文档库 最新最全的文档下载
当前位置:文档库 › 视频原理与转换

视频原理与转换

视频原理与转换
视频原理与转换

视频原理与MediaCoder软件使用通用入门

配套软件下载:https://www.wendangku.net/doc/571134857.html,/dlfull_zh.htm

一、软件作用:

以下是官方网站的说明

MediaCoder是一个免费的通用音频/视频批量转码工具,它将众多来自开源社区的优秀音频视频编解码器和工具整合为一个通用的解决方案,可以将音频、视频文件在各种格式之间进行转换。MediaCoder具备一个可扩展的架构和丰富的功能,可满足各种场合下的转码需求。目前,MediaCoder已经拥有上百万分布在全世界170多个国家的用户。

功能和特点

?基于优秀的众多的开源编解码后台,能够解码和编码的格式多

?极为丰富的可调整的编码参数

?全部编解码器自带,不依赖于系统的编解码器和任何组件

?良好的可扩展的程序架构,快速适应新的需求,不断增加新的格式的支持

?利用脚本语言扩展的界面,有支持众多影音设备(如PSP、iPod)的专用界面

?高性能,特别在双核处理器上表现优异

典型应用

?提高影音文件压缩率,减小其文件尺寸

?转换至可在各种影音设备上播放的影音文件,如MP3播放器、MP4播放器、手机、PDA、VCD/DVD播放机

?提取视频文件中的音轨并转换成MP3、AAC、WMA等音频文件

?修复和改善一些损坏的、部分下载的或质量不佳的影音文件

支持格式

?MP3, Vorbis, AAC, AAC+, AAC+v2, MusePack, Speex, AMR, WMA, RealAudio, mp3PRO*

?FLAC, WavPack, Monkey's Audio, OptimFrog, AAC Lossless, WMA Lossless, WAV/PCM

?H.264, Xvid, MPEG1/2/4, Theora, Flash Video, Dirac, 3ivx*, RealVideo*, Windows Media Video

?AVI, MPEG/VOB, Matroska, MP4, RealMedia*, ASF, Quicktime*, OGM*

?CD, VCD, DVD, CUE Sheet*

随着软件的更新可能支持更多的格式,以软件主页介绍为准。

*仅支持输入简而言之,你可以用MediaCoder转换各种视频、音频文件。一般在以下几种常见的情况下需要转换:

一、使用MP4、PSP、视频MP3等便携式机器的用户。希望将自己机器里面的视频转换后放进这类便携式设备进行播

放。

二、使用多媒体手机的用户。一些手机的视频功能比较强,但支持的视频格式都有特殊要求,因此视频文件需要转换

后才能放进这类手机。如3GP、MP4等后缀的文件多用在此处。

三、使用支持网络媒体的DVD用户。现在新型的DVD一般都带所谓的MP4功能,实际多是支持A VI文件直接播放。

很多网上视频格式为RMVB等,可以转换为这类DVD支持的AVI文件。

四、使用智能手机/PDA的用户。此类设备本身对视频兼容性比较高,一般CPU处理速度也快,基本可以不需转换直

接兼容除RMVB/RM格式以外的各种文件,但实际网上下载的文件多为RMVB格式,通过适当转换,能保持在缩小文件体积的同时,更适合此类设备播放。

五、DVD碟友。可以通过MediaCoder直接将VCD/DVD保存为其他格式,方便保存、交流或在便携式设备播放。

六、其他用途。

二、为什么是通用教程?

本教程目的在于不依耐MediaCoder的拓展界面,通过对于特定选项直接手动修改,达到直接转换出自己需要的文件的目的。毕竟拓展界面的开发是需要时间的,也不是每种设备都开发一个拓展界面出来。

本教程放弃讨论MediaCoder的纯音频转换部分。MediaCoder也是可以作为一个单纯的音频格式转换器使用的,例如把APE格式转成MP3格式等,但我个人认为,如果只是单纯的做音频转换,使用MediaCoder就是杀鸡用牛刀了,还不如直接使用《千千静听》软件自带的格式转换功能,使用更简单,基本几种常见的音乐格式都已经支持了。且《千千静听》已经具备了从视频文件中提取音频部分的能力。例如,《千千静听》就可以直接播放RMVB格式,但只有声音而没有图像,这个时候你使用其自带的格式转换功能,可以直接把RMVB影片的声音转为MP3格式保存。

事实上,一般MediaCoder用户也多用的是视频转换功能。

本教程对高压缩型通用DVD碟的制作没有涉及,市场上常称为万能DVD或HDVD9,此种DVD碟可以在任意DVD播放器进行播放,通常一张DVD可以包含10集左右的电视连续剧。其本质是对视频文件用VCD的MPEG1格式编码,但使用DVD的封装方式制作而成。清晰度只有VCD级别。此种DVD碟需要多种软件协同工作才能完成,且费时费力费硬盘空间,估计除了少部分发烧友和D版制造商有兴趣外,一般人是不需要的。

现在的新型DVD机基本都支持所谓的MP4(其实是A VI后缀的文件)播放,此种格式可以很方便的使用MediaCoder 制作出来。压缩率更高,制作更方便,清晰度也可以做到比万能DVD更清晰。使用Nreo软件可以直接刻录进DVD 光盘,使用最普通的数据DVD制作方式即可。一般每张碟可以包含20~30集电视连续剧。

因此,我放弃了万能DVD的制作步骤教程,直接在后面的常见参数中提供了新型DVD支持的A VI格式的制作参数。

三、 认识软件界面和常见参数修改位置:

添加待转换的文件/文件夹/光盘

移除当前选择的文件

转换栏里的文件目录全部清空

播放转换列表里面选择的文件,一般来说,只要能播放,就能正常转换

待转换文件列表,可以直接拖动需要转换的文件进这个列表

开启高级设置页面,前提是安装火狐浏览器,本教程不打算接触此部分,里面全部是英文,适合高级用户使用

暂停转换

开始转换

跳过选择的文件,选择需要跳过的文件,再点击此键,则转换的时候,设置了跳过的文件不被转换

开启拓展面板,拓展面板里有部分常见设备需要的的参数,且已经设置好,如魅族MP3支持等。此教程不涉及

此部分,因为不通用。但拓展面板能实现的功能,如果熟悉软件,可以不使用拓展面板,自行直接设置参数实现。这也是本通用教程的目的。

四、常见视频参数

4.1了解视频文件类型。

我们常见的A VI、RMVB、MKV、ASF、WMV、MP4、3GP、FLV等文件其实只能算是一种封装标准。

一个完整的视频文件是由音频和视频2部分组成的。H264、Xvid等就是视频编码格式,MP3、AAC等就是音频编码格式。

例如:将一个Xvid视频编码文件和一个MP3视频编码文件按AVI封装标准封装以后,就得到一个A VI后缀的视频文件,这个就是我们常见的A VI视频文件了。

由于很多种视频编码文件、音频编码文件都符合A VI封装要求,则意味着即使是A VI后缀,也可能里面的具体编码格式不同。因此出现在一些设备上,同是A VI后缀文件,一些能正常播放,还有一些就无法播放。

同样的情况也存在于其他容器格式。即使RMVB、WMV等也不例外。部分技术先进的容器还可以同时封装多个视频、音频编码文件,甚至同时封装进字幕,如MKV封装格式。MKV文件可以做到一个文件包括多语种发音、多语种字幕,适合不同人的需要。

例如:MKV文件只要制作的时候同时加入国语和粤语发音的音轨和对应的简体、繁体字幕,播放的时候,你可以独立选择国语或粤语发音,并根据自己需要选择简体或繁体字幕,也可以选择不显示字幕。相当方便。

因此,视频转换需要设置的本质就是:A设置需要的视频编码、B设置需要的音频编码、C选择需要的容器封装。一个完整的视频转换设置都至少包括了上面3个步骤。

4.2一个视频文件一般都有哪些主要的参数?

