森.贻贝防卫素的研究进展[J].广西科学,2003,10(2);129-134.

[4]胨寅山,何桂颍.饶小珍.泥蚶血淋巴液凝集亲的分离纯化及其性质研究[J]分子细胞生物学报.2006,39(5);453—460.

[5] Mitta G.Vandenbulcke F,Roch P.Original involvement of antimicrobial peptides in mussel innate immunity[J].Febs Lett.2000,486(3)1185-190.

[6]Mitta G,Hubert F,Dyrnda E A,et al,Mytilin B and MGD2,two antimicrobiai peptides of marine mussels;gene structure and expression analysis [J].developmental and Comparative Immunology,2000,24[4];381-393

[7]Mahamoud A H,Rizk M Z.Free radical scavengers in susceptible/resistant Biomphalaria alexandrina snails before and infection[J].Comparative Biochemistry and Physiology,Part C,2004,138(4):525-530.

[8]Carton Y,Nappi A J,Poirie M,Genetics of anti-parasite resistance in invertebrates[J].Developmental and Comparative Immunology,2005,29(1);9-32.

[9]Stefano G B,Salzet M. Mytilus edulis hemolymph contain prodynorphin[J].Immunology letters,1998,63(1):33-39.

[10]Canesi L,Lorusso C,Ciacci C,et al,Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways[J].General and Comparative Endocrinology,2004,138(1):58-69.

现代免疫学时期

现代免疫学时期 自天然耐受现象的发现,克隆选择学说的提出为免疫生物学的发展奠定了理论基础,使现代免疫学的发展方向发生了重大变化。使免疫学从抗感染免疫的概念中解脱出来,进而发展为生物机体对“自己”和“非己”的识别,藉以维持机体稳定性的生物学概念。这一发展时期自60年代迄今发现了胸腺的免疫功能,确认了淋巴细胞系是重要的免疫细胞,阐明了免疫球蛋白的分子结构与功能。从器官、细胞和分子水平揭示了机体另一重要生理系统,即免疫系统的存在。30余年来,对免疫系统结合与功能的研究不断取得突破性进展,对生物学和医学的发展都产生了深远的影响。在此阶段有下述一些重要进展。 一、60年代的重要发现 Glick(1957)发现早期摘除鸡的腔上囊组织可影响抗体的产生。首先证明了腔上囊组织的免疫功能。60年代初Miller和Good分别在哺乳类动物体内进行早期胸腺摘除,证明了胸腺的免疫功能。Gowan(1965)首先证明了淋巴细胞的免疫功能。Claman、Mitchell等人(1969)提出了T和B细胞亚群的概念。Cooper等人证明了免疫淋巴细胞在周围淋巴组织的分布。自此建立了在高等动物体内免疫系统的组织学和细胞学基础。在人体内,从先天无胸腺症患者和先天性无丙种球蛋白血症患者也证明了胸腺的免疫功能和存在二类淋巴细胞亚群。 在此期间对抗体分子的结构研究取得了突破性进展。自40年代确定了抗体的血清球蛋白性质后,便集中精力研究抗体的分子结构与生物功能。50年代Porter用木瓜蛋白酶水解抗体球蛋白分子,获得了具有抗体活性的片段和易结晶片段。其后Edelman用化学还原法证明抗体球蛋白是由多肽链组成,用抗原分析法证明了抗体分子的不均一性。60年代初统一了抗体球蛋白的名称,并建立了免疫球蛋白的分类,即IgG、IgM和IgA三类。Rowe(1965)自骨髓瘤患者的血清内发现了IgD,石板(1966)自枯草热患者的血清中发现了IgE。自此关于Ig分子的结构和生物活性的研究便成为免疫化学的中心课题。 二、70年代的重要发现 1.免疫应答细胞进入70年代Pernis等用免疫荧光法证明了淋巴细胞膜Ig受体存在并认为是B细胞的特征。Feldman等用半抗原载体效应证明了T和B细胞在抗体产生中的协同作用。Unanue等证明了巨噬细胞在免疫应答中的作用,它是参与机体免疫应答的第三类细胞。从而证明了机体免疫应答的发生是由多细胞相互作用的结果,并初步揭示了B细胞的识别、活化、分化和效应机制,使免疫学的研究进入细胞生物学和分子生物学的领域。 2. T细胞亚类的发现70年代还进一步证明在动物和人周围血循环内存在有功能相异的T细胞亚类。Mitchison等证明了辅助性T细胞的存在。Gershon等证明了抑制性T细胞的存在,它们对免疫应答的调节起着重要作用。Cantor等用小鼠细胞膜Ly异型抗原,可将细胞分成不同亚类,并证明它们具有不同生物学功能。这一发现提示用膜抗原分析法可用以鉴定不同T细胞亚类。 总之,以T细胞为中心的免疫生物学研究,是70年代免疫学研究最活跃的领域之一。对于T细胞的发生、分化与功能研究,对T细胞亚类的鉴别以及对T细胞抗原识别受体的研究都取得了较大的进展。 3.免疫网络学说的提出这一学说是Jerne(1972)根据现代免疫学对抗体分子独特型的认识而提出的。这一学说认为在抗原刺激发生之前,机体处于一种相对的免疫稳定状态,当抗原进入机体后打破了这种平衡,导致了特异抗体分子的产生,当达到一定量时将引起抗Ig分子独特型的免疫应答,即抗独特型抗体的产生。因此抗抗体分子在识别抗原的同时,也能被其抗独特型抗体分子所识别。这一点无论对血流中的抗体分子或是存在于淋巴细胞表面作为抗原受体的Ig分子都是一样的。在同一动物体内一组抗体分子上独特型决定簇可被另一组抗独特型抗体分子所识别。而一组淋巴细胞表面抗原受体分子亦可被另一组淋巴细胞