通过查看一个已有视频文件参数的例子大致进行介绍。用暴风影音播放此文件,然后按Shift+F10,弹出下面窗口,点击“详细资料”

在此窗口中,我们能了解与视频转换相关的一些参数包括: 封装容器:A VI 表示文件后缀是A VI 视频流分辨率:512x384 视频原始宽度512像素,原始高度384像素。 一像素多大:一般显示器常见分辨率有1024 x768,可以理解为横向1024像素,纵向768像素 只是大致理解下,这个是电脑显示常见的高宽度表示方式。 视频流编码格式:XVID 视频流帧率:23.98fps 意思是画面每秒变化23.98次,电影帧率是24,一般理解为达到24以上都视为流畅。 视频流编码率:928Kps 此部分关系到视频清晰度、文件大小。码率越大,视频越清晰,文件体积越大。 音频流编码格式:MP3

音频流采样率:48000Hz 一般用44100Hz 或者24050Hz 就可以了,例子使用文件是高清晰版本,所以设置的比较高 音频流声道:双声道 立体声就表示是双声道,双声道还有个用途就是可以做成双语版的节目,例如左声道为国 语,右声道为粤语。 音频流编码率:127Kps 此部分关系到声音清晰度、文件大小。码率越大,声音保真度越高,文件体积越大。

上面基本就是我们转换视频的时候需要注意设置的一些常见参数了。对于一些特殊设备,如果不知道设备所支持的视频文件参数,可以自行用暴风影音播放该设备内置视频文件,通过上面的方法了解相关参数,以后只要在转换的时候照猫画虎设置为一样的参数,转换出来的文件一般都是可以使用的。

例如:一个新买的MP4,但不清楚此MP4支持哪些文件格式,这个时候可以把MP4里面自带的视频文件拷贝出来,用暴风影音播放,再按Shift+F10就可以了解到该MP4支持的视频文件需要的参数。就可以在转换软件里面设置为相同的参数,这样转换出来的软件一般都是可以放的。

五、 常见视频转换需要设置的参数都在哪设置?

下面会结合各个界面统一用红色字母全部标出,统一解释

注:此截图来自暴风影音一代(即经典版)。使用同样基于MPC 的超级兔子快乐影音也是可以的。暴风影音2、3代是不同于MPC 的独立开发的版本,我没用过,可能显示的资料并不符合本教程。

安装基于MPC 的暴风影音一代播放器主要用途是其自带了完整的解码器包。

如果你使用Kmplayer 软件,按ALT+J 也可以查看当前播放视频的属性,内容更丰富,但界面与此例图示不一样,且全部是英文,习惯用Kmplayer 的用户可以自己查看。

A :转换后文件保存路径,设置方法,点击右边的浏览,选择希望

保存的路径即可。默认与被转换文件保存在同一个文件夹下面。把路径栏全部删除即为默认方式保存。

B :选择音频流编码,例子中选择的是MP3编码,选择以后,右边的F

栏会自动做相应变化,可以理解为音频流的

进一步详细设置在F 栏进行。

C :音频流采样率设置,一般选择原始即可。也可以手动指定44100Hz 或者22050Hz ,采样率高,保真度就高,对应

需要的音频流编码率也越高,如果采样率选择的比较高,但音频编码率选择的比较低,反到会声音变调。具体自己多试几次,多感受下,选择自己最喜欢的编码组合。

D :声道选择。默认是Stereo ,意思为双声道/立体声。此处声道设置是针对源文件的,设置为Stereo ,意思是保留双

声道,选择Left ,意思是去除左声道,就那么几个选项,自己可以在正式转换前,先转换30秒视频片段试下效果。

E :一般不需要改动,如果不希望对音频流重新转换,可以选择下面的“复制音频流”。

F :F

栏主要是对希望转换后的音频流进行详细设置的地方。例图中是MP3设置,也是最常用的音频设置。G 处是

选择MP3编码格式,VBR 表示全动态编码方式,所以下面的

I

处,只有大致的调节范围,最左边表示转换后音频流

体积最小,效果也是最差,最右边则相反。算法质量一般可以拖动到最左边,即最高质量。高质量算法会消耗更多的转换时间。

H :此处声道是指转换后的文件的声道。Auto 指自动根据源文件设置。一般不用改动。 G :这个是MP3音频流设置最主要的部分,有VBR 、ABR 、CBR 三种不同的编码方式选择。

VBR : 上面已经解释了,表示全动态编码方式。可以控制音频流质量,体积大小不可控。不同音频文件转换后

的体积大小不一样。

ABR : 平均动态编码方式,是一种兼顾质量和文件体积的方式,

如下图:

B C D

E

A

此例中,最终编码以后的音频流平均码率为96 kbps,但使用动态编码方式,一些细节丰富的地方码率高于96kbps,一些细节简单的地方码率低于96kbps,这样兼顾了音频质量和文件体积。

CBR:固定码率编码方式,表示对于全部音频流的每一个部分都安装设置的编码率进行编码。这样设置的结果是最终编码出来的音频流体积可以严格控制,效果方面一般也可以接受。是最老的编码方式,兼容性最佳。

例子:

此图设置表示对使用128kbps进行固定方式编码。

常见音频编码AAC编码设置举例:

使用此方式时,需要先安装Winamp软件。

I

G

H

在AAC音频流编码方式中,B处选择CT AAC+以后,右边栏目会自动变成上图模样。由于AAC编码格式比MP3

编码格式更加先进,可以使用更小的编码率获得更高的质量,因此,I处码率一般选择32或48KBps即可,G处类型

一般不用改变,H处一般默认是Stereo,意思是双声道立体声。表示编码以后的音频流文件为立体声。

AAC还有一种编码方式,使用的是Nero的AAC编码,使用前需要安装Nero刻录套件。

2种AAC 的效果差不多。

音频流最常用的也就是MP3和AAC 编码方式。

点击“视频”以后,出现此菜单。

J :选择视频编码模式,

Bitrate-based :基于固定比特率K 的编码方式。此模式下可以控制最终视频流文件体积大小,K 处值越大, 视频越清晰

Quality-based :基于质量控制的动态编码方式。此模式下,根据具体设置的质量进行编码,最终文件体积大小

不可控,但质量可控。如下图:

此设置表示按照80%的质量,进行视频编码。编码以后的视频清晰度是源文件的约80%

Two-Pass : 二次编码方式,此编码模式下,先预编码一次源文件,再进行第二次编码,可以更好的控制文

件体积和视频质量之间的关系。所需要耗费的时间是前2种编码方式的2倍。

Three-Pass : 三次编码方式,基本很少用。

K :此处根据J 处选择,设置为具体码率或百分比表示的画面质量。

L :选择具体视频流编码格式,上图中选择的是Xvid ,常用的有Xvid ,H264,MPEG1,MPEG2。

Xvid :与RMVB 格式差不多的压缩率,通用性很强,特别是用于家用DVD 和便携式MP4等设备。 H264:面前压缩率最高的视频压缩格式,与其他编码格式相比,同等画面质量,文件体积最小,远远超过RMVB