2020年免疫学指标应用研究进展

范文 2020年免疫学指标应用研究进展 1/ 6

免疫学指标应用研究进展【提要】类风湿性关节炎(RA)是以关节滑膜炎为特征,以慢性多发性关节炎为主要临床表现的一种自身免疫性疾病。 其新的实验室血清免疫学指标有蛋白类如血清淀粉样蛋白A(SAA)、正五聚蛋白 3(PTX3)、葡萄糖-6 磷酸异构酶(G6PI)、脑信号蛋白 7A(Sema7A)、免疫球蛋白 G4(IgG4)和各种细胞因子类如白细胞介素(IL)-20、IL-21、IL-33、 IL-34、IL-35 等。 这些指标可能与RA 的发生发展相关,同时也可为治疗及评估预后提供新思路。 风湿性关节炎(rheumatoidarthritis,RA)为一种病因未明的慢性、以炎性滑膜炎为特征的系统性疾病。 RA 疾病的活动期一般有血小板、血沉、C-反应蛋白(C-reactiveprotein,CRP)、补体水平升高,类风湿因子(rheumatoidfactor,RF)、抗瓜氨酸化蛋白抗体(anticitrullinatedproteinantibodies,ACPA)及抗核抗体阳性等表现。 最新的 2010 年RA 分类标准和评分系统纳入了新的炎症标志物指标,提高了诊断的敏感性,为早期诊断和治疗提供了重要依据[1]。 同时,除了经典的免疫学检查外,随着RA 免疫机制研究的深入,有更多的免疫学指标被发现及应用,本文对RA 的主要免疫学指标及其新进展进行综述。 1 蛋白类

1.1 血清淀粉样蛋白 A 血清淀粉样蛋白 A(serumamyloidA,SAA)是一种急性时相蛋白,由肝脏产生,主要通过与血浆中的 HDL 结合发挥其生物活性。 既往许多研究表明 SAA 在多种自身免疫性疾病中表达升高,尤其当系统性红斑狼疮(systemiclupuserythematosus,SLE)、关节炎患者和正常人相比时,SSA 在RA 患者中表达水平更高,并且与疾病活动度、CRP、血沉呈正相关[2]。 研究表明,SSA 在RA 中的作用机制可能是通过 P38 有丝分裂蛋白激酶(mitogenactivatedproteinkinase,MAPK)信号通路来影响B 类Ⅰ型清道夫受体的表达,从而促进血管的生成[3]。 还有研究显示,SAA 比 CRP 更能反映RA 的疾病活动度[4]。 提示 SAA 可能是与RA 疾病活动度相关性更高的生物学指标。 1.2 正五聚蛋白 3 正五聚蛋白 3(pentraxin3, PTX3)在 1992 年被发现,它含 381 个氨基酸,属于正五聚蛋白超家庭。 PTX3 为一种急性期反应蛋白,主要由肝细胞以外的多种细胞产生,正常情况下以备用形式储存在中性粒细胞的特殊颗粒中,当出现组织损伤及微生物感染等炎性反应时才释放出来,发挥其组织修复及重构作用[5-6]。 因其与心血管疾病有密切关系而备受关注,但最近研究发现,其在自身免疫性疾病,如RA、系统性硬化症、小血管的血管炎等疾病中呈高表达[7]。 3/ 6

免疫分析技术的应用

时间分辨荧光免疫分析技术的研究进展及在食品安全领域中的应用 应化1001 王旸慧 随着分析方法的飞速发展,无论是食品中有毒有害物质,还是环境中 痕量元素的检测,或者生物体内功能因子的分析,都迫切需要一种灵敏度高、快速准确、性能稳定的痕量分析方法。时间分辨荧光免疫分析技术(time-resolved fluoroimmunoassay,简称为TRFIA)是20世纪80 年代中 期发展起来的一种新的荧光标记技术。这种方法应用某些特殊的稀土金属,能够区分背景光的散射所引起的干扰,从而大大地提高了分析的灵敏度。与传统的酶免疫法(EIA)、发射免疫分析法(RIA)相比,它具有很多优点:灵敏度高达10-19;稳定性好,克服了酶和放射性荧光物质的不稳定性; 动态范围宽;试剂货架期长;无放射性危害等,时间分辨荧光分析目前被公 认为是灵敏度最高的分析方法之一。 一、时间分辨荧光免疫分析法的原理及优势 时间分辨荧光免疫分析法(TRFIA)是在荧光分析(FIA)的基础上发展 起来的一种特殊的荧光分析法。它利用了具有独特荧光特性的镧系元素及 其螯合物为示踪物,标记抗体、抗原、激素、多肽、蛋白质、核酸探针及 生物细胞,以代替传统的荧光物质、酶、同位素、化学发光物质。用时间 分辨荧光免疫分析检测仪测定反应产物中的荧光强度,根据产物荧光强度 和相对荧光强度的比值,准确地测定反应体系中被分析物的浓度。TRFIA 所 使用的荧光标记物是镧系稀土金属,由于镧系稀土金属离子螯合物有很长 的荧光寿命(微秒级),有别于传统荧光的短荧光寿命,使其能通过时间分 辨方式区别于背景荧光(钠秒级),正是由于荧光衰变时间长,可以延缓 测量时间,待测样品中短寿命的本底荧光衰变后再测稀土离子的特异荧光,因此可完全消除本底荧光的干扰。镧系稀土金属离子螯合物荧光很宽的Stokes 位移使其容易通过波长分辨方式进一步区别于背景荧光,提高方法 学的稳定性。镧系稀土金属离子螯合物狭窄的荧光发射峰使其荧光检测具 有很高的效率,进一步提高了信号检测的特异性和灵敏性。此外,由于检 测时加入了荧光增强液,它可使原来荧光增强100万倍,以上各种因素使TRFIA 的检测灵敏度和准确性大大提高。 二、TRFIA 的反应模式 目前在实践中应用的主要有固相双位点夹心法和竞争法。夹心法多用 于蛋白质类大分子化合物的测定,竞争法多用于小分子半抗原的检测。反 应模式流程如下:

第一章免疫学发展简史及其展望

第一章 免疫学发展简史及其展望 第一节 免疫学简介 本节为浅近简介免疫学的最基本内含,免疫系统的功能及其功能产生过程的特点,这些内容将在以后的各章中会逐步介绍。 一、免疫系统的基本功能 机体是多种器官系统组成,各自执行专职功能,如呼吸系统主要执行气体交换,呼出CO2,吸入O2,供新陈代谢需要;免疫系统则执行免疫功能,保卫机体免受生物体的侵害。为使医学生在学习免疫学课程之始,即对免疫学有初步印象,本章将简介免疫学基本概念,并从免疫学发展过程理解这些概念的形成,开拓、发展及取得的成就,从而成为一门生命科学前沿的一门医学免疫学科。 免疫(immunity)即通常所指免除疫病(传染病)及抵抗多种疾病的发生。这种通俗认识在科学上的含意则包括:免疫由机体内的免疫系统执行,免疫系统具有:(1)免疫防御功能:防止外界病原体的入侵及清除已入侵的病原体及有害的生物性分子;(2)免疫监视功能(immunological surveillance),监督机体内环境出现的突变细胞及早期肿瘤,并予以清除;(3)免疫耐受:免疫系统对自身组织细胞表达的抗原(解释见后)不产生免疫应答,不导致自身免疫病,反之,对外来病原体及有害生物分子表达的抗原,则产生免疫应答,予以清除,从这层功能上说,免疫系统具有“区分自我及非我”功能;(4)调节功能:免疫系统参与机体整体功能的调节,与神经系统及内分泌系统连接,构成神经-内分泌-免疫网络调节系统,不仅调节机体的整体功能,亦调节免疫系统本身的功能。 二、免疫应答的特点 免疫系统是由免疫器官(胸腺、骨髓、脾、淋巴结等)、免疫组织(黏膜相关淋巴组织)、免疫细胞(吞噬细胞、自然杀伤细胞、T及B淋巴细胞)及免疫分子(细胞表面分子、抗体细胞因子、补体等等)组成。体内的免疫细胞通常处于静止状态,细胞必须被活化,经免疫应答过程,产生免疫效应细胞,释放免疫效应分子,才能执行免疫功能。免疫细胞分为两类:(1)固有免疫应答细胞,如单核-巨噬细胞,自然杀伤细胞,多形核中性粒细胞等等,这类细胞经其表面表达的受体,能识别一种分子,这种分子表达于多种病原体表面,如单核-巨噬细胞表面的Toll样受体(Toll-like receptor 4, TLR4)能识别脂多糖(LPS),它表达于多种Gram-肠道杆菌表面,经受体-配基作用,固有免疫细胞被活化,迅速执行免疫效应,吞噬杀伤病原体,并释放细胞因子,如干扰素(IFN),抑制病毒复制,这类细胞在病原体入侵早期,即发挥免疫防御作用,称固有免疫(innate immunity)。固有免疫应答不经历克隆扩增,不产生免疫记忆。(2)适应性免疫应答细胞:即淋巴细胞,包括T细胞及B细胞,这类细胞是克隆分布的,每一克隆的细胞,表达一种识别抗原受体,特异识别天然大分子中的具有特殊结构的小分子(如蛋白中的多肽、糖中的寡糖、类脂中的脂酸、核酸中的核苷酸片段)。这些能被T或B细胞受体特异识别的小分子,我们称之为抗原(antigen, Ag)。T 细胞识别的主要是蛋白中的多肽,但T细胞不能直接识别游离的多肽,它们必须与主要组织相容性复合体(MHC)编码分子组成抗原肽-MHC分子复合物,表达于抗原提呈细胞表面,才能与T细胞受体结合,使相应克隆的T细胞开始活化。但要使T细胞充分活化,尚须抗原提

理论免疫学研究进展

理论免疫学研究进展 (辽宁中医药大学基础医学院, 辽宁沈阳,110032) 【摘要】理论免疫学用数学的方法来研究和解决免疫学问题,以及对免疫学相关的数学方法进行理论研究的一门科学。随着高通量方法和基因组数据的出现,理论免疫学从受体交联和免疫原理、jerne的相互作用网络和自我选择等经典建模方法开始向信息学、空间扩展模型、免疫遗传学和免疫信息学、进化免疫学、分子生物信息学和表遗传学、高通量研究方法和免疫组学等方面转变。 【关键词】免疫学, 理论;数学模型;生物数学 advances of theoretical immunology jin yan (basic medical college, liaoning universtity of traditional chinese medicine, liaoning shenyang, 110032,)【abstracts】theoretical immunology is to develop mathematical methods that help to investigate the immunological problems, and to study the mathematical theory on immunology. with the advent of high-throughput methods and genomic data, immunological modeling of theoretical immunology shifted from receptor cross linking, jerne interaction networks and self-non self selection, toward the informatics, spatially extended models, immunogenetics and immunoinformatics, evolutionary immunology, innate immunity

贝类学

贝类免疫学研究进展 【摘要】本文系统性地介绍了贝类免疫学的研究进展,分别从贝类免疫的两大方面——细胞免疫和体液免疫进行详细地分析。其中细胞免疫的论述包括吞噬作用,吞噬和杀伤机制,贝类血细胞的分类。体液免疫的论述包括凝集素、抗菌肤、溶酶体酶、化学递质。 【关键词】贝类免疫学细胞体液研究 【前言】贝类免疫学是新兴学科无脊椎动物免疫学中的一个分支,近些年越来越受到学者们的关注。贝类的免疫反应系统包括细胞免疫和体液免疫,两者密切相关,在抵御异物侵袭方面相辅相成,贝类通过免疫应答,提高机体的抵抗力。本文就从贝类免疫学的两大防御系统进行综述。 【正文】 1.贝类的细胞免疫 贝类血细胞参与了机体损伤的修复、贝壳的重建、吞噬异物颗粒和消除有毒物质等过程,是贝类免疫的主要承担者。异物入侵贝类机体直至异物被吞噬和消化的整个过程,需要血细胞内和血淋巴中很多物质的参与,一些学者指出该过程受到温度、盐度和污染物等环境胁迫因素的影响。张朝霞[1]等首次研究了对杂色鲍流行病病原弧菌具有良好抑菌效果的。种抗生素对杂色鲍血细胞的吞噬、趋化和溶酶体膜完整性等免疫功能的影响,发现种抗生素对鲍血细胞的免疫功能均有不同程度的破坏,且促进血细胞吞噬活性的作用并非随抗生素的浓度上升而提高,以此说明贝类养殖中滥用抗生素和盲目加大投放浓度的严重后果,并发现链霉素用于治疗鲍弧菌病,不但可以显著地提高杂色鲍血细胞对病原弧菌的吞噬活性,对鲍血细胞的趋化和产生活性氧等免疫功能的破坏程度也低。 1.1吞噬作用 贝类的主要防御手段是由血细胞完成的吞噬作用(PhagocyLosis) 。吞噬作用能够清除入侵的病原体包括细菌、原虫、大分子物质及无机颗粒等。当外界条件改变,尤其是动物受到外界抗原物质刺激时,贝类的主要表现就是吞噬反应,而且其血细胞吞噬外来异物时,清除的速率大小取决于细胞表面的特征。在大多数报道的贝类中,吞噬作用主要是由颗粒细胞完成的,颗粒细胞表现出很高的吞噬能力,而且其吞噬能力与年龄无关,但易受外界环境因素的影响,如温度、盐度等,透明细胞也具有一定的吞噬能力,但不是主要的。从免疫防御的角度讲,血细胞可以活跃地趋化到炎症和损伤部位,进行吞噬,是免疫防御的主要细胞类型。 1.2吞噬和杀伤机制 吞噬作用的过程大致可以分为趋化、粘附、内吞以及杀伤消化四个阶段。研究证明贝类血细胞可以向外源颗粒趋化靠近,贝类具有开放式循环系统,器官浸浴在血淋巴中,血管也没有完整的内皮系统,血细胞可以较自由地到达广泛的器官和组织。与外来物质的接触较为充分,因此,趋化的选择意义不像在高等动物那样重要。血细胞靠近异物后首先发生茹附,随后,血细胞伸出伪足对异物进行包裹,伪足相接触后细胞质膜融合,形成吞噬小体进入细胞。Cajaraville和Pal对贻贝(MYtilus edulis)亚显微结构的电镜研究表明,颗粒细胞和透明细胞都可以由局部细胞质膜内陷形成衣被小泡或无衣被的电子透明的内吞小体,完成内吞。LPGaII 等还证明内吞过程有细胞骨架的活跃参与。 血细胞对吞噬后的病原体的杀伤作用主要通过两条途径实现,一是将外源颗粒内化后形成吞噬小体,然后吞噬小体与含有水解酶类的胞质颗粒融合,逐步将外源颗粒水解消化,颗粒细胞中的水解酶包括溶菌酶、磷酸酶、脂酶、蛋白酶、葡萄糖苷酶等[2]。Mohandas等[3]用扫描电镜的方法证明,在受到细菌刺激时,硬壳蛤的颗粒细胞在吞噬外来细菌的过程中,将溶菌酶释放到血清中,可见血细胞不仅直接参与吞噬反应,还释放水解酶类到血淋巴中参与体液免疫。Gushing等[4]用一种革兰氏阴性菌EMD-1作诱导源,对红鲍、粉红鲍、黑鲍进行注射诱导研究他们的兔疫反应,其结果表明,在体液中不仅发现溶菌酶,而且还发现了其