编码格式,电脑都可以播放,部分便携式视频设备也支持,如苹果播放器。PDA/PPC 等设备也可以使用 MPEG1:其实就是VCD 编码格式。

MPEG2:DVD 编码格式。比MPEG1强,与MPEG1一样,已经落后的编码格式,压缩率都不高,编码后的

文件体积大,多用于希望把网上下载的文件转换为VCD 或DVD 碟的时候。

M :选择封装容器。上图中是A VI 封装容器,也是最常用的一种,封装容器M

与L 、B 的组合有关。如果组合不

合乎封装容器的要求,是无法正常转换出需要的视频文件的。

一般非智能手机等便携式播放设备(亦含PSP 、IPOD )支持的AAC 格式是指Nero 的AAC 格式。3GP 封装使用的AAC 也是指Nero 的AAC 。非智能手机机型繁多,各种机型视频性能并不一样,很难说有一个通用于各种手机的3GP 格式,一般是针对性的进行设置。

智能手机、PDA 平台则不受此限制。且可以支持CT AAC+

具体使用中自己体会。尤其是MKV 封装容器,基本无论什么样的组合都可以!但一般MKV 用的最多的就是H264+AAC 组合,此组合文件体积最小,清晰度最高。因此网上很多MKV 视频都是高清晰度的。

从上表格可以看出,真正设置的重点在于音频编码和视频编码,封装容器多数时候只是关系到最后的文件后缀而已。起码初学者可以就这么理解。

下面是设置文件分辨率的地方:

O :设置视频分辨率。320x240是最常见的便携式MP4或者PPC 的分辨率。第一个√表示使用指定分辨率,不勾选意

思是使用源文件的分辨率。第二个“√全局”勾选表示全部待转换文件都使用这个设置,不勾选,可以单独给不同文件设置不同分辨率。 小技巧,只要设置宽度,可以自动按源文件高宽比例设置高度。

例如:手动写入320x-3

,则软件在转换的时候,在不会对画面

比例造成影响的前提下,自动计算高度。

P :默认不对画面进行其他调整。此处有给视频加黑边等用途,例如通过增加上下2条黑边,将16:9的电影画面转

成4:3比例的视频画面,高级用户自己调整,一般并不用修改。

Q :设置视频帧率,一般常见设置为24、25或30,魅族MP3不能超过20,手机使用的视频一般在12-15之间。 S :新增加的功能,可以在转换的同时检查转换后的视频画面,没事就取消这个√,毕竟会影响视频转换速度。

部分用的比较多的高级进阶:

I

J

先点击右上角的小箭头,出现“时间”菜单选项,再单击“时间”出现上图。

I:设置开始转换的时间和转换结束的时间。此设置针对最终转换后的文件。全部是0表示不修改,是完全转换。

4个格子分别对应的单位是小时、分钟、秒、毫秒。点击I栏的“选择”会有一个拓展页面,使用更加方便,高级用户自己调整。

J:如果转换的视频文件有影音不同步现象,可以通过设置J处进行调整,达到画面和声音同步的效果。

还有字幕等设置,大家自己试着用下,用途就是在转换的同时,把字幕也压进去。但我个人感觉MediaCoder在字幕方面相对其他功能是比较弱的。多用于保存DVD碟为A VI等格式的时候,顺带把字幕也保留下来。

通过上面的理解,基本常用的转换设置地方大家都了解了。下面进入最后的突破教学。

六、举一反三,通用设置方法!

还是看这个已经有的文件的属性栏,下面照猫画虎设置以后,转换出一样结构的文件。

我们需要涉及到的有B、C、D、G、H、I、J、K、L、M、O、Q等几处。

其中B、C、D、G、H、I与音频流编码有关

I、J、K、L、O、Q与视频流编码有关

M指定封装容器,关系到最终视频文件的后缀

通过设置以后,各个界面如下:

G H I

这样就设置好了,这个设置转换出来的文件,就和样品文件的文件结构是一样的。

M

O

L Q K B

C

H

I

七、几种常见的转换格式设置

适合家用DVD播放的媒体文件(此DVD需要支持MP4文件播放功能)

适合支持大部分PDA、智能手机播放的媒体文件,低速CPU机型适用(CPU速度低于400MHz的)

MKV格式

适合支持大部分PDA、智能手机播放的媒体文件,高速CPU适用(CPU速度大于或等于400MHz的)

其他格式多是适合专用设备的,自己按照前面的教程分析样品文件,再做出相应设置即可。有预置拓展面板可以用的,就用拓展面板。如PSP,魅族MP3等,点击进入选择各种预置拓展面板。

全部参数设置好以后,点击,经过漫长的等待(视机器配置而定),你需要的视频文件就转换好了!

八、结语,希望大家使用愉快!

使用MediaCoder也有段时间了,一直以来,没有中文的系统的入门级帮助文档。今天有空写了这个帮助文档,希望对新使用的中文用户有帮助。能捆绑进MediaCoder软件进行发布则更好,版权无所谓,对中文用户有帮助就行。

请支持MediaCoder,有能力的请进行捐赠。

注意:由于MediaCoder免费,为了限制用于商业用途,作者在部分版本里面设置了个小小的限制,每次转换文件大小达到2000M的时候,会暂停弹出个对话框。点击确定以后会继续转换,对个人用户基本没有影响。

一个MediaCoder的热心中文用户

2007-11-19

MediaCoder 0.6.0 build 3990软件使用进阶

使用价值决定价值,MediaCoder软件的基本使用方法在通用入门篇里面大家都已经有所了解。在进阶篇里,将会讲解几个常见的实例:

一、 简单的将VCD、DVD碟片内容保存为MKV文件至硬盘(如果需要包含多字幕多声道,请学习DVD Rip)

二、 制作一个适合掌上电脑播放的A VI文件,并加载适合观看的字幕

三、 制作一个适合上传到视频分享网站的视频文件

四、 制作一个手机常见的标准的3GP文件

五、 用MediaCoder截取影片主题曲——牛刀自有杀鸡刀没有的功能

通过这些实例,应该可以解决以下几个问题:

一、分辨率、 文件清晰度、编码率、编码格式、文件体积大小计算及它们之间的关系,转换出清晰的影片。

二、 给宽屏画面上下加黑边或对画面进行裁剪

三、字幕的主要种类, 用MediaCoder加载合适的字幕

在附篇里,将会有以下内容:

一、 如何解决使用中遇到的困扰——有效率的提问和分享

二、 选择优秀的数码产品——减少很多不必要的麻烦

三、 请了解支持开源软件/自由软件(转)

1.开源知识产权解决之道:“开放”下的规则

2.各类开源协议介绍

3. MediaCoder所遵循的MPL协议

一、V CD和DVD碟片的处理

VCD与DVD碟是目前国内最常见的2种影碟,因此,转换VCD、DVD影片为适合自己使用的文件是经常遇到的事情。在以下情况下你可能会需要转换:

1.转换为适合MP4播放器、PDA观看的视频文件

2.在缩小体积、尽量减小画面损失的前提下,将影片保存到电脑上观看

3.将影片保存为适合网络传播和分享的视频文件

知识准备:

1、VCD、DVD碟片的制式、帧率、分辨率

VCD、DVD常见有2种制式(PAL制式与NTSC制式)的区别,不同制式的碟片的帧率、分辨率不一样。

标准PAL 制式帧率25

为VCD,但不常见。

稍微注意一下,就会发现,这些分辨率其实都不符合4:3或者16:9的比例。但我们在日常应用中,普通电视机/普屏显示器是4:3比例,国内的电视剧也多为这个比例。宽屏电影的画面比例常为16:9,因此,在转换VCD、DVD影片的时候,就必须选择合适的分辨率。否则转换出来的影片画面是变形的。

为什么出现这种情况:VCD、DVD规范都出现于模拟电视流行的时代,这种分辨率与模拟电视信号的特点有关。有兴趣的请自己上百度搜索相关知识。

国内的VCD碟多是PAL制式,画面比例为4:3,即使上下有黑边,那种黑边也多是已经压制进视频文件的,因此,实际转换的时候,只要按照VCD原始分辨率保存即可,如PAL制就输入352×288,NTSC制就输入352×240,这样可以省去对画面比例重取样的过程。现在电脑上的播放器多能自动识别PAL制VCD常见的352×288分辨率,在播放时会自动拉伸至4:3画面比例。很多网上的电视剧,RMVB格式的,分辨率为352×288就是这个原因。但如果是用于MP4播放器等便携式设备,此类设备常见分辨率为320×240,且很多MP4设备不能支持高于此分辨率的视频文件,就需要手动指定分辨率。这样画面刚好就是4:3比例,也能在此类设备上达到最佳视觉效果。PDA/智能手机等设备对分辨率要求不严格,即使画面分辨率大于320×240,也可在播放时自动调整为最佳画面大小。但播放效果方面,依然是最佳分辨率的视频文件效果最好。例如,多数PDA设备的液晶屏分辨率为320×240,你固然可以播放352×288分辨率的视频文件,但实际画面效果可能比不上320×240的视频文件。

DVD影片的转换相对麻烦一些,因为DVD影片中既有宽屏电影,播放时的实际画面效果为16:9比例;又有普通画面的电影,实际播放画面效果为4:3。因此不能简单的按照DVD分辨率标准设置转换后的分辨率。

第一步,自己播放下DVD源片,判断DVD画面比例

第二步,根据自己转换后的用途选择转换后的画面宽度,例如:如果用在MP4、PAD、智能手机上,则最佳宽度为320像素,如果保存到电脑上,4:3画面比例的影片则可以选择640像素宽度,16:9画面比例的影片常用720像素宽度。

第三步,根据源片画面比例计算转换后的最佳高度。

为320×240,然后利用拓展出来的黑边安放字幕。宽屏DVD影片保存至硬盘或网络交流时,为了方便,常取近似值720×400,但我一般不这么做,毕竟从理论上来说画面已经变形了,虽然这种变形很小。有时候也根据DVD碟片具体情况取分辨率704×396。

保存至硬盘时,大家常有2种需求。一种是希望每张DVD碟刚好能保存在一张CD刻录碟上,就是希望每个DVD 碟转换后的文件大小刚好为700M左右。还有一种是希望转换后的文件能保存尽可能高的原DVD质量,适当缩小体积,转换出的文件别像DVD一样4G多一个就可以了,同时能保存多声道、多字幕,这个就已经属于DVD Rip范畴了。

使用H264+AAC编码组合,一部约2小时的DVD影片转换后的大小为700M时,基本也能保持较好的画面质量了,此时的画面质量和声音效果都比网上流行的RMVB强的多。

但如果希望画面质量损失更小,保存更多的字幕和声道,或者影片长度比较长,如接近3小时,或者选择了其他压缩率比较低的编码方式,那么就需要更大的文件体积。DVD Rip时,往往把一部电影按700M的标准分割为1-3部分。但现在DVD刻录机的流行,也许以后对700M容量的这种需求会减少,直接把一部DVD电影压缩成1-2G大小的文件也可能越来越常见,电影不分割,看起来应该更连贯。

高清视频方面,有1080I/1080P等分辨率,一般习惯把一部高清电影用H264+AAC编码组合压缩为约4G左右大小,刚好适合一张DVD刻录碟。当然,大家应该还能见到一部高清电影容量高达30-40G的情况,那是因为使用了MPEG2编码(就是DVD用的编码方式),MPEG2编码方式弹性大,因此也可以用在高清视频编码领域,优点是对设备运算能力要求低,缺点是文件体积过于庞大。同样画面质量的情况下,H264编码的文件体积小的多,但对电脑CPU运算能力要求比较高,好在现在流行的双核电脑都已经可以完全胜任此类应用了,因此,以后H264编码的文件会越来越多。通过目前国内的网络来下载一个30G的文件是件痛苦的事。绝大多数人还只是在用本就不快还被限速的ADSL。

为什么提高清晰度需要多的文件体积?为什么更换不同的编码方式可能需要多的文件体积?

2、分辨率、清晰度、编码率、编码格式、文件体积大小、帧率及它们之间的关系

分辨率大家应该比较熟悉了,视频文件的用途决定分辨率的大小。大家应该选择合适的分辨率,能有效提高视频编码效率和控制文件大小,并获得最佳观赏效果。

清晰度的高低在于是否能分辨出图像线条间的区别,即图像层次对景物质点的分辨或细微层次质感的精细程度。其分辨率愈高,图像表现得愈细致,清晰度愈高。在视频转换时,清晰度更多的是一个比较主观的感觉。画面锐利、整洁、细致都可以让人产生清晰的感觉。一般来说,在足够编码率的前提下,分辨率越高,画面越清晰。因为分辨率提高后,图像表现就会更细致,图像层次之间也更加分明。但如果编码率不够,即使分辨率比较高,但直接感觉就是画面模糊,也就谈不上高清晰。

如果是动作片等类型的影片,一般画面变化激烈,需要设置较大的编码率。如果是动画片、风景片等类型的影片,画面变动不激烈,可以设置相对较小的编码率即可达到相同的清晰度,以便缩小转换后的文件体积。具体需要自己体会。

转换视频文件的时候,大家最关心的就是转换后的画面是否清晰。经常听到有人说XX软件转换质量好,XX软件转换质量差,很多情况下其实并不是软件不好,而是那些人自己不懂。下面4个例子详细讲解。

注:下面4个例子中都使用相同的视频编码器Xvid,全部使用固定比特编码方式。

例2:使用固定视频编码率270Kbps,相同的编码格式,不同画面大小的清晰度存在区别。因此必须根据画面大小确定合适的编码率。(因为是动画片,我取的编码率就低了一些,一般分辨率320×240的影片建议取320~350Kbps)

例3:使用了足够的编码率设置以后,大分辨率画面依然给人清晰的感觉。

此画面分辨率同样是640×480,与例2中使用同样的编码器,但将编码率提高到650Kbps,画面清晰度比例2中的同比例画面高很多。前提是片源有足够的分辨率和清晰度。例4中将讲解片源分辨率不够的情况。

例4:强行将小分辨率画面拉大为大分辨率画面,即使编码率足够也不会改善画面质量。

编码率/比特率直接与文件体积有关。且编码率与编码格式配合是否合适,直接关系到视频文件是否清晰。

在视频编码领域,比特率常翻译为编码率,单位是Kbps,例如800Kbps

其中,1K=1024 1M=1024K

b 为比特(bit)这个就是电脑文件大小的计量单位,1KB=8Kb,区分大小写,B代表字节(Byte)

s 为秒(second)

p 为每(per)