化学发光免疫分析技术及其应用研究进展

化学发光免疫分析技术及其应用研究进展 发表时间:2014-12-16T16:00:48.107Z 来源:《科学与技术》2014年第10期下供稿作者:岳伦 [导读] 通过对化学发光免疫分析技术及其应用的相关研究,我们可以发现,该项技术的良好效果已经被普遍应用在临床检验与检测当中岳伦 重庆热展建筑工程咨询服务中心重庆 400012 【摘要】本文首先介绍了化学发光免疫分析技术的基本原理,分析了其基本装置。在探讨化学发光免疫分析技术在临床检验中应用的基础上,研究了其应用进展。 【关键词】化学发光;免疫分析技术;应用;研究进展 一、前言 作为一项效果较为理想的分析技术,化学发光免疫分析技术近期得到了长足的发展。研究该项技术的应用进展情况,能够更好地把握其运用动态,以更好地指导该项技术的实际应用。本文从介绍该项技术的基本原理着手本课题的研究。 二、化学发光免疫分析技术的基本原理 化学发光免疫分析技术是由免疫分析和化学发光分析两个系统构成的。其中免疫分析是用标记物直接标记在抗原或抗体之上的,然后再经过抗原与抗体反应生成抗体免疫复合物,其中标记物可以是化学发光物质,也可以是某种酶。化学发光免疫分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,待发光物质氧化后就会形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测,其中被测物的含量就是根据化学发光标记物与发光强度的关系利用标准曲线计算出来的。 化学发光的原理是指分子或原子中的电子吸收能量后,发生能级跃迁而释放光子的过程,能级跃迁过程是电子从基态到激发态的过程,实现了从较低能级向较高能级的跃迁。其中可以根据形成激发态分子的能量来源不同将发光过程分为化学发光、光照发光和生物发光。 化学发光又可分为直接化学发光和间接化学发光,若参加反应的物质是一个反应产物分子,且被激发到能发射光的电子激发态,那么这就是直接化学发光过程。若参加反应的物质激发能传递到另一个未参加化学反应的分子D上,使D分子激发到电子激发态,D分子从激发态回到基态时发光,这种过程叫间接化学发光。 三、化学发光免疫分析的基本装置 1.电极材料的选择与制备 化学发光检测的基本模式决定了其在免疫传感中必须使用特定的光电活性电极。而免疫探针分子则在这种电极表面固定,随后的免疫识别反应也在该表面发生,所以光电活性材料的选择和制备与免疫传感的检测性能密切相关。理想的光电活性电极应该具有较低的电子空穴复合率,以便获得稳定的光电流密度。一般而言,在化学发光免疫传感中,光电活性电极的选择主要取决于所设计的检测路径与传感过程。常用的电极有整体电极和氧化铟锡(ITO)修饰电极。整体电极如二氧化钛纳米管阵列电极,ITO修饰电极则由ITO基底和光电修饰材料两部分构成。 2.免疫探针分子的固定 电极制备好后,免疫探针分子的固定是传感器制备中重要的一步,直接决定着传感器性能的优劣。原则上,电化学免疫传感器中可以使用的固定方法都可以用于化学发光传感。但因后者使用的电极材料有所不同,所以具体采用的固定方法往往和电极材料的种类以及实验的设计有关。另外,为了保证探针分子的准确定位与吸附以使探针分子在固定后保持较高的活性和稳定性并形成具有适宜厚度、密度、多孔性的敏感膜,同时为了避免非特异性吸附和结合的干扰,在固定这一步骤中需对电极的表面化学性质进行严格控制,因此需要对实验条件进行多重优化以便确定最佳条件。 四、化学发光免疫分析技术在临床检验中的应用 1.激素分析 所谓的激素,其实就是内分泌腺或者内分泌细胞所分泌出来的活性物质,是细胞之间进行信息传递的一种化学媒介。各种激素通过化学发光面积分析技术进行测定,然后由化学发光面积分析技术提供各种检测数据,化学发光面积分析技术检测能够为临床治疗、诊断,以及预后等提供相关数据,且数据可靠性非常高,将检测的灵敏度与特异性大大地提高了。 2.对肿瘤标志物的分析 所谓的肿瘤标志物,其实是肿瘤在增殖的过程中,有肿瘤相关细胞的合成与释放,或者是机体与该细胞产生反应后,生成的一种物质,如激素、蛋白质、酶以及癌基因等。在患者的体液、血液以及细胞与组织中都存在肿瘤标志物。化学发光面积分析技术对肿瘤患者(良性及恶性肿瘤)在早期进行辅助诊断,并且对术后进行监测,同时,它还能用于对新肿瘤标志物的寻找。相关检测人员对血清中的相关抗原及cyfra21-1的浓度进行了检测,结果显示,对于食管癌患者的诊断,以及对预后的监测,它们能够达到相关标准。相关检测人员对肝病中,细胞色素的含量进行了检测,结果显示,作为肝衰竭病症的新标志物,细胞色素C达标。 3.病原诊断 对于乙型肝炎病症,其病毒表面的抗原与抗体是在感染后,对免疫功能及治疗效果的评价指标是血清标志物。如果应用常规的酶检测法,很有可能会漏检一些病毒携带量少的患者。而化学发光面积分析技术的灵敏度以及线性范围比酶法更高。相关检测人员对容易感染相关病毒的围产期儿童体内的相关病毒进行了检测,结果显示,化学发光面积分析技术检测法比常规酶法的灵敏度更高。 五、化学发光免疫分析技术的应用进展 1.检测细菌及病毒细胞的是一切生命活动的基本组成单位,人体就是由千千万万的细胞集合而成,每个细胞就是一个独立的小生命,而控制着细胞的核心物质就是核酸,核酸是遗传物质基础,具有贮存、传递和表达遗传信息的功能。因此对标本中的核酸进行定量检测,对于临床准确、及时的诊断疾病,监测治疗效果是十分必要的。传统采用普通的细菌培养方法往往存在培养时间过长等诸多缺陷,因此,现在很多实验室都在寻求快速、灵敏的检测方法。研究表明用放大核酸序列分析的方法对食物中沙门杆菌进行检测,结果表明,应用化学

免疫学基础与病原生物学 习题

病原生物与免疫学基础测试题答案(2016级) 欢迎加入山中医复习资料共享群,群聊号码:645912210 班级:姓名:得分: 一、名词解释:(共5题,每题5分,计25分) 1、芽胞:是某些细菌在一定的条件下,细胞质脱水浓缩在菌体内形成的一个圆形或椭圆形小体。 2、消毒:杀死物体上或环境中的病原微生物的方法。 3、医院感染:又称医院内感染或医院获得感染,是指医院各类人群(包括患者、探视者、陪护者及医院工作人员)在医院获得的感染。 4、感染:在一定的条件下,病原菌突破机体防御功能,侵入机体,与机体相互作用而引起的不同程度的病理过程。 5、败血症:病原菌侵入血流,并在其中生长繁殖,产生毒素,引起严重的全身中毒症状。 二、题空题(共20格,每格1分,计20分) 1、根据微生物的结构、组成差异,可分为:非细胞型微生物、原核细胞型微生物 和真核细胞型微生物3类。 2、人体寄生虫是指:寄居在人体并引起机体损伤的低等动物。 3、细菌的形态分为:球菌、杆菌和螺形菌 3类。 4、细菌的特殊结构包括:荚膜、鞭毛、菌毛和芽胞 4种。 5、细菌的测量单位是:微米。 6、细菌的生长方式是:二分裂无性繁殖。 7、根据细菌生长繁殖对氧气需求不同,可将细菌分为:需氧菌、厌氧菌、兼性厌氧菌和微需氧菌 4种。 8、细菌在液体培养基上生长繁殖的现象有均匀混浊、沉淀生长、膜状生长 3种。 三、单项选择题(共15题,每题1分,计15分) 1、细菌的基本结构不包括:( D ) A、细胞壁 B、细胞膜 C、细胞质 D、细胞核 2、细菌合成蛋白质的场所是:( C ) A、胞质颗粒 B、质粒 C、核糖体 D、核质

3、关于细菌的鞭毛,描述错误的是:(B) A、鞭毛是运动器官与致病有关; B、鞭毛可在细菌中传递遗传物质; C、鞭毛 的化学成分是蛋白质,具有免疫原性; D、抗原为(H)抗原,用于细菌鉴别; 4、关于芽胞,错误的是:(A) A、芽胞是二分裂无性繁殖; B、芽胞是细菌抵抗不良环境形成的休眠体; C、芽胞对外界因素抵抗力强; D、临床上常以杀灭芽胞为灭菌标准; 5、许多革兰氏阴性菌和少数革兰氏阳性菌在代谢过程中合成的一种多糖,注入人体可引起发热反应的物质是:(D) A、毒素 B侵袭性酶 C、细菌素 D、热原质 6、在临床护理工作中,若发现手术切口、烧伤创面等出现绿色的渗出物,应考虑:(B) A、金黄色葡萄球菌感染 B、铜绿假单胞菌感染 C、幽门螺杆菌 D、霍乱弧菌 7、杀灭物体上所有微生物指的是:(B) A、消毒 B、灭菌 C、防腐 D、无菌 8、用于耐高温、耐潮湿的物品灭菌的最常用、最有效的灭菌方法是(D) A、煮沸法 B、流通蒸汽灭菌法 C、巴氏灭菌法 D、高压蒸汽灭菌法 9、紫外线消毒,错误的是:(B) A、紫外线波长易被细菌吸收,干扰其复制,导致其死亡; B、可杀灭物体中的细菌 C、空气消毒时,有效距离不超过2M; D、适用于病人的书报、衣物、手术室等消毒 10、乙醇消毒作用最好的浓度为:(C) A:99% B、90% C、70%-75% D、50%--60% 11、影响消毒剂作用的因素错误的是:(D) A、环境因素 B、微生物的种类与数量 C、消毒剂的作用时间与性质 D、所有消毒剂浓度越大,消毒作用越好; 12、病原菌在局部组织生长繁殖,一时性或间断性侵入血流,但不在血中繁殖,称为:(B) A、毒血症 B、菌血症 C、败血症 D、脓毒血症 13、因为摄入被病人或带菌者排泄物污染的食物、饮水而感染称为:(A) A、消化道感染 B、呼吸道感染 C、皮肤黏膜创伤感染 D、节肢动物媒介感染 14、机体在显性感染或隐性感染后,病原菌末立即消失,仍在体内继续存留一定时间,与机体处于相对平衡,称为:(D)