以800kbps来编码表示经过编码后的数据每秒钟需要用800K比特来表示。

1MB=8Mb=1024KB=8192Kb

Windows系统文件大小经常用B(字节)为单位表示,但网络运营商则用b(比特),也就是为什么512K速度宽带在电脑上显示速度最快只有约64K的原因,网络运营商宣传网速的时候省略了计量单位。

完整的视频文件是由音频流与视频流2个部分组成的,音频和视频分别使用的是不同的编码率,因此一个视频文件的最终技术大小的编码率是音频编码率+视频编码率。例如一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。

了解了编码率的含义以后,根据视频播放时间长度,就不难了解和计算出最终文件的大小。编码率也高,视频播放时间越长,文件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合,所以使人产生分辨率越大的视频文件体积越大的感觉。

计算输出文件大小公式:

(音频编码率(KBit为单位)/8 + 视频编码率(KBit为单位)/8)×影片总长度(秒为单位)= 文件大小(MB为单位)这样以后大家就能精确的控制输出文件大小了。

例:有一个1.5小时(5400秒)的影片,希望转换后文件大小刚好为700M

计算方法如下:

700×8÷5400×1024≈1061Kbps

意思是只要音频编码率加上视频编码率之和为1061Kb,则1个半小时的影片转换后文件体积大小刚好为700M。至于音频编码率和视频编码率具体如何设置,就看选择的编码格式和个人喜好了,只要2者之和为1061即可。如可以设置为视频编码格式H264,视频编码率900 Kbps,音频编码格式AAC,编码率161 Kbps。

与文件体积大小有关的码率是指的平均码率,因此,不论是使用固定比特一次编码方式还是使用二次(多次)动态编码方式,都是可以保证文件大小的。只有使用基于质量编码的方式的时候,文件大小才不可控制。

编码格式有很多种,在技术不断进步的情况下,针对不同的用途,产生了各种编码格式。不同编码格式的压缩率不一样,且有各自的特点,有些在低码率情况下能保持较高的画面质量,但在高码率情况下反而画面质量提示不大,有些适合在高码率情况下保持高清晰度画面,但可能在低码率情况下效果不佳。介绍常见的几种。

RMVB/RM在制定的时候主要考虑的是网络传播,目的在于利用不快的网速传播视觉可以接受的画面质量。因此,RMVB/RM编码格式的特点是较低码率下能获得较好的视频质量。但高码率的情况下反不如其他编码格式。同样是RM/RMVB后缀的文件,其内部编码格式细分还有R8/R9/R10等,但总的来说,上面所说的特点依然是存在的。只是压缩率更高了,因此RMVB没人用在高清编码领域。RMVB追求的是高压缩率,能接受的画面质量,所以经常压缩掉一些不容易注意的细节。初看画面不错,细看就发现画面不锐利,层次不分明,总给人一直模糊的感觉。RMVB/RM 后缀文件的音频编码部分同样存在这样的情况,声音压缩率很高,但只是能听,不要奢望达到声音动听的境界。RMVB 的流行,一是因为REAL的这种格式适合低速网络的传播,能以较小的文件体积获得可以接受的画面质量。二是随着RMVB的使用,开始出现功能比较完善的转码软件和解决方案,方便了视频爱好者,扩大了影片来源。但随着网速越来越快,H264等更好的编码器出现,同时也因为RMVB不适合高清视频制作,且若对于其他硬件厂家希望支持RMVB/RM格式,就必须向REAL公司支付相当昂贵的专利费,导致很多硬件厂商放弃了对RMVB文件的支持。RMVB 的文件已经不是以前那种完全压倒性的优势了。现在网络传播的视频文件已经很多都是A VI、MKV、MP4、3GP等后缀了。其中MKV等多用于高清视频文件,MP4、3GP等多用于手机和便携式设备等领域,A VI则使用范围更加广,不但在高清晰度视频文件中有A VI文件,在便携式设备领域也有AVI使用。

VCD用的视频编码格式为MPEG1,DVD的则为MPEG2,VCD和DVD都主要用于家庭影音播放,而且一般来说,VCD用的MPEG1编码为固定码率编码。DVD可以支持动态码率的MPEG2编码。为了能保证激烈变化画面的时候的清晰度,其默认编码率都比较高,VCD标准编码率为1152Kbps,DVD开放些,根据影片播放时间,常设置为5000 Kbps -8000 Kbps之间,在不浪费DVD碟容量的前提下尽可能的使用较高的码率获得更高的清晰度。MPEG1和MPEG2在超低码率情况效果不佳,且过分提高码率,画面效果带来的提示也不明显。

万能转换开关原理图

万能转换开关的工作原理及符号表示 教程来源:本站原创作者:未知点击:2301 更新时间:2009-3-4 16:14:36 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

正泰万能转换开关接点图编码规则 技术交流2010-01-14 20:51:56 阅读1518 评论5 字号:大中小订阅 万能转换开关是一种手动操作的低压电器产品,它是基于通过凸轮控制各对触头从而实现对各个独立线路进行控制的目的,由于它的控制靠凸轮来实现,因此俗称凸轮开关。凸轮开关根据控制的对象和使用的场合不同,大体可以分为万能转换开 关和组合开关。 凸轮开关大体由操作机构、定位助力机构、接触系统三个部分组成。其中接触系统可以由独立接触单位进行线性叠加,每一个接触单元(一节)有两个独立的接触组(1-2、3-4)组成,那么根据排列组合,一个接触单元(一节)可以由4种情况(1-2通3-4断、1-2断3-4断、1-2通3-4通、1-2断3-4通)那么对于n节产品在某个档位的通断情况有4n情况,假如开关有m档,则这个开关理论上存在着m*4n种通断情况。正因为具有如此其他任何开关都不具备的优势,因此被称为万能转换开关。当然接点通断情况十分的复杂,导致顾客在进行产品选择的时候难以下手,即使技术人员也为难。我们正泰由于顾客特殊定做的产品接点图情况十分的普遍,常常由于我们技术人员没有比较可行的接点编码方法,致使产品无法具备具体的产品规格型号,一则导致最终客户无法接线使用,同时没有具体的规格型号,顾客在下次订货时需要重新提供接点情况,延长了产品交付时间,造成顾客退单甚至投诉。为了更好的管理转换开关同时为以后进行软件自动编码准备,这几天将开关做了整理,并查找一些资料,现将这几天对转换开关的编码规则作一个介绍,供大家参考改进。 接点图按产品结构从上至下排列:手柄代号、面板代号、定位特征代号、接触系统(各对触头编号)。这样的分布符合我们的装配习惯,装配时可以完全按照接点图至下而上(反之亦然)对各个部件进行一一对应安装),极大的提高了装配效率 同时便于装配检验。编码过程如下:

数模转换原理及应用

数模(D/A)转换器及模数(A/D)转换器 一、实验目的 1.熟悉D / A转换器的基本工作原理。 2.掌握D / A转换集成芯片DAC0832的性能及其使用方法。 3.熟悉A / D转换器的工作原理。 4.掌握A / D转换集成芯片ADC0809的性能及其使用方法。 二、实验原理 1.数模(D / A)转换 所谓数模(D / A)转换,就是把数字量信号转换成模拟量信号,且输出电压与输入的数字量成一定的比例关系。图47为D / A 转换器的原理图,它是由恒流源(或恒压源)、模拟开关、以及数字量代码所控制的电阻网络、运放等组成的四位D/ A转换器。 四个开关S0 ~ S3由各位代码控制,若―S‖代码为1,则意味着接VREF ,代码―S‖= 0,则意味着接地。 由于运放的输出值为V0= -I∑?Rf ,而I∑为I0、I1、I2、I3的和,而I0 ~ I3的值分别为(―S‖代码全为1): I0 =,I1 =,I2 =,I3 = 若选 R0 =,R1 =,R2 =,R3 = 则I0 ==?20 ,I1 =?21 ,I2 =?22 ,I3 =?23 若开关S0 ~ S3不全合上,则―S‖代码有些为0,有些为1(设4位―S‖代码为D3D2DlD0),则I∑ =D3I3 + D2I2 + DlIl + D0I0 =(D3?23 + D2?22 + D1?21 + D0?20)= B? 所以,V0 = -Rf ? B,B为二进制数,即模拟电压输出正比于输入数字量B ,从而实现了数字量的转换。 随着集成技术的发展,中大规模的D / A转换集成块相继出现,它们将转换的电阻网络和受数码控制的电子开关都集成在同一芯片上,所以用起来很方便。目前,常用的芯片型号很多,有8位的、12位的转换器等,这里我们选用8位的D / A转换器DAC0832进行实验研究。 DAC0832是CMOS工艺,共20管引脚,其管脚排列如图48所示。

∑-△模数转换器的原理及应用

∑-△模数转换器的原理及应用 张中平 (东南大学微电子机械系统教育部重点实验室,南京210096) 摘要:∑-△模数转换器由于造价低、精度高、性能稳定及使用方便等特点,越来越广泛地使用在一些高精度仪器仪表和测量设备中,介绍该转换器的基本原理,并重点举例介绍AD7708芯片的应用,该芯片是16 bit模数转换器,与24 bit AD7718引脚相同,可直接升级。 关键词:模数转换器;寄存器;串行口 我们通常使用的模数转换器(ADC)大多为积分型和逐次逼近型,积分型转换效果不够好,转换过程中带来的误差比较大;逐次逼近型转换效果较好但制作成本较高,尤其是高位数转换,转换位数越多,精度越高,制作成本就越高。而∑-△ADC可以以相对逐次逼近型简单的电路结构,而得到低成本,高位数及高精度的转换效果∑-△ADC大多设计为16或24 bit转换精度。近几年来,在相关的高精度仪器制作领域该转换器得到了越来越广泛的应用[1]。 1 ∑-△ADC的基本工作原理简介 ∑-△模数转换器的工作原理简单的讲,就是将模数转换过后的数字量再做一次窄带低通滤波处理。当模拟量进入转换器后,先在调制器中做求积处理,并将模拟量转为数字量,在这个过程中会产生一定的量化噪声,这种噪声将影响到输出结果,因此,采用将转换过的数字量以较低的频率一位一位地传送到输出端,同时在这之间加一级低通滤波器的方法,就可将量化噪声过滤掉,从而得到一组精确的数字量[1,2]。 2 AD7708/AD7718,∑-△ADC的应用 AD7708/AD7718是美国ADI公司若干种∑ΔADC中的一种。其中AD7708为16 bit转换精度,AD7718为24 bit转换精度,同为28条引脚,而且相同引脚功能相同,可以互换。为方便起见,下面只介绍其中一种,也是我们工作中用过的AD7708。 2.1AD7708的工作原理 同其它智能化器件一样,AD7708也可以用软件来调节其所具有的功能,即通过微控制器MCU编程向AD7708的相应寄存器填写适当的参数。AD7708芯片中共有11个寄存器, 当模式寄存器(Mode Regis-ter)的最高位后,其工作方框图[2]如图1所示。

Orcad16.5原理图转PADS_Logic原理图方法

Orcad16.5原理图转PADS logic原理图方法 在将Cadence公司的Orcad16.5原理图文件转成PADS logic原理图时,需要经过以下三个步骤: (1)将Orcad16.5原理图文件另存为低版本Orcad16.2原理图文件,文件后缀名为.dsn; (2)在PADS logic软件中打开Orcad16.2原理图文件,并将其另存为PADS logic原理图文件,文件后缀名为.sch;转换后得到的PADS logic原理图文件除了在文件属性方面是Logic原理图文件后,其仍然具备Orcad16.2原理图文件的特点。例如,在Orcad16.2原理图文件中存在原理图分层结构,而Logic 不存在该结构。但是由于两种软件的原理图兼容,因此,在Orcad16.2原理图中出现的符号仍然可以在PADS logic中打开,但是PADS Logic本身可能没有该符号或者该符号异于Orcad16.2原理图符号(例如,两种软件的接地符号、电源符号、换页连接符等就不一样)。因此,转换后得到的Logic原理图文件并不能直接使用,需要进一步修改为标准PADS logic原理图文件。 (3)在PADS logic中新建一个原理图文件,然后将转换后得到的Logic原理图文件复制到该原理图中,这时发生一个很有意思的现象:将原有Logic 原理图文件粘贴到该原理图中时,原Orcad16.2原理图符号竟然变成了Logic 本身的原理图符号(例如,接地符号、电源符号、换页连接符变成Logic原理图符号)。在此基础上,用Logic中的元件替换转换后原理图文件中的符号即可。将该文件进行修改并保存,即可得到最终的标准Logic原理图文件。 对于由Protel99se原理图文件转换后得到的PADS logic原理图文件,也存在上述步骤(2)提到的问题,因此也可以用上述步骤(3)来解决。 温馨提示: 在将Orcad16.2原理图文件转换后得到的PADS logic原理图文件在局部一些地方跟原有Orcad16.2原理图文件有差异,这时需要对转换后得到的原理文件进行小范围修改,以保证原始设计文件在Logic中真实展现。需要特别注意的几个地方是: ?电源网络的名称:将Orcad16.2原理图文件转换成PADS logic原理图文 件后,原有文件的电源网络可能会发生变化,这时需要特别注意; ?换页连接符:将Orcad16.2原理图文件转换成PADS logic原理图文件后, 原有文件的换页连接符被完整保留,而它并不是Logic中的换页连接符, 因此要对换页连接符进行修改; ?接地符号:将Orcad16.2原理图文件转换成PADS logic原理图文件后, 原有文件的接地符号被完整保留,而它并不是Logic中的接地符号,因 此要对接地符号进行修改; ?电阻和电容:将Orcad16.2原理图文件转换成PADS logic原理图文件后, 原有文件的电阻和电容符号被完整保留,而它并不是Logic中的电阻和 电容符号,因此要对电阻和电容符号进行修改; ?元件类型的替换:将Orcad16.2原理图文件转换成PADS logic原理图文 件后,原有文件的元件符号被完整保留,而该元件在Logic中可能不存 在,因此要对原理图中的元件进行替换。 ?如果Orcad16.5原理图文件是分层结构,要特别注意顶层模块相互之间 的连接关系,如果两个模块中直接相连的网络的名称不一致,在PADS

∑-△模数转换器工作原理

∑-△ADC工作原理 越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC、新型∑-△转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。∑-△转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,∑-△ADC的制造成本非常低廉。 一、∑-△ADC工作原理 要理解∑-△ADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。 1.过采样 首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist 定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。 如果将采样频率提高一个过采样系数k,即采样频率为Kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。∑-△转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC, ∑-△转换器也可获得宽动态范围。 那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。∑-△转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。 2.噪声成形 通过图1所示的一阶∑-△调制器的工作原理,可以理解噪声成形的工作机制。 图1 ∑-△调制器 ∑-△调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放人器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中“1”的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的“1”,反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化. 现在,如果对噪声成型后的∑-△调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