贝类免疫学研究进展

贝类免疫学研究进展 摘要:综述了贝类免疫在细胞学和分子生物学研究方面取得的新进展,阐述了贝类血细胞中与免疫有关的结构和功能血细胞的培养和凋亡。贝类动物细胞免疫主要通过细胞的吞噬作用完成。溶酶体酶、凝集素、抗茼肽等体波免疫因子以杀茵、促进吞噬等方式参与贝类的免疫防御,阿片样活性肽、细胞因子、细胞激酶等是贝类免疫通信中的化学递质。化学递质通过介导免疫信号传导参与贝类的免疫防御,也是近年贝类的免疫研究的新热点。贝类生活环境中的各种因子能显著改变贝类的免疫机能,贝类对生态因子的敏感性使贝类的生态学研究成为人类等高等动物的生态免疫学研究模式。 关键字:细胞免疫;体液免疫;化学递质;分子生物学 全面阐释贝类的免疫机制和免疫生态学机制,对于贝类自身抗病能力的提高和高等动物的免疫生态学研究都有重要的理论意义和实际意义。贝类的免疫反应系统包括细胞免疫和体液免疫,两者密切相关,在抵御异物侵袭方面相辅相成,贝类通过免疫应答,提高机体的抵抗力。贝类的免疫学研究已有百余年的历史,目前,贝类免疫学研究已经从贝类血细胞结构和功能的研究,体液免疫因子的发现和分离,进入到探索化学递质介导的免疫信号传导和各种免疫因子相互作用的阶段。本文就多年以来国内外对贝类血细胞的分类,血细胞中与免疫有关的细胞结构,血细胞的培养和凋亡,免疫因子及其在抵御病原生物入侵时所起的作用,与贝类免疫相关的基因研究,贝类免疫的细胞和分子生物学机制及免疫调节机理等方面取得的进展做一综述。 l.贝类的细胞免疫 1.1血细胞的分类 对于贝类血细胞的分类,多数学者根据大小和胞内颗粒,将贝类血细胞分为有颗粒细胞和无颗粒细胞,而许多贝类还存在其他的一些亚型。分类方法多采用电镜观察结合一些细胞染色技术以及借助流式细胞仪将大小和粒度存在差异的贝类血细胞区分[1],张朝霞[2],提出细胞核质比和免疫功能特点是贝类血细胞分类的重要依据,结合血细胞的形态结构可以将杂色鲍血细胞分成两大类(颗粒细胞和无颗粒细胞),而无颗粒细胞又可以进一步细分成透明细胞和类淋巴细胞,两者在核质比和细胞免疫功能上明显不同。 1.2血细胞的功能 贝类血细胞参与了机体损伤的修复、贝壳的重建、吞噬异物颗粒和消除有毒物质等过程,是贝类免疫的主要承担者。异物入侵贝类机体直至异物被吞噬和消化的整个过程,需要血细胞内和血淋巴中很多物质的参与,一些学者指出该过程受到温度、盐度和污染物等环境胁迫因素的影响。张朝霞[2]等首次研究了对杂色鲍流行病病原弧菌具有良好抑菌效果的。种抗生素对杂色鲍血细胞的吞噬、趋化和溶酶体膜完整性等免疫功能的影响,发现种抗生素对鲍血细胞的免疫功能均有不同程度的破坏,且促进血细胞吞噬活性的作用并非随抗生素的浓度上升而提高,以此说明贝类养殖中滥用抗生素和盲目加大投放浓度的严重后果,并发现链霉素用于治疗鲍弧菌病,不但可以显著地提高杂色鲍血细胞对病原弧菌的吞噬活性,对鲍血细胞的趋化和产生活性氧等免疫功能的破坏程度也低。 2体液免疫 在贝类的免疫系统中,除了细胞免疫方式外,血淋巴中的溶酶体酶、凝集素、非特异性抗菌肽等体液因子也发挥重要的防御作用。细胞免疫和体液免疫协同作用,共同抵抗外来物质的入侵。 2.1溶酶体酶 溶酶体酶主要有酸性磷酸酶、碱性磷酸酶、p葡萄糖甘酸酶、脂肪酶、氨肽酶、溶菌酶等,

免疫分析技术研究进展

免疫分析技术研究进展 摘要:目的:综述免疫分析技术的最新研究进展。方法:通过查阅国内外有关免疫分析技术的研究论文,对放射免疫分析(RIA)、酶免疫分析(EIA)、荧光免疫分析(FIA)、化学发光免疫分析(CLIA)等免疫分析技术进行了综述,同时指出了发展前景和尚待解决的问题。结果:多种免疫分析方法相互结合,可大大提高分析方法的灵敏度,增大检测范围;CLIA和TRFIA是非放射免疫分析的两大主流,其中,CLIA更具有竞争力。结论:目前还没有一种免疫分析技术是完美无缺的,各种技术还需要不断发展和完善,以开发出更新、更理想的免疫分析技术。 关键词:药物分析学;免疫分析;放射免疫分析;酶免疫分析;荧光免疫分析;化学发光免疫分析 免疫分析法(immunoassay ,IA)是基于抗原和抗体特征性反应的一种技术。由于免疫分析试剂在免疫反应中所体现出的独特的选择性和极低的检测限,使这种分析手段在临床、生物制药和环境化学等领域得到广泛应用。各种标记技术(放射性标记、荧光标记、化学发光、酶标记等)的发展,使免疫分析的选择性更加突出。免疫分析法起始于本世纪50年代,首先应用于体液大分子物质的分析,1960年,美国学者Yalow和Berson等将放射性同位素示踪技术和免疫反应结合起来测定糖尿病人血浆中的胰岛素浓度,开创了放射免疫分析方法的先河。1968年,Oliver将地高辛同牛血清白蛋白结合,使之成为人工抗原,免疫动物后成功获得了抗地高辛抗体,从而开辟了用免疫分析法测定小分子药物的新领域。在RIA的基础上,随着新的标记物质的发现及新的标记方法的使用,以及电子计算机、自动控制技术的广泛应用,派生出许多新的检测技术[1],使免疫分析法逐渐发展成为一门新型的独立学科。 1 免疫分析方法分类 (1)根据标记物的不同,可以免疫分析主要分为放射免疫分析(radioimmunoassay,RIA)、酶免疫分析(enzyme immuoassay,EIA)、化学发光免疫分析(chemiluminescent immunoassay,CLIA)、荧光免疫分析法(fluorescence immunoassay,FIA)等。 (2)按反应机制的不同,可以分为竞争法和非竞争法。非竞争法是将待测抗原与足够的标记抗体充分反应形成抗原-标记抗体复合物,产生的信号强度与抗原的量成正比。竞争法是将过量的待测抗原与定量标记抗原竞争结合形成定量的特异性抗体,待测抗原的量越大,与抗体结合的标记抗原量越少,产生的信号强度越小,由此定量待测抗原的量。 (3)还可以按测定过程中的某些步骤的差异分为均相免疫分析和非均相免疫分析两大类。均相酶免疫测定法的特点是抗原-抗体反应达到平衡,对结合与游