模数转换器工作原理、类型及主要技术指标

模数转换器工作原理、类型及主要技术指标 模数转换器(Analog to Digital Converter,简称A/D转换器,或ADC),通常是将模拟信号转变为数字信号。作为模拟电路中重要的元器件,本文将会介绍模数转换器的原理、分类及技术指标等基础知识。 ADC的发展随着电子技术的迅速发展以及计算机在自动检测和自动控制系统中的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号的模拟量后,需经模/数转换变成数字信号才可输入到数字系统中进行处理和控制,因而作为把模拟电量转换成数字量输出的接口电路-A/D转换器是现实世界中模拟信号向数字信号的桥梁,是电子技术发展的关键和瓶所在。 自电子管A/D转换器面世以来,经历了分立半导体、集成电路数据转换器的发展历程。在集成技术中,又发展了模块、混合和单片机集成数据转换器技术。在这一历程中,工艺制作技术都得到了很大改进。单片集成电路的工艺技术主要有双极工艺、CMOS工艺以及双极和CMOS相结合的BiCMOS工艺。模块、混合和单片集成转换器齐头发展,互相发挥优势,互相弥补不足,开发了适用不同应用要求的A/D和D/A转换器。近年来转换器产品已达数千种。 ADC原理D/A转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。 模数转换一般要经过采样、保持和量化、编码这几个步骤。 ADC的主要类型目前有多种类型的ADC,有传统的并行、逐次逼近型、积分型ADC,也有近年来新发展起来的-型和流水线型ADC,多种类型的ADC各有其优缺点并能满足不同的具体应用要求。低功耗、高速、高分辨率是新型的ADC的发展方向,同时ADC的这一发展方向将适应现代数字电子技术的发展。 并行比较ADC 并行比较ADC是现今速度最快的模/数转换器,采样速率在1GSPS以上,通常称为闪烁

只要一分钟,教你看懂电气控制电路图!

只要一分钟,教你看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。其中的主电路是电气控制线路中大电流流过的部分,包括从电源到电机之间相连的 、“顺 除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。

特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 2 则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电

路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途。如采用了一些特殊 而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为: (1)分析主电路。从主电路人手,根据每台电动机和执行电器的控制要求去分析各

转换开关

转换开关 转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 一、万能转换开关结构与原理: ?由多组相同结构的开关元件叠装而成,外形及凸轮通断触头情况下图所示 LW5系列万能转换开关外形及触头通断示意图 万能转换开关常用产品有LW5和LW6系列。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。路灯低压开关柜中转换开关常用来转换不同相间的电压指示、控制全夜、半夜灯等。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如下图所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。 ?图中每根竖的点划线表示手柄位置,点划线上的黑点“●”表示手柄在该位置时,上面这一路触头接通。

二、万能转换开关表示方法: ?万能转换开关的型号含义如下: L W 5――□□□/□ L:主令电器 W:万能转换开关 5:设计序号 ?□:额定电流 ?□:定位特征代号 ?□:接线图编号 ?□:数字表示触头系统挡数,字母D-直接起动;N-可逆起动;S-双速电机控制。 ?万能转换开关的选用主要根据用途、所需触头挡数和额定电流来选择。 二、主令开关的结构与原理 三、主令开关表示方法: ?主令控制器的动作原理: ?当转动手柄10使凸轮块7转动时,推压小轮8,使支杆5绕轴6转动,动触头4与静触头3分断,将被操作回路断开。相反,当转动手柄10使小轮8位于凸轮块7的凹槽处,由于弹簧9的作用,使动触头4与静触头3闭合,接通被操作回路。触头闭合与分断的顺序由凸轮块的形状所决定的。 ?常用主令控制器有LK1、LK5、LK6、LK14等系列,其型号的含义如下: ? L K 1――□/□ ?L:主令电器 K:控制器 1:设计序号 ?□:控制回路数 ?□:结构形式代号 ?主令控制器的选用主要根据额定电流和所需控制回路数来选择

万能转换开关的工作原理及符号表示

万能转换开关的工作原理及符号表示 一种可供两路或两路以上电源或负载转换用的开关电器。转换开关由接触系统、定位机构、手柄等主要部件组成。这些部件通过螺栓紧固为一个整体。 转换开关又称组合开关,与刀开关的操作不同,它是左右旋转的平面操作。转换开关具有多触点、多 位置、体积小、性能可靠、操作方便、安装灵活等优点,多用于机床电气控制线路中电源的引入开关,起着隔离电源作用,还可作为直接控制小容量异步电动机不频繁起动和停止的控制开关。转换开关同样也有单极、双极和三极。 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

逐次逼近型模数转换器基本原理

逐次逼近型模数转换器基本原理 逐次逼近型模数转换器一般由顺序脉冲发生器、逐次逼近寄存器、数模转换器和电压比较器等几部分组成,其原理框图如图11-3所示。 图11-3 逐次逼近型模数转换器的原理框图 转换开始前先将所有寄存器清零。开始转换以后,时钟脉冲首先将寄存器最高位置成1,使输出数字为100…0。这个数码被数模转换器转换成相应的模拟电 压,送到比较器中与进行比较。若>,说明数字过大了,故将最高位的 1清除;若<,说明数字还不够大,应将最高位的1保留。然后,再按同 样的方式将次高位置成1,并且经过比较以后确定这个1是否应该保留。这样逐位比较下去,一直到最低位为止。比较完毕后,寄存器中的状态就是所要求的数字量输出。 可见逐次逼近转换过程与用天平称量一个未知质量的物体时的操作过程一样,只不过使用的砝码质量一个比一个小一半。 能实现图11-3所示方案的电路很多。图11-4所示电路是其中的一种,这是 一个四位逐次逼近型模数转换器。图中四个JK触发器~组成四位逐次逼 近寄存器;5个D触发器~接成环形移位寄存器(又称为顺序脉冲发生器), 它们和门~一起构成控制逻辑电路。 图11-4 四位逐次逼近型模数转换器

现分析电路的转换过程。为了分析方便,设D/A转换器的参考电压为=+8 V,输入的模拟电压为=4.52 V。 转换开始前,先将逐次逼近寄存器的四个触发器~清零,并把环形计数器的状态置为00001。 第1个时钟脉冲C的上升沿到来时,环形计数器右移一位,其状态变为10000。 由于,均为0,于是触发器被置1,和被置0。 所以,这时加到D/A转换器输入端的代码为1000,D/A转换器的输出电压为 和在比较器中比较,由于<,所以比较器的输出电压为。 第2个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为 01000。这时由于,,均为0,于是触发器的1保留。 与此同时,的高电平将触发器置1。所以,这时加到D/A转换器输入端的 代码为1100,D/A转换器的输出电压为 和在比较器中比较,由于>,所以比较器的输出电压为。 第3个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为 00100。这时由于,,均为0,于是触发器的1保留, 而被置0。与此同时,的高电平将置1。所以,这时加到D/A转换器输入端的代码为1010,D/A转换器的输出电压为 和在比较器中比较,由于>,所以比较器的输出电压为。 第4个时钟脉冲C的上升沿到来时,环形计数器又右移一位,其状态变为00010。 这时由于,,均为0,于是触发器、的状态保持不变, 而触发器被置0。与此同时,的高电平将触发器置1。所以,这时加到