免疫学检验技术的研究进展

2011年2月第49卷第6期 免疫学检验技术的研究进展 贺天辉 (贵州省德江县民族中医院检验科,贵州德江565200) [摘要]免疫学检验技术在临床医学和科研分析中占有重要作用,其发展也会为其他医学学科提供理论依据和技术支持。本 文主要综述目前免疫学检验技术的应用及研究状况。 [关键词]免疫学检验技术;荧光素标记;酶标记 [中图分类号]R392.33[文献标识码]A[文章编号]1673-9701(2011)06-14-02 现代免疫学检验技术源于标记技术在免疫学中的应用。科技的进步推动免疫检验技术的迅速发展,正从单一的免疫诊断技术向单细胞、多基因、微量化等方面发展。而哮喘、器官和骨髓移植、自身免疫性疾病、变态反应、淋巴细胞和浆细胞的恶性肿瘤以及继发性和原发性免疫缺陷的临床诊断都客观要求免疫学检验技术更加精确,并且能够定量评价临床治疗的有效性。 1研究进展 1.1荧光素标记抗体技术 1.1.1流式细胞免疫荧光分析技术流式荧光免疫微球分析技术是建立在免疫荧光、免疫微球和流式细胞分析等实验技术基础上的一种新的血清学实验方法。利用荧光对抗体进行染色可以获得所需信息的原理而研制的流式细胞仪,具有激光技术、电子计算机技术和单克隆抗体技术特点,主要用于细胞表型、细胞内及核膜成分、DNA含量等领域的分析。它具有在同一试管中同步检测多种靶物质的潜在特征,受到许多临床检验学者的关注。迄今尚未进入临床应用。 1.1.2四聚体分析技术该技术利用T细胞表面的TCR可与构建的四聚体的表位肽相互作用而精确识别,从而可以高亲和力结合,进而达到检验抗原特异性T细胞的作用[1]。在此分析技术上衍生的检验方法主要有M HC-肽四聚体流式细胞技术、原位M HC-肽四聚体染色法、M HC-肽四聚体磁分离技术、M HC-肽四聚体ELISA技术、M HC-肽四聚体分子微阵列技术等,主要用于肿瘤抗原特异性T细胞、病毒等的检验。 1.1.3间接免疫荧光技术用作细胞内抗原定位或相应抗体检测的对照标准,主要用于抗病原体、抗核抗体、抗平滑肌抗体等以及其他呼吸道病原体抗体的检测等。可降低手工操作的误差以及提高标准化检测和自动化程度。该技术比较成熟,已经可以进行商品开发。 1.2酶标记免疫检验技术 1.2.1酶联免疫吸附试验技术理论上只要是某一抗原纯品或相应的抗体,都可以用酶联免疫技术进行检测,因此,可溶性抗原、抗体系统都可以用该技术进行检测,广泛应用于各种微量蛋白(例如细胞因子、小分子激素、肿瘤标志物等)和血源病原体(抗原和抗体)。酶联免疫吸附试验技术(ELISA)以免疫过氧化物技术为基础,敏感性高,特异性强,操作简便,易于观察,便于大规模检查。已经用于临床应用。1.2.2酶联免疫斑点技术酶联免疫斑点技术是一种用于测定B细胞分泌免疫球蛋白、T细胞分泌细胞因子功能的分析技术,是定量酶联免疫吸附试验技术的发展和延伸。 酶联免疫斑点技术的原理是在微孔培养板底部植入抗CK 或Ig的特异性单克隆抗体。待检测样本进入微孔板内培养时,在有丝分裂原或者特异性抗原的作用下,活化记忆型T细胞或B 细胞,产生CK或Ig。细胞下方的固相单克隆抗体就会捕获CK 或Ig物质。细胞被清洗后,加入生物素化的第二抗体,抗体和CK 或Ig物质结合后,再加以酶做标记的生物素或亲和素反应,以酶底物显色,阳性细胞就可形成直径约50~200μm大小不等的圆形着色斑点[2],每一个斑点对应分泌CK或Ig的一个细胞,而特定阳性T、B细胞族群的产生则可以通过斑点直径的大小可以直接反映。酶联免疫斑点技术既可用于分泌抗体的B细胞,也可用于分泌各类CK的T细胞。酶联免疫斑点技术也是T细胞功能检测的标准技术,具有较高的检测灵敏度[3]。 1.3新型标记免疫检验技术 1.3.1元素标记免疫检验技术元素标记免疫检验技术中的标记元素主要有镧系元素(Eu3+,Tb3+,Sm3+)和钌元素(Ru),其检验技术分别是分辨荧光免疫分析技术和电化学发光免疫分析技术。前者可以应用在两种指标的同时测定[4],后者可以在电场作用下反复被激发而使信号得以放大。 1.3.2核酸标记免疫检验技术其设计原理是核酸的扩增或转录翻译[5],扩增是DNA通过聚合酶链反应在较短的时间内按几何级数扩增,可以达到数百万倍;而转录翻译则是通过标记的抗体DNA与抗原反应后进行胞外转录翻译成相应的酶进行测定。这两种方法的检测都有较大的灵敏性,但还处在研究阶段。 1.3.3量子点标记免疫检验技术在传统的标记免疫分析技术中,放射免疫分析存在污染,酶免疫分析灵敏度较低,发光免疫分析和荧光免疫分析发光时间短,容易淬灭。早在20世纪70年代就引起科学家重视的量子点由于良好的光电性能重新引起了人们的广泛关注,开始在标记免疫分析中初步应用,并取得了令人满意的效果。量子尺寸很小,电子和孔穴被量子陷域,连续能带变成分立能级结构,能够接受激发产生荧光,因此它实际上是一种探针。目前应用较多的是Ⅱ~Ⅵ族或Ⅲ~V族元素组成的纳米微粒。研究较多的主要集中在CdX(X=S、Se、Te),粒径范围为2~20nm,还有一些复合结构以及多层结构。在免疫示踪定位、生物多组分同时测定、细胞成像及疾病早期诊断中具有较广泛的应用价值[6-8]。 ·综述· 14中国现代医生CHINA MODERN DOCTOR