模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用 一、Σ-Δ ADC基本原理 Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和采样抽 取等基本概念 1.过采样 ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。 图1 理想3位ADC转换特性 如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC的分辨率。 由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

数模转换器(DAC)原理研究

数字-模拟转换器(DAC)原理研究 电子0801班 08214014 08214013

一题目简述 随着科学技术的发展, 我们常常要用模拟系统来处理数字信号. 这就需要数字-模拟的转换. DAC的作用是将计算机或控制器产生的二进制数字转换成与之成比例的模拟电压. 其意义相当于一种译码电路. 本次的数模原理研究主要介绍全电阻网络D/A转换器和倒T型电阻网络D/A转换器, 利用等效方法和叠加原理推导输出电压, 比较两种转换器的特点. 并用EWB 软件来验证电路的工作原理. 二DAC原理 1. D/A数模转换器的设计思想 D/A数模转换器在某种意义上说相当于一种译码电路,将给定的二进制码的量译成相应的模拟量的数值。 数字量是由二进制数位组合起来,而每位数字符号都有一定的权。例如,四位二进制数1101每位的权对应十进制数值从高位到底为排列依次为8,4,2,1(必须位置上是一才有效)。所以二进制数1101代表十三。为了将数字量转换成模拟的量,可以将每一位数字量按权的大小装换成模拟量。然后将这些模拟量相加,所得到的总的模拟量就是数字量所必须转换成

的模拟量。 2.权电阻网络D/A 转换器 (1) 数模转换的一种方法是使用电阻网络,网络中阻值表示数字码输入位的二进制权值。输入的电平决定电流的有无,开关接入相应电压V s 时,输入电压为V s ,二进制数位“1”。开关接地时输入电压为0V ,二进制数为“0”. 如下图给出了一个三位的DAC 。 上面已经提及开关1 -n K , 2-n K ,……, 1K ,0K 分别受输入代码1-n D ,2-n D ,……,1D ,0D 的状态控制,由于虚地点的存在,其中某个开关i K 接到“1”或“0”在电阻i R 支路产生的电流为 i R i k Ri V I = 即 i R i D Ri V I = 000D R V I R = 11 1D R V I R = 222D R V I R = 支路电流总和 I=∑=20i i I =00D R V R +11D R V R +22 D R V R = 022D R V R +112D R V R +202D R V R =R V R 22[001122222?+?+?D D D ]

一分钟学会如何看懂电气控制电路图!

一分钟学会如何看懂电气控制电路图! 一分钟学会如何看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。 、 分析联锁与保护环节:生产机械对于安全性、可靠性有很高的要求,实现这些要求,除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分

之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备, 2 路化整为零,按功能不同划分成若干个局部控制线路来进行分析。如果控制线路较复杂,则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;

此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第四步:研究电器元件之间的相互关系。电路中的一切电器元件都不是孤立存在的而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为:

数模转换电路

数模转换电路 一、概述 数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器DAC。 二、D/A转换器的基本原理 基本原理:将输入的每一位二进制代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。这就是构成D/A转换器的基本思路。D/A转换器由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压几部分组成。数字量以串行或并行方式输入、存储于数码寄存器中,数字寄存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网络上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。 1、数模转换器的转换方式 (1)并行数模转换 通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。 (2)串行数模转换 将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 三、D/A转换器的分类 1、电压输出型 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOS D/A转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了运算放大器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 2、乘算型 D/A转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。 四、D/A转换器的主要性能指标 1、分辨率 指最小输出电压(对应的输入数字量只有最低有效位为“1”)与最大输出电压(对应的输入数字量所有有效位全为“1”)之比。如N位D/A转换器,其分辨率为1/(2N-1)。 2、转换精度 D/A转换器的转换精度与D/A转换器的集成芯片的结构和接口电路配置有关。如果不考虑其他D/A 转换误差时,D/A的转换精度就是分辨率的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够分辨率的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。在D/A 转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。 3、编辑本段温度系数 在满刻度输出的条件下,温度每升高1℃,输出变化的百分数定义为温度系数。 4、失调误差(或称零点误差)

Protel+PCB转原理图

Protel PCB 转SCH全攻略 本文以Protel 99Se提供的4 Port Serial Interface为例进行说明。 1.打开PCB图,选择菜单File-Export,导出Protel的网络表,文件名简写为https://www.wendangku.net/doc/571134857.html,。 2.启动程序Omninet for Windows,输入文件类型(Type)选Protel,Input File 1里用Browse指定网络表文件的位置。 输出文件类型(Type)选EDIF。Output File 1指定输出文件的文件名和路径。 然后点击Run(跑动的小人)。 系统弹出一个输出窗口,点击Accept Data。完成后点击“确定”,再点击“Done”关闭输出窗口。退出Omninet for Windows。

3.启动E-Studio软件,打开第2步生成的EDIF文件。 4.右键点击Serial.EDF文件,选择Generate Schamatics:

系统弹出窗口。 点击确定。 5.选择菜单File-Save As,输出格式选ORCAD 9.10。

点击Save保存。弹出窗口中点击“确定”结束。 生成的原理图已经可以在ORCAD中打开了。图纸可有点大啊!下图只是其中的一部分。 图纸没有层次的概念,不管电路有多复杂,只有一张平面图。 6.将ORCAD的原理图转为Protel的原理图。 因为E-Studio的输出格式没有Protel,所以必须另外转换。推荐使用Protel 2004,其转换效果较好。 启动DXP 2004,选择菜单File-Open,文件类型选Orcad Capture Design(*.DSN)。

模数和数模转换器类型及原理介绍

QQ:460209698 模数模数//数模数模转换转换转换器器类型及原理类型及原理简介简介简介 (AD 详解详解((连载连载之之一)) https://www.wendangku.net/doc/571134857.html,/open_hard/blog/item/1cc0a8f36f633f53342acccd.html AD:模数转换,将模拟信号转换为数字信号,便于数字设备处理。 DA:数模转换,将数字信号转换为模拟信号,与外部世界接口。 具体可以看看下面的资料,了解一下工作原理: 1. 1. AD AD 转换器的分类 下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型逐次逼近型逐次逼近型、并行并行比较型比较型//串并行型串并行型((流水线型流水线型))、∑∑-Δ调制型 调制型、电容阵列逐次比较型及压频变换型。【【重点理解重点理解加粗的加粗的加粗的三种三种三种】】 1)积分型(如TLC7135) AD 连载之二-----双积分型 AD 转换器 积分型AD 工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD 转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) AD 连载之三-----逐次逼近 AD 转换器的工作原理 逐次比较型AD 由一个比较器和DA 转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA 转换器输出进行比较,经n 次比较而输出 数字值。其电路规模属于中等,其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) AD 连载之四-----并行比较型A/D 转换器 并行比较型AD 采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n 位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD 转换器等速度特别高的领域。 串并行比较型AD 结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD 转换器配合DA 转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD 转换的叫做分级 (Multistep/Subrangling)型AD,而从转换时序角度又可称为又可称为 又可称为流水线(Pipelined)型AD,现代的分级型AD 中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD 速度比逐次比较型高,电路规模比并行型小。 7)流水线型A/D 转换器(串并行比较型,特例) (先理解理解并行并行并行比较比较 比较型型A D 转换转换器器原理原理!!!!) 为兼顾高速率和高精度的要求,流水线结构的A/D 转换器应运而生。这种A/D 转换器如图11-6所示,它结合了串行和闪烁[Flash]型ADC 的特点,采用基于

相关文档
相关文档 最新文档