化学发光免疫分析技术及其应用研究进展 蒋恩彬

化学发光免疫分析技术及其应用研究进展蒋恩彬 发表时间:2014-12-25T08:59:42.297Z 来源:《防护工程》2014年第9期供稿作者:蒋恩彬 [导读] 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可。 蒋恩彬 重庆热展建筑工程咨询服务中心重庆 400012 [摘要]本文主要对化学发光免疫分析技术及其应用研究进展进行了分析,首先对化学发光免疫分析技术的相关概念进行了分析;然后从临床检验和兽医学应用化学发光免疫分析技术进行了分析;最后对化学发光免疫分析技术进行了新进展研究,希望对有关人士有所帮助。 [关键词]化学发光免疫分析、临床检验、兽医学 一、前言 由于化学发光免疫分析技术具有灵敏度高、适用范围广泛等特点,所以受到了人们的认可,在医学、药品等众多领域得到广泛的应用。同时化学发光免疫分析主要利用了化学发光测定技术和免疫反应,化学发光测定技术传统的免疫分析,需要的培育时间比较长。 二、化学发光免疫技术的工作原理 1、检测器的检测原理 化学反应的检测过程中,一些化学基团在处于被氧化状态之后,会形成一个激发态,在回归至基态的过程中,会发射出光子,实质上就是免疫反应与化学反应有机结合在一起之后形成的一种分析方法,即微量倍增技术。微量倍增技术在临床检验中的应用,主要是通过粒径比较小的颗粒磁粉增大复合物表面的面积,提升复合物的吸附量,加强表面能,以此加快反应速度。 2、基本原理 化学发光免疫技术,反应过程主要包括两类,即化学发光反应与免疫反应。化学发光免疫技术的工作原理,主要是在抗体或者抗原上对化学发光物质或者其它一系列处于发光状态的酶标记物进行标记,使其产生免疫反应,使抗体与抗原能够特异性结合,产生一种复合物,然后在该复合物中加入发光底物或者氧化剂,使复合物可以发光。根据待测物质具备的浓度与仪器监测中获取的发光强度之间存在的线性关系,实现浓度的合理测定。 三、化学发光免疫分析的分类 化学发光免疫分析根据应用于免疫分析体系中的方式不同,可以分为以下三类: 1、直接标记发光物质的免疫分析这种分析方式是用吖啶酯直接标记抗体,作为抗原,然后与待测标本中相应抗体发生免疫反应,就会形成固相包被抗体一待测抗原一吖啶酯标记抗体复合物,到这一步后再加入双氧水氧化剂,这样环境就会呈碱性,吖啶酯就会在不需要催化剂的情况下分解、发光。 2、酶催化化学发光免疫分析标本中的抗原在发生免疫反应时所用的标记物为发光的酶,这种化学发光免疫分析方法是酶催化化学发光免疫分析。 3、电化学发光免疫分析,这种分析过程包括电化学和化学发光两个过程,具体是以三丙胺(TPA)为电子供体,用电化学发光剂三联吡啶钌标记抗体(抗原),在电场中因电子转移而发生特异性化学发光反应。 四、化学发光免疫分析技术的应用 1、化学发光免疫分析在临床检验中的应用 就目前而言,化学发光免疫分析技术已经成为替代RIA的首选技术,且已经被广泛地应用于基础和临床医学的各个领域。下面就简要地谈谈化学发光免疫分析技术在临床检验中的几个应用。 (1)应用于传染性疾病的病原诊断作为评价和治疗机体免疫功能重要指标的重要血清学标志物乙型肝炎病毒表面抗原、抗体,以前诊断是否感染乙肝病毒用的是常规酶法,常规酶法的缺陷是可能使得部分低病毒含量携带者漏检。但是化学发光免疫分析具有高灵敏度和线性范围宽的特点,在传染性疾病的病原诊断方面其检测灵敏度比常规酶法高,Bowser等在测定感染人类免疫缺陷病毒的围产期儿童体内的单纯疱疹病毒、乙型肝炎病毒甲型肝炎病毒、及丙型肝炎病毒时给出了证明。 (2)应用于肿瘤标志物的分析肿瘤标志物包括蛋白质、酶、癌基因产物、激素等,它是由肿瘤细胞合成释放或机体对肿瘤细胞反应而产生的一类物质。在患者的细胞中,血液中以及组织中都存在肿瘤标志物。化学发光免疫分析可以用于寻找新的肿瘤标志物,也可以进行体外早期辅助诊断和对术后的监测,对恶性肿瘤患者的具有重要意义。Mac等达到了对食管癌患者的诊断和病情监测,他们采用的方法就是检测血清中癌胚抗原的浓度、cyfra21-1的浓度、鳞状细胞癌抗原的浓度。 (3)应用于心脏疾病的特征标记物测定临床上的心脏疾病常常采用同工酶定量测定,标记物为肌酸激酶和肌钙蛋白T\肌红蛋白。Dutra等运用心肌肌钙蛋白受体分子制成了免疫传感器,可用于临床上早期检测心肌梗死。有关资料显示,同时检测了肌酸激酶同工酶和肌红蛋白,相关系数分别为cTnT0.953-0.982;CK—MB0.835-0.999;肌红蛋白0.776-0.992,具有很好的相关性可用于检测临床标本。 2、化学发光免疫分析技术在兽医学中的应用 化学发光免疫分析技术在兽医学中的应用还处于早期阶段,因此没有得到较多的应用。主要原因则是化学发光免疫分析技术在兽医学的应用中会跨越化学、兽医以及生物学科方面的知识,而这样加大了化学发光免疫分析技术的应用难度,因此没有在兽医学中得到较多的应用。但是化学发光免疫分析技术仍然是兽医学中一项疾病快速检测的方法,即通过化学发光免疫分析技术可以精准快速的判定动物所发生疾病的原因,而且通过这项技术的运用还可以监测动物体内的疾病发生概率。化学发光免疫分析技术在我国没有较多的应用到兽医学中,而且技术也没有国外先进,这进一步制约了化学发光免疫分析技术在我国的应用。国外化学发光免疫分析技术在兽医学中的应用较多,比如国外利用化学发光免疫分析技术来进行动物肠道病毒检测试验、猪肉中沙门菌抗体检测以及评价胰岛素浓度对奶牛繁殖性能的影响,并且取得了较好的成果。 五、化学发光免疫分析技术的新研究进展 化学发光免疫分析技术运用的重点就是检测内部微观化学反应的情况,而为了达到更好的检测效果就需要发光物质发光时间更加持久发光更加明亮,而这可以通过标记新的标记物来得以实现。各国科学家都致力于研究标记物的发光时间以及发光强度,标记物发光需要特定酶的催化,这需要科学家通过长时间的实践才能够证明哪一种标记物在哪一种酶的催化下才能够达到长时间的发光以及高强度的发光,

相关文档